UNIVERSIDAD DE EL SALVADOR FACULTAD DE CIENCIAS NATURALES Y MATEMATICA ESCUELA DE MATEMATICA

FACTORES ECONÓMICOS QUE INCIDEN EN LA INVERSIÓN PRIVADA EN EL SALVADOR

Trabajo de Graduación presentado por: José René Palacios Barrera.

> Para optar al Grado de: Maestro en Estadística

> > ASESOR:

Dr. José Nerys Funes Torres Julio, 2010

San Salvador El Salvador Centroamérica

UNIVERSIDAD DE EL SALVADOR FACULTAD DE CIENCIAS NATURALES Y MATEMATICA ESCUELA DE MATEMATICA

TRABAJO DE GRADUACION:

FACTORES ECONÓMICOS QUE INCIDEN EN LA INVERSIÓN PRIVADA EN EL SALVADOR

Trabajo de Graduación presentado por: José René Palacios Barrera.

Para optar al Grado de:

Maestro en Estadística

Julio, 2010

San Salvador El Salvador Centroamérica

UNIVERSIDAD DE EL SALVADOR

RECTOR:: ING. RUFINO ANTONIO QUEZADA SÁNCHEZ

SECRETARIO GENERAL: LIC. DOUGLAS VLADIMIR ALFARO CHÁVEZ

FACULTAD DE CIENCIAS NATURALES Y MATEMATICA.

DECANO: **DR. RAFAEL ANTONIO GÓMEZ ESCOTO.**SECRETARIA GENERAL: **LIC. MARÍA TRINIDAD TRIGUEROS DE CASTRO.**

ESCUELA DE MATEMATICA

DIRECTOR: ING. CARLOS MAURICIO CANJURA LINARES

SECRETARIO:LIC. ERNESTO AMERICO HIDALGO CASTELLANOS

CIUDAD UNIVERSITARIA, JULIO DE 2010.

INDICE

1.	Introducción.	7
2.	Antecedentes y justificación.	8
	2.1. Antecedentes.	8
	2.2. Justificación	9
3.	Planteamiento del problema.	. 10
4.	Objetivos.	. 11
	4.1. Objetivo general	.11
	4.2. Objetivos específicos	. 11
5.	Marco teórico.	
	5.1. Series temporales	. 11
	5.1.1 Definición de serie temporal.	. 11
	5.1.2 . Ejemplos de series temporales.	
	5.1.3. Objetivos del análisis econométrico	
	5.2. Procesos estocásticos.	
	5.2.1.Definición de proceso estocástico.	. 13
	5.2.2. Procesos estocásticos estacionarios.	
	5.2.3. Procesos estocásticos no estacionarios.	
	5.3. Modelo para un proceso estocástico	. 15
	5.3.2. Ejemplos de procesos estocásticos univariantes.	. 16
	5.3.3. Ejemplo- modelo multivariante estacionario-	
	5.3.4. Modelos multivariantes no estacionarios.	
	5.3.4.1 Cointegración.	
	5.3.4.2 . Modelos para procesos no estacionarios –cointegrados	
	5.3.4.3. Modelo VAR(1) con raíces.	
	5.4 Aplicaciones.	
	5.4.1 Previsión con modelos ARIMA univariantes	.22
	5.4.2. Relaciones dinámicas implícitas en un modelo ADL(1,1)	
	5.5. Modelos univariantes.	
	5.5.1. Definición de modelo univariante.	
	5.5.2. Etapas en la construcción de un modelo univariante.	
	5.6. Procesos estocásticos estacionarios.	25
	5.6.1. Proceso estacionario estricto.	
	5.6.2. Proceso Estacionario Débil.	
	5.6.3. Proceso estacionario débil de segundo orden	
	5.6.4. Proceso estocástico normal o gaussiano	
	5.6.5. Función de autocovarianza.	
	5.6.5.1. Autocovarianza simple.	
	5.6.5.2. Autocorrelación parcial.	
	5.6.5.3. Media y varianza muestral.	
	5.6.5.4. Correlación simple muestral	
	5.6.5.5. Correlación parcial muestral.	
	5.6.5.6. Procesos estacionarios y series no estacionarias.	
	5.7. Modelos ARMA.	
	5.7.1. Modelo ARMA(p,q)	

5.7.2. Operador de retardo	34
5.7.3. Ejemplo-modelo autorregresivo de primer orden o AR(1)	
5.7.4. Ejemplo. Modelo autorregresivo (Y _t) de segundo orden o AR(2)	
5.7.5. Modelo media móvil de primer orden ó MA(1)	38
5.7.6. Modelo media móvil de segundo orden o MA(2).	
5.7.8. Modelo autorregresivo-media móvil de orden(1,1) o ARMA(1,1)	
5.8 Procesos estocásticos no estacionarios.	
5. 8.1. Función estabilizadora de la varianza.	40
5.8.2 Operador de diferencia regular	42
5.8.3.Proceso integrado.	
5.8.4. Paseo aleatorio.	
5.8.5. Componente determinista y aleatorio de un paseo aleatorio	43
5.8.6 Modelo MA(1).	
5.9. Modelos ARIMA	
5.9.2. Tendencia en los modelos no invertibles.	46
5.10 Elaboración de modelos ARIMA	46
5.10.1. Criterios de información.	48
5.10.2. Criterio BIC de selección de un modelo.	48
5.10.3. Contraste de no estacionariedad de Shin Fuller.	48
5.10.4. Contraste de no invertibilidad de Davis-Chen-Dunsmuir.	49
5.11 Previsión con modelos ARIMA.	50
5.12. Modelos multivariantes	53
5.12.1. Aspectos generales de los modelos multivariantes.	53
5.12.2. Modelos de regresión dinámica: ideas generales.	55
5.12.3 Relaciones entre series estacionarias: función de covarianzas y correlaciones	
cruzadas	55
5.12.4. Función de autocorrelación cruzada.	56
5.12.5. Modelo dinámico entre series estacionarias.	
5.12.6. Construcción del modelo.	
5.12.6.1 Modelo con varias variables explicativas	59
5.12.7. Instrumentalización de la metodología de vectores autorregresivos (VAR)	
5.12.8. Introducción a la metodología de vectores autorregresivos (VAR)	
5.12.9. Estimación y calibrado econométrico VAR.	65
5.12.10. Función impulso-respuesta.	
5.12.11. Descomposición de la varianza del error de predicción	
5.12.12. Evaluación de políticas y análisis del poder predictivo de un sistema VAR	
5.12.13. Otras ideas sobre cointegración.	67
5.12.14. Test de cointegración en un sistema VAR.	69
5.12.15. Metodología de johansen (1991)	
5.12.16. Metodología del modelo de corrección del vector de error (VEC) en un VAR	
5.13 Modelos multivariantes estacionarios.	
5.13.3. Proceso VARMA(p,q)	
5.13.5. Función de transferencia en modelos VARMA.	
5.14. Modelos de regresión con perturbaciones ARMA.	
5.14.0. Modelo ARMA con perturbaciones.	
5.14.1. Análisis de intervención.	
5.14.2. Modelos multivariantes no estacionarios.	76

5.14.2.1 .Modelos para procesos no estacionarios cointegrados	76
5.14.2.2 Modelos para procesos no estacionarios-cointegrados.	77
5.14.3. Ejemplo. Modelo VAR(1) con raíces	
5.14.4. Realimentacion en modelos VAR.	
5.14.5. Estacionariedad de un VAR.	78
5.15. Causalidad en el sentido granger	79
5.16. Modelos var recursivos.	
5.16.1. Modelos de uso común en econometría.	81
5.16.1.1. Modelos ADL:	81
5.16.1.2. Modelos de retardos racionales (modelos de función de transferencia)	
5.16.1.3. Relación entre los modelos adl y los modelos de funcion de	
Transferencia	
5.17 Modelos multivariantes no estacionarios. Caso general.	
5.18. Raíces unitarias.	
5.18.1. Contrastes de raíces unitarias.	
5.18.2. Alternativas a los contrastes ADF.	
5.18.3. Modelos VAR con raíces unitarias.	
5.18.4. Rango de cointegración.	
5.19. Estimacion de las relaciones de cointegracion.	
5.19.1 Estimación directa de la cointegración.	
5.19.2. Inferencia.	
5.20. Contrastes de cointegración.	
5.20.1. Contraste de Engle-Granger.	
5.20.2 . Contrastes basados en un modelo VAR-VEC	
5.20.2.1. Logaritmo neperiano de la función de verosimilitud.	
6. Metodologia.	
6.1 Diseño de la investigacion	
6.2 Ajuste de modelos univariantes	
6.2.1 Analisis descriptivo. Graficos de series temporales	
6.2.2 Gráfica de funciones de autocorrelacion simple y parcial.	102
6.3. Ajuste de modelos univariantes.	109
6.4 . Identificación del modelo multivariante.	
6.4.1. Correlaciones cruzadas.	124
6.4.1.3. Correlaciones entre las variables.	136
6.5. Determinación de causalidad en el sentido Granger.	
6.6. Determinación del modelo de regresión dinámica	
6.8. Contrastes de raíces unitarias y relaciones de cointegración.	
6.9. Estimación de los modelos de regresión dinámica	
6.10. Contrastes sobre los residuos.	148
6.11. Modelo VAR.	156
6.12. Fase de predicción.	159
7. Conclusiones.	
8. Referencias bibliográficas.	163
Anexo I	
Definicion de las variables	
Anexo II.	
Series temporales de cuentas nacionales (1958-2008)	166

1. Introducción.

En varios países la inversión privada ha sido tema de estudio en muchas investigaciones, debido a su importancia en el desarrollo y crecimiento económico de estos. Precisamente uno de los determinantes fundamentales del ciclo económico de corto y mediano plazo es la inversión en bienes de capital ya que forma parte de la demanda agregada, por lo que explica los cambios de fase y amplitud del ciclo productivo de una economía. Además la inversión ejerce una influencia importante sobre la demanda agregada, porque es a través de ella que se puede ampliar la producción de un país y sostener el crecimiento económico a largo plazo, lo cual es uno de los objetivos que persiguen especialmente los países en desarrollo, como es el caso de El Salvador. Esta inversión es efectuada por agentes económicos (particulares o empresas, grupos de inversión, etc.) ajenos al gobierno, que representan al sector privado de la economía, movidos por la necesidad de aumentar sus posesiones o activos (Blanchard y Pérez, 2000; Dornbusch y Fischer, 1994).

Para darse una idea de la importancia de la inversión en bienes de capital para el desarrollo económico, se hizo un ejercicio sencillo con datos del Banco Mundial (en el artículo de BCR del 14/11/2008 titulado "El Papel de la Inversión en Desarrollo Económico"), se extrajeron datos de tasas de crecimiento anuales de la inversión y del PIB para 170 países. Luego se tomaron los promedios desde 1981 a 2007 para ambas variables y por cada país. Se encontró que existe una relación positiva entre crecimiento de la inversión y el crecimiento económico en el período seleccionado (1981-2007). Este resultado engloba los datos de un gran número de economías, con distintos grados de industrialización, de apertura y de ingreso en el período. Según diversos resultados empíricos, podemos distinguir que hay determinantes de diferente índole, por ejemplo factores socio-políticos y judiciales ya que es claro que habrá renuencia a invertir por parte de los agentes inversores en países de alto riesgo en este ámbito. Esto es un asunto de mucha actualidad, sobre todo para el caso de los países latinoamericanos. Otros de los factores que intervienen como determinantes de la inversión privada corresponden a variables ligadas directamente al ciclo económico y que pueden ser de alguno de los sectores monetario y financiero, externo, fiscal o real. Sobre esto existen ya algunos acuerdos, según investigaciones ya realizadas, por ejemplo según Servén y Solimano (1992) explican que hay

consideraciones teóricas y empíricas que sugieren para determinar la inversión privada en los países emergentes las variables a considerar son el producto interno, la tasa de interés real, la inversión pública, crédito disponible para la inversión, la magnitud de la deuda externa, el tipo de cambio y la estabilidad macroeconómica. Cruz y Texeira (1999) utilizaron herramientas de econometría moderna para mostrar que la inversión pública y privada son complementarias en el largo plazo y sustitutivas en el corto plazo. Existen otros estudios orientados a la búsqueda de los determinantes de la inversión privada, como los casos de México, Cuba, Venezuela y Argentina, todos haciendo uso de las herramientas modernas disponibles para el manejo de series temporales, como el Análisis de Regresión Vectorial (VAR, VARMA).

Para el caso específico de El Salvador, hay algunos estudios breves realizados pero de carácter muy superficial y no consideran las variables antes mencionadas. Por ello no hay acuerdo sobre cuales fueron los factores principales que generaron el ciclo de la inversión privada en El Salvador, digamos por ejemplo en el periodo 1950-2009.

Dada la carencia de investigaciones sobre los determinantes de la inversión privada en El Salvador es muy importante iniciar estudios que lleven a esclarecer estos hechos.

En el presente trabajo de graduación que se titula "FACTORES ECONÓMICOS QUE INCIDEN EN LA INVERSIÓN PRIVADA EN EL SALVADOR" se plantea las líneas de desarrollo a seguir para dar respuesta a esta situación que aún no ha sido satisfecha.

2. Antecedentes y justificación.

2.1. Antecedentes.

En nuestro país las investigaciones sobre la inversión privada son muy escasas, por no decir nulas, aún y cuando en otras latitudes siempre ha sido un tema de permanente investigación.

Desde estudios de los economistas clásicos como John Keynes (1936) hasta estudios recientes, se ha tratado de esclarecer cuales son los factores determinantes de la inversión privada en los países, especialmente de los países en desarrollo. Entre otras tenemos las siguientes investigaciones realizadas al respecto

 ANALISIS ECONOMÉTRICO DE LA INVERSION PRIVADA EN BRASIL (MARIO BRUNO RIBEIRO Y JOANILIO RODOLPHO TEXEIRA, publicado en agosto del 2001).

- DETERMINANTES DE LA INVERSIÓN PRIVADA EN VENEZUELA. UN ANÁLISIS ECONOMÉTRICO PARA EL PERIODO 1950-2001 (NELSON LABARCA Y LUIS HERNÁNDEZ GUTIÉRREZ, publicado en diciembre del 2003).
- LA INVERSIÓN PRIVADA EN ARGENTINA (1950-2000), (COREMBERG, ARIEL; MAROTTE, BALTAZAR; RUBINI, HÉCTOR; TISOCCO, DAVID, publicada en julio del 2006).
- FACTORES SOCIO-POLÍTICOS Y JUDICIALES COMO DETERMINANTES DE LA INVERSIÓN PRIVADA EN LATINOAMÉRICA (RAFAEL ALEXIS ACEVEDO RUEDA Y JOSÉ U. MORA publicado en abril del 2008).
- LA ECONOMÍA DE EL SALVADOR EN EL PERÍODO 1950-1980.
 CONVERGENCIA Y DIVERGENCIA CON LOS PAÍSES DE CENTROAMÉRICA.
 Silvia Margarita Rubio Jovel. UNIVERSIDAD CARLOS III DE MADRID.
 Madrid/2004.

Para el caso de El Salvador se encontró además El texto "AJUSTE HACIA LA PAZ" de Carlos Acevedo y Alex Segovia, publicado en agosto de 1999 (financiado por las Naciones Unidas), donde se trata el tema sólo de forma descriptiva y aporta mucha información relativa a las variables que se pretende analizar en el trabajo que se propone en este perfil. No existen registros de investigaciones formales con el mismo carácter de las investigaciones que ya se mencionaron antes. Sin embargo si se encuentran algunos artículos sobre investigaciones ocasionales, por ejemplo "El Papel de la Inversión en el Crecimiento Económico", publicado el 14/11/2008 por el BCR.

2.2. Justificación.

Hacer un estudio sobre los posibles determinantes de la inversión privada en El Salvador tiene sobradas justificaciones. En primer lugar es importante hacer aportes concretos que vayan en beneficio de la sociedad, sobre todo si es en áreas que inciden directamente en la población. Como hemos mencionado, la inversión privada juega un papel fundamental en el sostenimiento de la economía y el desarrollo económico del país, por ello, es importante distinguir las variables que la determinan y cuantificar la influencia de dichas variables y, además las entidades encargadas de hacer tales investigaciones han pasado por alto este asunto o lo han tratado de manera muy superficial. Como sabemos la investigación es uno de

los fines de la Universidad de El Salvador y es importante hacer encajar los estudios teóricos en la práctica y así darle un mayor sentido a los estudios de posgrado que la UES promueve. En particular considero que la teoría relativa a los modelos multivariantes en series temporales tiene importantes aplicaciones en la realidad, en particular los modelos ARMA vectoriales (VARMA), y esto es lo que se pretende mostrar con el desarrollo del presente trabajo.

Bajo estas premisas y tomando en cuenta la importancia de tener un modelo de series temporales multivariantes que se ajuste al comportamiento de la inversión privada de El Salvador, además dado que nunca se ha hecho un estudio de tal envergadura en nuestro país, queda justificado el desarrollo de la investigación.

3. Planteamiento del problema.

El problema fundamental que se desea resolver es ajustar un modelo estadístico a la variable inversión privada en función de otras variables económicas de cuentas nacionales, es decir, se quiere ajustar un modelo del tipo:

$$inv priv = F(X, Y, ..., Z)$$
,

donde X,Y,...,Z son variables económicas de cuentas nacionales tales como préstamos disponibles para inversión, exportaciones e importaciones totales, deuda externa, PIB (producto interno bruto), inversión pública y privada, TCE (tasa de crecimiento económico), IPC (índice de precios al consumidor), índice de términos de intercambio, etc.

Más detalladamente si suponemos que se dispone de k series de datos económicos, (donde el número k se ha determinado, tomando en cuenta lo sugerido por estudios teóricos y empíricos), la primera cuestión es comprobar que la dimensión del sistema es efectivamente k, es decir que tenemos k series independientes y que ninguna de ellas se ha construido como combinación lineal de las demás. En este sentido, si tenemos h relaciones exactas contemporáneas entre las series, tendremos k-h componentes independientes. Una vez se ha determinado las variables con las que se realizará el análisis, se procederá a identificar que tipo de modelo, se va a ajustar. Dado que se dispone de datos económicos anuales de variables correspondientes a casi medio siglo se ajustará un modelo de series temporales multivariante. Estos modelos son conocidos como modelos VARMA, que son derivados de los modelos de series temporales univariantes ya conocidos y que serán explicados en el desarrollo teórico.

Finalmente lo que sigue es realizar los contrastes diagnósticos para comprobar si el modelo planteado no tiene deficiencias detectables.

4. Objetivos.

4.1. Objetivo general.

 Ajustar un modelo de series temporales multivariante que permita determinar los factores que inciden en la inversión privada en El Salvador, y en la medida de lo posible hacer predicciones.

4.2. Objetivos específicos.

- Estudiar y aplicar los modelos de series temporales multivariantes.
- Comprender la dinámica de la economía de El Salvador a través de un análisis econométrico.
- Conocer el comportamiento de las principales variables econométricas en el transcurso del tiempo y como éstas han ido fluctuando de acuerdo a la situación socio-política del país.

5. Marco teórico.

5.1. Series temporales.

5.1.1 Definición de serie temporal.

Una serie temporal es una secuencia de N observaciones (datos) ordenadas y equidistantes cronológicamente sobre una característica (serie univariante) o sobre varias características (serie multivariante o vectorial) de una unidad observable en diferentes momentos. Se suele representar una serie temporal univariante mediante $y_1, ..., y_N$ ó $(y_t)_{t=1}^N$; con t=1,2,...,N y donde y_t es la t-ésima observación y N es el número de observaciones de que consta la serie completa. Las N observaciones $y_1, ..., y_N$ pueden recogerse en un vector columna $Y = \begin{bmatrix} y_1, ..., y_N \end{bmatrix}^t$ de orden N×1. La notación usada para las series temporales multivariantes es completamente análoga: $(Y_t)_{t=1}^N$, con t=1,2,...,N, y donde $Y_t = \begin{bmatrix} Y_{t1}, Y_{t2}, ..., Y_{tM} \end{bmatrix}^t$,

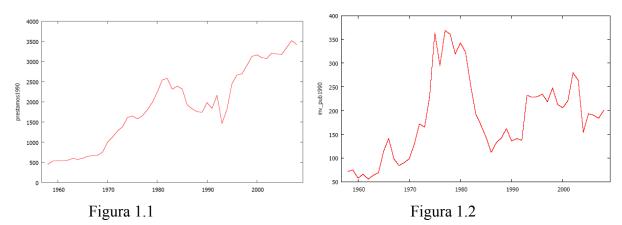
 $(M \ge 2)$ es la observación t-ésima de la serie y N es el número de observaciones de que consta la serie completa. Las N observaciones $Y_1,...,Y_N$ pueden recogerse en una matriz Y de orden N × M:

$$Y = \begin{pmatrix} Y_{1}' \\ Y_{2}' \\ \vdots \\ Y_{N}' \end{pmatrix} = \begin{pmatrix} Y_{11} & Y_{12} & \dots & Y_{1M} \\ Y_{21} & Y_{22} & \dots & Y_{2M} \\ \vdots & \vdots & \vdots & \vdots \\ Y_{N1} & Y_{N2} & & Y_{NM} \end{pmatrix} ; (1 \le t \le N; 1 \le j \le M)$$

$$(1.1)$$

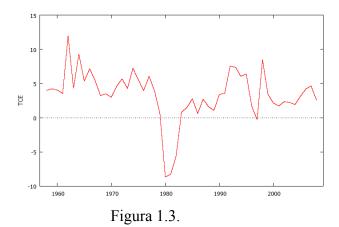
Donde Y_{tj} es la observación t-ésima sobre la característica o variable j, que es la misma en todo momento t.

5.1.2 . Ejemplos de series temporales.



Serie temporal correspondiente a los préstamos en El Salvador periodo 1958-2007

Inversión pública en El Salvador, periodo 1958-2007



Tasa de crecimiento económico en El Salvador en el periodo de 1958-2007.

Observación: La serie de la figura 1.1 evoluciona con una razón de crecimiento similar en todo el periodo, pero podemos apreciar un cambio de nivel a partir de 1980, parece que la tendencia es al crecimiento, sin mostrar mucha variabilidad. La figura 2.2 muestra un crecimiento en la década del 70 al 80 y decrece luego a partir de 1980, pareciendo estabilizarse a partir de 1991. Esto corresponde con sucesos políticos muy conocidos de la historia de El Salvador.

5.1.3. Objetivos del análisis econométrico.

El primer objetivo del análisis econométrico de una serie temporal consiste en elaborar un modelo estadístico que describa adecuadamente la procedencia de dicha serie, de manera que las implicaciones teóricas del modelo resulten compatibles con las pautas muestrales observadas en la serie temporal considerada puede utilizarse para:

- Describir la evolución observada de dicha serie, así como las relaciones contemporáneas y dinámicas entre sus componentes (en el caso de series multivariantes).
- Prever la evolución futura de dicha serie.
- Contrastar (presentar evidencia empírica a favor o en contra de) alguna teoría sobre las características o las variables a las que se refieren los componentes de dicha serie.

El punto de partida para elaborar un modelo a partir de una serie temporal consiste en considerar dicha serie como una realización particular finita de un proceso estocástico.

5.2. Procesos estocásticos.

5.2.1. Definición de proceso estocástico.

Un proceso estocástico es una secuencia de variables aleatorias , ordenadas y equidistantes cronológicamente, referidos a una (proceso univariante) o a varias (proceso multivariante o vectorial) características de una unidad observable en diferentes momentos.

Representaciones Matemáticas Frecuentes de Procesos Estocásticos Univariantes y Multivariantes: se usa la notación:

$$..., Y_{-1}, Y_0, Y_1, Y_2, ...; (Y_t : t \in Z); (Y_t)$$

, para los procesos univariantes, donde Y_t es una variable aleatoria escalar referida a una unidad observable considerada en el momento t.

Para los procesos estocásticos multivariantes se usa una notación similar:

...,
$$Y_{-1}, Y_0, Y_1, Y_2, ...; (Y_t: t \in Z); (Y_t)$$

Donde $Y_t = [Y_{t1}, Y_{t2}, ..., Y_{tM}]^t$, $(M \ge 2)$ es una variable aleatoria vectorial, referida a una unidad observable considerada en el momento t. El componente número j $(1 \le j \le M)$ de

cada Y_t hace referencia a una característica o variable genérica dada, que es la misma en todo momento t.

Proceso estocástico...
$$Y_{-1}, Y_0, \underbrace{Y_1, ..., Y_N}_{}, Y_{N+1}, ...$$

Serie temporal $Y_1, Y_2, ..., Y_N$

Figura 1.3.

Observación: En general, una serie temporal se refiere a un periodo muestral que tan sólo es una parte de la historia del proceso estocástico del que procede dicha serie, No obstante, si las circunstancias sociales o naturales del periodo muestral al que se refiere la serie considerada, se mantienen relativamente estables después de dicho periodo, entonces se espera que las conclusiones obtenidas del análisis de dicha serie sean aplicables también a momentos posteriores, al menos a corto plazo. Esta idea justifica el empleo de un modelo elaborado con una muestra dada para describir la evolución temporal de un proceso estocástico después del periodo muestral considerado.

5.2.2. Procesos estocásticos estacionarios.

Un proceso estocástico (Y_t) es estacionario cuando las propiedades estadísticas de cualquier secuencia

$$Y_{t_1}, Y_{t_2}, ..., Y_{t_n}; n \ge 1,$$

De componentes de Y_t, son semejantes a las de la secuencia

$$Y_{t_1+h}, Y_{t_2+h}, ..., Y_{t_n+h}; n \ge 1,$$

Para cualquier número entero h.

Aunque luego se dará una definición más concreta de proceso estacionario la definición anterior pone de manifiesto que cuando un proceso estacionario es estacionario, sus propiedades estadísticas se simplifican notablemente con respecto a un proceso que no lo sea,

lo cual facilita la descripción de su estructura probabilística completa a partir de una única realización finita del mismo.

En general una condición necesaria para que un proceso estocástico sea estacionario es que la esperanza incondicional de cada uno de sus componentes exista y sea la misma a lo largo de toda la historia del proceso. De acuerdo con esto los ejemplos 1.1 y 1.2 no son estacionarios.

, aunque parece que con el tiempo la segunda serie tiende a estabilizarse y por ese motivo podría considerarse estacionario. Por otra parte el ejemplo 1.3 es estacionario, aunque parece tener algunos cambios bruscos en algunos instantes. Luego veremos formas de determinar si un proceso estocástico es estacionario o no.

5.2.3. Procesos estocásticos no estacionarios.

Un proceso estocástico (Y_t) es estacionario cuando las propiedades estadísticas de al menos una secuencia finita

$$Y_{t_1}, Y_{t_2}, ..., Y_{t_n}; n \ge 1,$$

De componentes de Y_t son diferentes de las de la secuencia

$$Y_{t_1+h}, Y_{t_2+h}, ..., Y_{t_n+h}; n \ge 1,$$

Para al menos un número entero h>0.

5.3. Modelo para un proceso estocástico.

Un modelo para un proceso estocástico es cualquier conjunto de hipótesis bien definidas sobre las propiedades estadísticas de dicho proceso.

En muchas ocasiones las propiedades estadísticas sobre las que se plantea un modelo son referidas a la esperanza (condicional o incondicional) entre cada par de componentes del mismo. A través este planteamiento suele hacerse de forma indirecta a través de una expresión matemática(explícita o implícita) para el componente genérico Y_t del proceso estocástico (Y_t) a través de alguna especificación directa de la forma de las esperanzas y de las covarianzas mencionadas.

5.3.2. Ejemplos de procesos estocásticos univariantes.

Ruido Blanco. ARIMA(0,0,0).

Un proceso de ruido blanco univariante es una secuencia (At) de variables aleatorias escalares

idéntica e independientemente distribuidas con media 0 y varianza σ_A^2 , lo cual suele representarse por :

$$(A_t) \approx IDD(0, \sigma_A^2)$$

Cuando cada A_t sigue una distribución normal, (A_t) se denomina un proceso ruido blanco Normal o Gaussiano, lo cual puede representarse como

$$(A_t) \approx NIDD(0, \sigma_A^2)$$

Modelo AR(1)- ARIMA(1,0,0)

Un proceso estocástico univariante estacionario (Y_t) sigue un modelo AR(1) autorregresivo de orden 1, cuando:

$$Y_t = \mu + \phi_1 Y_{t-1} + A_t$$
, para $t \in Z$ (1.2)

Donde $\mu \ y \ \phi_1$ son parámetros; $|\phi_1| < 1$ (condición de estacionariedad) y

$$(A_t) \approx IDD(0, \sigma_A^2)$$

Modelo MA(1)- ARIMA(0,0,1)-.

Un proceso estadístico univariante (Y_t) sigue un modelo MA(1) (media móvil de orden 1) cuando

$$Y_{t} = \mu + A_{t} - \theta_{1} A_{t-1} \text{ para todo } t \in \mathbb{Z}.$$
 (1.3)

Donde $\mu y \theta_1$ son parámetros, $|\theta_1| < 1$ condición de invertibilidad y $(A_t) \approx IDD(0, \sigma_A^2)$

Paseo Aleatorio-ARIMA(0,1,0).

Un proceso estocástico univariante no estacionario (Yt) es un paseo aleatorio cuando,

$$Y_{t} = \mu + Y_{t-1} + A_{t}$$
, para $t \in \mathbb{Z}$ (1.4)

Donde μ es un parámetro (que en muchas ocasiones vale cero) y $(A_t) \approx IDD(0, \sigma_A^2)$

Observación: a) Un paseo aleatorio es un modelo AR(1) con ϕ_1 =1, es decir es un modelo AR(1) no estacionario. Nótese que cuando ϕ_1 =1, la ecuación 1- ϕ_1 x=0 asociada con un modelo AR(1) tiene una raíz unitaria x_0 =1. Por otro lado, un paseo aleatorio puede escribirse como:

$$\nabla Y_{t} = \mu + A_{t}$$

Donde, $\nabla Y_t = Y_t - Y_{t-1}$, de manera que un proceso estocástico univariante no estacionario (Y_t) es un paseo aleatorio, cuando su diferencia regular de orden 1 $\nabla Y_t = Y_t - Y_{t-1}$ es un proceso estacionario $IDD(0,\sigma_A^2)$ (donde el parámetro μ puede valer cero, en cuyo caso el proceso ∇Y_t sería ruido blanco.

b)Un paseo aleatorio constituye el caso más sencillo de lo que suele denominarse un proceso integrado de orden 1 ó I(1) (es decir un proceso no estacionario cuya diferencia regular de orden 1 es un proceso estacionario); por extensión de esta terminología, un proceso estacionario suele denominarse un proceso I(0). La notación $Y_t \sim I(0)$ significa que (Y_t) es un proceso estacionario (integrado de orden cero).

Modelo ARCH(1)

Un proceso estocástico univariante (U_t) sigue un modelo ARCH(1)(del inglés AutoRegresive Conditional Heteroskedasticity) cuando

$$U_t = \sigma_t A_t$$
, con $\sigma_t^2 = E_{t-1}[U_t^2] = \alpha_0 + \alpha_1 U_{t-1}^2$, (1.5)

con $\alpha_0>0$, $\alpha_1>0$, $\alpha_1<1$ y $(A_t)\approx IID(0,1)$ es independiente de (σ_t) . En este caso cuando (U_t) sigue un modelo ARCH(1) como (1,5) los componentes de (U_t) no presentan autocorrelación aunque no son estadísticamente independientes, porque la varianza condicional de (U_t) es una función de (U_{t-1}) . Por otro lado, la varianza incondicional de (U_t) es constante e igual a $\alpha_0/(1-\alpha_1)$, que es positiva si se cumplen las condiciones anteriores sobre α_0 y α_1 .

Modelo GARCH (1.1)

Un proceso estocástico univariante (U_t) sigue un modelo GARCH(1,1)(del inglés Generalized AutoRegresive Conditional Heteroskedasticity) cuando

$$U_{t} = \sigma_{t} A_{t}$$
, con $\sigma_{t}^{2} = E_{t-1} [U_{t}^{2}] = \alpha_{0} + \alpha_{1} U_{t-1}^{2} + \delta_{1} \sigma_{t-1}^{2}$,

Donde $\alpha_0 > 0$, $\alpha_1 > 0$, $\delta_1 > 0$ y $\alpha_{1+} \delta_1 < 1$ y $(A_t) \approx IID(0,1)$ es independiente de (σ_t) .

Cuando un proceso estocástico (U_t) sigue un modelo GARCH(1,1), la varianza incondicional de U_t es constante e igual a $\alpha_0/(1-\alpha_1-\delta_1)$, que es positiva y cumple las condiciones anteriores sobre α_0 , α_1 y δ_1 .

5.3.3. Ejemplo- modelo multivariante estacionario-

Modelo ADL(1,1).

Un proceso bivariante estacionario (\mathbf{Y}_t) , $\mathbf{Y}_t = [Y_t, X_t]^t$ sigue un modelo ADL(1,1) cuando

$$Y_{t} = \beta_{0} + \beta_{1}Y_{t-1} + \gamma_{0}X_{t} + \gamma_{1}X_{t-1} + V_{t}$$
 (1.6)

Donde β_0 , β_1 , γ_0 y γ_1 son parameters con $|\beta_1| < 1$ y $(V_t) \sim IID(0, \sigma_V^2)$.

Cuando $\beta_1 = \gamma_1 = 0$, el modelo ADL(1,1) anterior se reduce a un modelo de regresión estático con perturbaciones IID. Cuando $\gamma_0 = \gamma_1 = 0$ el modelo ADL (1,1) el modelo anterior se reduce a un modelo AR(1). Cuando $\gamma_1 = -\beta_1 \gamma_0$ el modelo anterior se convierte en un modelo de regresión estático con perturbaciones AR(1). Finalmente si $\beta_1 = 1$ y $\gamma_1 = -\gamma_0$ el modelo ADL(1,1) se convierte un modelo de regresión estático entre $\nabla Y_t = Y_t - Y_{t-1}$ y $\nabla X_t = X_t - X_{t-1}$ con perturbaciones IID: $\nabla Y_t = \beta_0 + \gamma_0 \nabla X_t + V_t$.

Si manipulamos algebraicamente el modelo (1.6) puede comprobarse que dicho modelo $\frac{\gamma_0 + \gamma_1}{\gamma_0 + \gamma_1}$

implica que
$$\nabla Y_t = \beta_0 - (1 - \beta_1)(Y_{t-1} - \lambda X_{t-1}) + \gamma_0 \nabla X_t + V_t$$
, con $\lambda = \frac{\gamma_0 + \gamma_1}{1 - \beta_1}$

Que se denomina un modelo de corrección de error (ECM). En el ECM anterior el factor $(Y_{t-1} - \lambda X_{t-1})$ representa en que medida Y_{t-1} y X_{t-1} están fuera de la relación de equilibrio a largo plazo entre (Y_{t-1}) y (X_{t-1}) implícita en (1.6). Dado que $-(1-\beta_1)<0$, el término de corrección de error $\beta_0 - (1-\beta_1)(Y_{t-1} - \lambda X_{t-1})$ en el ECM anterior representa la proporción de desequilibrio (error) entre Y_{t-1} y X_{t-1} que se corrige a través de ∇Y_t

Modelo VAR(1) Bivariante.

Un proceso bivariante estacionario ($\mathbf{Y_t}$) donde $\mathbf{Y_t} = [Y_{t1}, Y_{t2}]^t$ sigue un modelo VAR(1) (autorregresivo vectorial de orden1) cuando

$$Y_{t1} = \mu_1 + \phi_{11}Y_{t-1,1} + \phi_{12}Y_{t-1,2} + A_{t1}$$

$$Y_{t2} = \mu_2 + \phi_{21}Y_{t-1,1} + \phi_{22}Y_{t-1,2} + A_{t2}$$
(1.7)

O bien,

$$Y_{t1} = \mu + \Phi Y_{t-1,1} + A_t$$
 (1.8)

Donde $A_t = [A_{t1}, A_{t2}]^t$, $(A_t) \sim IID(0, \Sigma)$ (ruido blanco vectorial)

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \Phi_1 = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}, \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{22} & \sigma_2^2 \end{bmatrix}$$
(1.9)

Y las raíces de la ecuación $|I - \Phi_1 x| = 0$ están fuera del círculo unitario (lo cual equivale a que los autovalores de la matriz Φ_1 de (1.8) estén dentro del círculo unitario.

Observación: a diferencia de lo que ocurre en el modelo ADL(1,1) como (1.6), donde Y_t es una variable endógena y X_t es una variable exógena, en un modelo VAR(1) como (1.7) tanto Y_{t1} como Y_{t2} son variables endógenas, cuya evolución temporal se determina en forma conjunta.

El modelo VAR(1) que figura en (1.7) y (1.9) puede interpretarse como la forma reducida de un modelo bivariante cuya forma estructural es del tipo:

$$\begin{split} Y_{t1} &= \beta_{01} + \beta_{11} Y_{t-1,1} + \gamma_{01} Y_{t,2} + \gamma_{11} Y_{t-1,2} + V_{t1} \\ Y_{t2} &= \beta_{02} + \beta_{12} Y_{t-1,2} + \gamma_{02} Y_{t,1} + \gamma_{12} Y_{t-1,1} + V_{t2} \end{split} \tag{I}$$

O bien en forma matricial:

$$\begin{bmatrix} 1 & -\gamma_{01} \\ -\gamma_{02} & 1 \end{bmatrix} \begin{bmatrix} Y_{t1} \\ Y_{t2} \end{bmatrix} = \begin{bmatrix} \beta_{01} \\ \beta_{02} \end{bmatrix} + \begin{bmatrix} \beta_{11} & \gamma_{11} \\ \gamma_{12} & \beta_{12} \end{bmatrix} \begin{bmatrix} Y_{t-1,1} \\ Y_{t-1,2} \end{bmatrix} + \begin{bmatrix} V_{t1} \\ V_{t2} \end{bmatrix}$$

Que puede escribirse de manera más compacta como

$$B_0Y_t = \beta_0 + B_1Y_{t-1} + V_t$$
 (II)

Donde $V_t = [V_{tl}, V_{t2}]^t$, $(V_t) \sim IID(0, \Upsilon)$,

$$B_0 = \begin{bmatrix} 1 & -\gamma_{01} \\ -\gamma_{02} & 1 \end{bmatrix}, \beta_0 = \begin{bmatrix} \beta_{01} \\ \beta_{02} \end{bmatrix}, B_1 = \begin{bmatrix} \beta_{11} & \gamma_{11} \\ \gamma_{12} & \beta_{12} \end{bmatrix}, \Upsilon = \begin{bmatrix} v_1^2 & 0 \\ 0 & v_2^2 \end{bmatrix}$$
(III)

La expresión (II) suele denominarse un modelo VAR(1) estructural para el proceso (Y_t) , mientras que la expresión (1.8) se denomina un modelo VAR(1) estándar para (Y_t) . Comparando (II) con (1.8), la forma estándar (reducida) de un modelo VAR(1) puede obtenerse a partir de la forma estructural mediante las relaciones

$$\mu = B_0^{-1} \beta_0$$
, $\Phi_1 = B_0^{-1} B_1$, $A_t = B_0^{-1} V_t$ y $\Sigma = B_0^{-1} \Upsilon \left[B_0^{-1} \right]^t$

Que coincide con Υ cuando $\gamma_{01} = \gamma_{02} = 0$, es decir, cuando B_0 =I. Sin embargo, dado que en (III) figuran 10 parámetros y en (1.9) sólo figuran 9, en general, no es posible identificar la forma estructural asociada con el modelo VAR(1) estándar.

Es importante notar que si $\gamma_{01} = \gamma_{12} = 0$, el modelo VAR(1) estructural (I) se reduce a

$$Y_{t1} = \beta_{01} + \beta_{11}Y_{t-1,1} + \gamma_{01}Y_{t,2} + \gamma_{11}Y_{t-1,2} + V_{t1}$$

$$Y_{t2} = \beta_{02} + \beta_{12}Y_{t-1,2} + V_{t2}$$

Que es un modelo ADL(1,1) como (1.6) en el que (X_t) sigue un modelo AR(1) estacionario. El modelo VAR(1) que figura en (1.8) puede escribirse siempre como:

$$\nabla Y_{t} = \mu - \Pi Y_{t-1} + A_{t}$$
, con $\nabla Y_{t} = Y_{t} - Y_{t-1}$ y $\Pi = I - \Phi_{1}$

Esta última es una matriz no singular cuando los autovalores de Φ_1 están dentro del círculo unitario, lo que permite escribir el valor esperado del proceso estacionario (Y_t) como $E[Y_t] = \Pi^{-1} \mu \text{ que representa el valor del equilibrio alrededor del cual evoluciona dicho proceso.}$ Para generalizar, podemos aclarar que un modelo VAR(1) estándar no es más que un caso particular de un modelo VARMA(p,q) del tipo:

$$Y_{t} = \beta_{0} + \Phi_{1}Y_{t-1} + \Phi_{2}Y_{t-2} + ... + \Phi_{p}Y_{t-p} + A_{t} - \Theta_{1}A_{t-1} - \Theta_{2}A_{t-2} - ... - \Theta_{q}A_{t-q}$$

Que es una extensión para procesos multivariantes del modelo ARMA(p,q) para procesos univariantes. Actualmente la popularidad de los modelos VAR es mucho mayor entre los economistas que la de los modelos VARMA; de hecho, es muy difícil encontrar manuales de econometría o de Análisis de Series Temporales aplicados a la Economía en los que se mencione siquiera la posibilidad de modelizar un proceso multivariante a través de un proceso VARMA. Lo mismo ocurre en los programas informáticos disponibles para hacer estos análisis.

5.3.4. Modelos multivariantes no estacionarios.

5.3.4.1 Cointegración.

Si un proceso bivariante $(Z_t)\sim I(1)$ $(Z_t=[Z_{t1},Z_{t2}]^t)$, es tal que cualquier combinación lineal de sus componentes también es un proceso I(1), entonces no existe entre (Z_{t1}) y (Z_{t2}) relación lineal alguna del tipo $Z_{t1}=\gamma_0+\gamma_2Z_{t2}+V_t$ que sea estable en el tiempo, ya que en este caso $(V_t)\sim I(1)$ (un proceso no estacionario). No obstante, puede que sí exista algún tipo de relación entre (∇Z_{t1}) y (∇Z_{t2}) (dos procesos estacionarios) Por el contrario, si un proceso bivariante $(Y_t)\sim I(1)$ $(Y=[Y_{t1},Y_{t2}]^t)$ es tal que existe una combinación lineal de sus componentes que es un proceso I(0), entonces sí existe entre (Y_{t1}) e (Y_{t2}) al menos una

relación lineal del tipo $Y_{t1} = \beta_0 + \beta_2 Y_{t2} + U_t$ que es estable en el tiempo, ya que en este caso $(U_t)\sim I(0)$ (un proceso estacionario).

En el segundo caso, se dice que (Y_{t1}) e (Y_{t2}) presentan cointegración de orden (1.1) porque el orden de integración de los procesos es 1 y existe una combinación lineal de ambos que es un proceso I(1-1)=I(0), lo cual se representa como $(Y_t)\sim CI(1,1)$, con vector de cointegración $\beta = [1, -\beta_2]^t$, porque $(\beta^t Y_t) \sim I(0)$.

5.3.4.2 . Modelos para procesos no estacionarios -cointegrados.

Cuando $(Z_t)\sim I(1)$ $(Z_t=[Z_{t1},Z_{t2}]^t)$ y sus componentes no están cointegrados , sólo tiene sentido plantear algún modelo de relación lineal entre (Z_{t1}) y (Z_{t2}) en términos de sus diferencias regulares (∇Z_{t1}) y (∇Z_{t1}) que son procesos estacionarios .

Plantear en este caso un modelo de relación lineal directamente entre (Z_{t1}) y (Z_{t2}) suele dar lugar a obtención de relaciones espurias que carecen de sentido.

Modelos para procesos no estacionarios- cointegrados.

Cuando $(Y_t) \sim CI(1,1) \ (Y_t = [Y_{t1}, Y_{t2}]^t)$, sí tiene sentido plantear algún modelo de relación lineal directamente entre (Y_{t1}) y $\ (Y_{t2})$. (por ejemplo, un modelo de regresión lineal simple, un modelo ADL(1,1) como el que figura en (1.6), o un ECM, donde $(Y_{t1}-\lambda Y_{t2}) \sim I(0)$ para algún λ no nulo.

5.3.4.3. Modelo VAR(1) con raíces.

Si (Y_t) sigue un modelo VAR(1) del tipo (1.7)-(1.9) tal que al menos uno de los dos autovalores de Φ_1 es igual a 1 (lo que implica que la ecuación | I- Φ_1 | = 0 tiene al menos una raíz unitaria), entonces (Y_t) es un proceso no estacionario cuyas características están determinadas por los autovalores λ_1 y λ_2 de la matriz Φ_1 :

• $\lambda_1 = 1, |\lambda_2| < 1$ entonces $(Y_t) \sim CI(1,1)$. Nótese que en este caso el rango de la matriz $\Pi = I - \Phi_1$ que describimos antes es igual a 1, lo que indica que existe una relación de cointegración entre dos componentes I(0) de (Y_t) .

- $\lambda_1 = 1$, $\lambda_2 = 1$, $\Phi_1 \neq I$., entonces $(Y_t) \sim CI(2,1)$. En este caso, el rango de $\prod = I \Phi_1$ también es igual a 1, lo que indica que existe una relación de cointegración entre los dos componentes I(2) de (Y_t) que proporciona un proceso I(1).
- $\lambda_1 = 1$, $\lambda_2 = 1$, $\Phi_1 = I$, entonces $(Y_t) \sim I(1)$, pero (Y_{t1}) y (Y_{t2}) no están cointegrados. En este caso el rango de la matriz $\prod = I \Phi_1$ es igual a cero, lo que indica que no existe ninguna relación de cointegración entre los dos componentes de (Y_t) .

El rango de la matriz Π =I- Φ_1 está relacionada con los autovalores λ_1 , λ_2 de la matriz Φ_1 porque los autovalores de Π =I- Φ_1 son (1- λ_1) y (1- λ_2). Cuando los dos autovalores de Φ_1 están dentro del círculo unitario, $|\lambda_1| < 1$, $|\lambda_2| < 1$, (Y_t) es un proceso estacionario. En este caso el rango de la matriz Π =I- Φ_1 es igual a 2.

5.4 Aplicaciones.

5.4.1 Previsión con modelos ARIMA univariantes.

Las funciones de previsión de origen N a horizonte $l\ge 1$ asociadas con los modelos ARIMA considerados en (1.3.2) son las siguientes.

 $E_N[A_{N+1}] = E[A_{N+1}] = 0$, para todo $l \ge 1$.

$$AR(1) = E_N[Y_{N+1}] = \mu + \phi_1 E_N[Y_{N+l-1}] = \left(\sum_{i=0}^{l-1} \phi_1^i\right) \mu + \phi_1^i Y_N \quad para \ todo \ l \ge 1$$

$$= E_{N}[Y_{N+1}] = \begin{cases} \mu - \theta_{1} E_{N}[A_{N}], & si \ l = 1 \\ \mu, & si \ l > 1 \end{cases}$$

Paseo aleatorio: $E_N[Y_{N+1}] = \mu + E_N[Y_{N+l-1}] = l\mu + Y_N$, para todo $l \ge 1$.

5.4.2. Relaciones dinámicas implícitas en un modelo ADL(1,1).

Si un proceso bivariante estacionario (Y_t) (con $Y_t = [Y_t, X_t]^t$) sigue un modelo ADL(1,1)

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \gamma_0 X_t + \gamma_1 X_{t-1} + V_t$$

Donde $|\beta_1| < 1$, $V_t \sim IID(o, \sigma_v^2)$, $X_t = \mu + \phi_1 X_{t-1} + A_t$, $|\phi_1| < 1$ $y(A_t) \sim IID(0, \sigma_A^2)$ (un modelo AR(1) estacionario), entonces:

$$(\mathbf{Y}_{t}) = \begin{pmatrix} Y_{t} \\ X_{t} \end{pmatrix} \rightarrow \begin{bmatrix} y^{*} \\ x^{*} \end{bmatrix} = \begin{bmatrix} \frac{\beta_{0}}{1 - \beta_{1}} + \lambda x^{*} \\ \frac{\mu}{1 - \phi_{1}} \end{bmatrix} \quad (1.10),$$

donde
$$\lambda = \frac{\gamma_0 + \gamma_1}{1 - \beta_1}$$
 (1.11)

El modelo ADL(1,1) anterior, puede escribirse como un ECM

$$\nabla Y_t = \beta_0 - (1 - \beta_1)(Y_{t-1} - \lambda X_{t-1}) + \gamma_0 \nabla X_t + V_t$$
, donde $(Y_{t-1} - \lambda X_{t-1})$ (1.12)

representa en que medida no se satisface (salvo quizás por una constante) en el momento t-1, la relación de equilibrio a largo plazo entre los dos componentes de (Y_t) implícita en (1.10). El ECM (1.12) implica que cualquier desequilibrio (error) entre Y_{t-1} y X_{t-1} es transitorio, porque tiende a corregirse a través de variaciones adecuadas de Y_t asociadas con el término de corrección de error $-(1-\beta_1)(Y_{t-1}-\lambda X_{t-1})$ donde $-(1-\beta_1)$ >0 representa la proporción del desequilibrio entre Y_{t-1} y X_{t-1} que se refleja en $\nabla Y = Y_t - Y_{t-1}$.

5.5. Modelos univariantes.

5.5.1. Definición de modelo univariante.

Un modelo univariante para un proceso estocástico univariante o escalar (Y_t) es cualquier conjunto de hipótesis bien definidas sobre ciertas propiedades teóricas de las distribuciones de probabilidad(conjuntas, marginales o condicionales) de las componentes del proceso (Y_t) del cual se supone procede una serie temporal observada $(y_t)_{t=1}^N$.

Un modelo de la estructura probabilística completa de (Y_t) consiste en una especificación de las distribuciones conjuntas de todos los vectores del tipo $\begin{bmatrix} Y_{t_1}, Y_{t_2}, ..., Y_{t_n} \end{bmatrix}^t$ con $t_1 < t_2 < ... < t_n$; n=1,2,...) que pueden considerarse en relación con (Y_t) . Elaborar un modelo de este tipo requiere al menos estimar el vector de medias y la matriz de varianzas y covarianzas de la

muestra
$$Y = [Y_{t_1}, Y_{t_2}, ..., Y_{t_n}]^t$$
, procedente de (Y_t) ,

$$\mu = E[Y] = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_N \end{pmatrix}, \Sigma = Var[Y] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{N1} & \sigma_{N2} & \cdots & \sigma_N^2 \end{bmatrix}$$

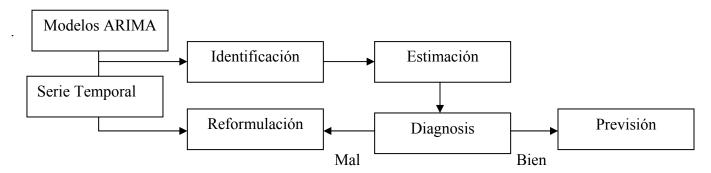
Asociada con una serie temporal observada $y = [y_1, y_2, ..., y_N]^t$. En conjunto , μ y Σ contienen N+N(N+1)/2 parámetros distintos, que no pueden estimarse con precisión utilizando una única serie temporal de N observaciones, por lo tanto, elaborar un modelo completo para (Y_t) exige suponer alguna simplificación sobre su estructura probabilística que, al menos reduzca el número de parámetros distintos que contiene μ y Σ .

Un modelo para (Y_t) suele especificarse mediante alguna expresión matemática (por ejemplo una ecuación en diferencias) para Y_t , (el componente genérico del proceso considerado, que implique unas propiedades teóricas sobre los momentos de primer y segundo orden (medias, varianzas y covarianzas) de las distribuciones conjuntas de los componentes de (Y_t) que sean compatibles con las propiedades muestrales correspondientes, observadas en una serie temporal $y = [y_1, y_2, ..., y_N]^t$. Cuando dichas distribuciones conjuntas son normales, sus propiedades de primer y segundo orden caracterizan completamente la estructura probabilística de (Y_t) .

Un modelo univariante se utiliza en la práctica simplemente para proporcionar una descripción compacta de la procedencia de los datos que conforman una serie temporal escalar o para calcular previsiones a corto plazo de los valores futuros desconocidos de dicha serie o también como punto de partida para analizar posibles relaciones entre dicha serie y otras series, en el contexto de algún modelo multivariante o vectorial.

5.5.2. Etapas en la construcción de un modelo univariante.

- Identificación: Selección del modelo que implique ciertas propiedades teóricas para (Y_t) compatibles con las propiedades muestrales observadas en $(y_t)_{t=1}^N$.
- Estimación :asignación de valores numéricos a los parámetros del modelo.
- Diagnósis: comprobación del ajuste del modelo a los datos utilizados.



Esquema:. Proceso de Construcción de un Modelo ARIMA Univariante

5.6. Procesos estocásticos estacionarios.

5.6.1. Proceso estacionario estricto.

Un proceso estocástico (Y_t) es estrictamente estacionario si y sólo si para cualesquiera $n \ge 1$ momentos $t_1 < t_2 < ... < t_n$ de su historia, la distribución de probabilidad conjunta de $\begin{bmatrix} Y_{t_1}, Y_{t_2}, ..., Y_{t_n} \end{bmatrix}^t$ coincide con la de $\begin{bmatrix} Y_{t_1+h}, Y_{t_2+h}, ..., Y_{t_n+h} \end{bmatrix}^t$ para cualquier entero h distinto de cero.

5.6.2. Proceso Estacionario Débil.

Un proceso estocástico (Y_t) con $E[Y_t] < \infty$ para todo entero t, es estacionario en media o débilmente estacionario de primer orden si y sólo si $E[Y_t]$ es constante(no depende de t) para todo entero t.

5.6.3. Proceso estacionario débil de segundo orden.

Un proceso estocástico (Y_t) con $E[Y_t^2]$ < ∞ para todo entero t, es estacionario en autocovarianza o débilmente estacionario de segundo orden si :

- $E[Y_t]$ y $Var[Y_t]$ son constantes (no dependen de t) para todo entero t.
- $\bullet \quad Cov[Y_t,\,Y_{t+k}] \ depende \ a \ lo \ sumo \ de \ k \ (entero) \ pero \ no \ de \ t \ para \ todo \ entero \ t.$

5.6.4. Proceso estocástico normal o gaussiano.

Un proceso estocástico (Y_t) es Normal o Gaussiano cuando para cualquiera $n\ge 1$ momentos $t_1 < t_2 < ... < t_n$ de su historia, la distribución de probabilidad conjunta de probabilidad $\left[Y_{t_1}, Y_{t_2}, ..., Y_{t_n} \right]^t$ es una distribución Normal n-variante.

Estacionariedad en autocovarianza+ Normalidad = Estacionariedad Estricta

Observación: Cuando se hable de estacionariedad sin calificativos se entenderá que se habla de estacionariedad en autocovarianza.

5.6.5. Función de autocovarianza.

La autocovarianza de orden k (k>0) de un proceso (Y_t) estacionario se representa con el símbolo γ_k y se define como: $\gamma_k = Cov[Y_t, Y_{t+k}]$.

Media:
$$\mu_{Y} = E[Y_{t}]$$

Varianza $\sigma_{Y}^{2} = Var[Y_{t}] = E[(Y_{t} - \mu_{Y})^{2}].$

Auto cov arianza de orden k:

$$\gamma_k = Cov[Y_t, Y_{t+k}] = E[(Y_t - \mu_Y)(Y_{t+k} - \mu_Y)], k = 1, 2, ...$$

Fig. Media, varianza y autocovarianza de un proceso estacionario.

La autocovarianza de orden k de (Y_t) es la covarianza entre cualquier par de componentes de (Y_t) separadas entre sí por un intervalo temporal o retardo K>0 . γ_k puede depender de k, pero no depende de los momentos concretos a los que se refieran los componentes de (Y_t) considerados.

Aunque se ha definido γ_k para cualquier k>0 también puede definirse la autocovarianza de orden cero de un proceso (Y_t) estrictamente estacionario como $\gamma_0 = Cov[Y_t, Y_t] = Var[Y_t]$.

Que es la varianza del proceso (Y_t) . Por otro lado la autocovarianza de orden k de (Y_t) también puede definirse como $\gamma_k = Cov[Y_{t-k}, Y_t]$, ya que para cualquier valor de $k \ge 0$ dado, Y_{t-k} e Y_t están separados entre si por el mismo intervalo temporal (retardo) que Y_t e Y_{t+k} . Considerada como una función del retardo k, la secuencia $(\gamma)_{k \ge 0}$ se denomina la función de autocovarianza del proceso estacionario (Y_t) .

5.6.5.1. Autocovarianza simple.

La autocovarianza simple de orden k (k>0) de un proceso (Y_t) estacionario, se representa con el símbolo ρ_k y se define como:

$$\rho_k = \frac{Cov[Y_t, Y_{t+k}]}{\sqrt{Var(Y_t)}\sqrt{Var(Y_{t+k})}} = \frac{\gamma_k}{\gamma_0}$$
 (2.1)

Autocorrelación simple de orden k :
$$\rho_k = \frac{\gamma_k}{\gamma_0}$$
; $k = 1, 2, ...; \rho_0 = 1$

Observaciones:

- la autocorrelación simple de orden k de (Y_t) es el coeficiente de correlación lineal simple entre cualquier par de componentes de (Y_t) separados entre si por un retardo k>0 dado. Se tiene que ρ_k puede depender de k, 'pero no depende de los momentos concretos a los que se refiera los componentes de (Y_t) considerados.
- Considerada como una función del retardo k, la sucesión (ρ_k)_{k≥1} se denomina la función de autocorrelación simple (ACF del inglés AutoCorrelation Function) del proceso estacionario(Y_t). Dado que cada ρ_k es un coeficiente de correlación, suele decirse que la ACF de (Y_t) representa la duración y la intensidad de la memoria del proceso (Y_t).

Si se quiere elaborar un modelo de la estructura probabilística completa de (Y_t) se debe al menos estimar el vector de medias y la matriz de varianzas-covarianzas de la muestra $Y = [Y_1, Y_2, ..., Y_N]^t$

$$\mu \equiv E[Y] = \begin{pmatrix} \mu_{Y_1} \\ \mu_{Y_2} \\ \vdots \\ \mu_{Y_N} \end{pmatrix}, \Sigma = Var[Y] = \begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_{N-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{N-2} \\ \vdots & \vdots & \vdots & \vdots \\ \gamma_{N-1} & \gamma_{N-2} & \cdots & \gamma_0 \end{bmatrix}$$

$$= \sigma_Y^2 \begin{bmatrix} 1 & \rho_1 & \cdots & \rho_{N-1} \\ \rho_1 & 1 & \cdots & \rho_{N-2} \\ \vdots & \vdots & \vdots & \vdots \\ \rho_{N-1} & \rho_{N-2} & \cdots & 1 \end{bmatrix}$$

Asociada con una serie temporal observada

$$y \equiv \left[y_1, y_2, ..., y_N \right]^t$$

En conjunto, μ y Σ contienen 1+N parámetros distintos μ_Y , γ_0 , γ_1 ,... γ_{N-1} , o bien μ_Y , σ_2^Y , ρ_0 , ρ_1 ,... ρ_{N-1} . Las dos matrices que figuran en la expresión anterior suele representarse como Γ_N (matriz de autocovarianzas de Y) y P_N (matriz de autocorrelaciones de Y), de manera que la matriz de varianzas-covarianzas de la muestra Y procedente de (Y_t) es $\Gamma_N = \sigma_2^Y P_N$.

Hay que hacer notar que a pesar que la hipótesis de estacionariedad simplifica notablemente la distribución de probabilidad de $Y = [Y_1, Y_2, ..., Y_N]^t$, aún no pueden estimarse con precisión 1+N parámetros utilizando una única realización particular de Y (una única serie temporal de $y = [y_1, y_2, ..., y_N]^t$, de N observaciones). La solución a este problema consiste en expresar la media y la función de autocovarianza(o la media, la varianza y la ACF) de (Y_t) en términos de un número reducido de parámetros a través de algún modelo ARMA para (Y_t) , esto lo veremos más adelante con detalle.

5.6.5.2. Autocorrelación parcial.

La autocorrelación parcial de orden (k > 0) de un proceso (Y_t) estacionario se representa con el símbolo ϕ_{kk} y se define como el parámetro ϕ_{kk} en la regresión:

$$\tilde{Y}_{t} = \varphi_{k1}\tilde{Y}_{t-1} + \varphi_{k2}\tilde{Y}_{t-2} + \dots + \varphi_{kk}\tilde{Y}_{t-k} + U_{t}$$
 (2.2),

Donde $\tilde{Y}_{t-i} = Y_{t-i} - \mu_Y$ (i = 0, 1, ..., k) y U_t es independiente de Y_{t-i} para todo $i \ge 1$.

Observemos que la regresión que planteamos en (2.2) puede escribirse como

 $Y_t = \varphi_{k0} + \varphi_{k1} Y_{t-1} + \varphi_{k2} Y_{t-2} + ... + \varphi_{kk} Y_{t-k} + U_t$, donde $\varphi_{k0} = (1 - \varphi_{k1} - \varphi_{k2} - ... - \varphi_{kk})\mu_Z$, lo que implica que $\Delta Y_t = \varphi_{kk} \times \Delta Y_{t-k}$ cuando $\Delta Y_{t-1} = \Delta Y_{t-2} = ... = \Delta Y_{t-k+1} = \Delta U_t = 0$. Es decir que φ_{kk} representa el efecto parcial de Y_{t-k} sobre Y_t , por lo que φ_{kk} representa el grado de asociación lineal entre dos componentes cualesquiera de (Y_t) separados entre sí por un retardo $k \ge 1$ dado (como $Y_t \in Y_{t-k}$) que no es debida a la posible correlación entre cada uno de ellos y los posibles componentes de (Y_t) que se encuentran entre ambos $(Y_{t-1}, Y_{t-2}, ..., Y_{t-k+1})$.

A partir de la regresión anterior puede deducirse que $\phi_{kk}=|A_k|/|B_k|$, donde

$$A_{k} = \begin{vmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{k-2} & \rho_{1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{k-3} & \rho_{2} \\ \rho_{2} & \rho_{1} & 1 & \dots & \rho_{k-4} & \rho_{3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \dots & \rho_{1} & \rho_{k} \end{vmatrix} \qquad B_{k} = \begin{vmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{k-2} & \rho_{k-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{k-3} & \rho_{k-2} \\ \rho_{2} & \rho_{1} & 1 & \dots & \rho_{k-4} & \rho_{k-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \dots & \rho_{1} & 1 \end{vmatrix}$$

La matriz B_k es una matriz de correlaciones del mismo tipo que P_N mencionada antes. La matriz A_k es idéntica a B_k excepto porque la última columnas de B_k está reemplazada por el vector columna $[\rho_1, \rho_2, ..., \rho_k]^t$.

En particular, para k=1,2,3 se tiene:

$$\phi_{11} = \rho_{1}, \phi_{22} = \frac{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & \rho_{2} \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & 1 \end{vmatrix}} = \frac{\rho_{2} - \rho_{1}^{2}}{1 - \rho_{1}^{2}}; \quad \phi_{33} = \frac{\begin{vmatrix} 1 & \rho_{1} & \rho_{1} \\ \rho_{1} & 1 & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{3} \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} & \rho_{2} \\ \rho_{2} & \rho_{1} & 1 \end{vmatrix}},$$

De manera que los coeficientes de autocorrelación parcial son funciones de los coeficientes de autocorrelación simple de un proceso estrictamente estacionario.

Considerada como función del retardo k, la sucesión $(\phi_{kk})_{k\geq 1}$ se denomina la función de autocorrelación parcial (PACF, del inglés Partial AutoCorrelation Function) del proceso (Y_t) .

Autocorrelación parcial de orden k:
$$\varphi_{kk} = \frac{|A_k|}{|B_k|} (k = 1, 2, 3, ...); \varphi_{11} = \rho_1$$

Figura 2.7.

ACF y PACF muestrales.

En la práctica, es imposible estimar a partir de una serie temporal $y = [y_1, y_2, ..., y_N]^t$ de N observaciones, la media, la varianza, la ACF, y la PACF del proceso estacionario (Y_t) del que supuestamente procede dicha serie. En particular, sólo en el vector de medias y en la matriz de varianzas-covarianzas de la muestra $Y = [Y_1, Y_2, ..., Y_N]^t$ asociada con la serie $y = [y_1, y_2, ..., y_N]^t$ figuran N-1 parámetros distintos. No obstante, en la práctica si pueden estimarse con cierta precisión la k primeras autocorrelaciones simples y parciales de (Y_t) a partir de una serie temporal de N observaciones, siempre que k sea un número bastante más reducido que N. Dichas estimaciones resultan muy útiles para procesos estacionarios que describiremos adelante más detalladamente.

5.6.5.3. Media y varianza muestral.

La media muestral y la varianza muestral de una muestra $Y = [Y_1, Y_2, ..., Y_N]^t$ asociada con una serie temporal $y = [y_1, y_2, ..., y_N]^t$ son:

$$\tilde{\mu}_{Y} = \frac{1}{N} \sum_{t=1}^{N} Y_{t} \quad y \quad \tilde{\sigma}_{Y}^{2} = \frac{1}{N} \sum_{t=1}^{N} (Y_{t} - \mu_{Y})^{2}$$
 (2.3)

, respectivamente, que suelen emplearse como estimadores de la media μ_Y y la varianza σ_Y^2 Del proceso estacionario (Y_t) del que procede Y.

5.6.5.4. Correlación simple muestral.

La correlación simple muestral de orden k (k>0) de una muestra $Y = [Y_1, Y_2, ..., Y_N]^t$ asociada con una serie temporal $y = [y_1, y_2, ..., y_N]^t$ es

$$\tilde{\rho}_k = \frac{\tilde{\gamma}_k}{\tilde{\gamma}_0} \quad (k = 1, 2, ...,) \tag{2.4}$$

donde

$$\tilde{\gamma}_{k} = \frac{1}{N} \sum_{t=1}^{N-k} (Y_{t} - \tilde{\mu}_{Y})(Y_{t+k} - \tilde{\mu}_{Y}) \quad (k = 0, 1, 2, ...)$$

$$= \frac{1}{N} \sum_{t=k+1}^{N} (Y_{t-k} - \tilde{\mu}_{Y})(Y_{t} - \tilde{\mu}_{Y})$$
(2.5)

El estimador $\tilde{\gamma}_0$ en (2.5) es el mismo estimador que $\tilde{\sigma}_y^2$ en (2.3). Los estimadores $\tilde{\gamma}_k$ y $\tilde{\rho}_k$ proporcionan estimaciones numéricas c_k y r_k , respectivamente,

$$c_{k} = \frac{1}{N} \sum_{t=1}^{N-k} (y_{t} - \overline{y})(y_{t+k} - \overline{y}) = \frac{1}{N} \sum_{t=k+1}^{N} (y_{t-k} - \overline{y})(y_{t} - \overline{y}) (k = 0, 1, 2, ...)$$

$$r_{k} = \frac{c_{k}}{c_{0}} (k = 1, 2, ...)$$

Cuando se reemplaza en (2.5) cada variable aleatoria Y_t por su valor observado y_t (t=1,2,...,N).

La secuencia de valores numéricos $(r_k)_{k\geq 1}$ se denomina la ACF muestral de la serie temporal $y_1, y_2, ..., y_N$. La representación gráfica de la ACF muestral de una serie se denomina el correlograma de dicha serie.

Bajo ciertas condiciones, $(\tilde{\rho}_k) \equiv NIID(0,1/N)$ de manera que cualquier autocorrelación simple ρ_k $(k\geq 1)$ de (Y_t) puede considerarse individualmente significativa al 5% cuando $r_k>1.96/\sqrt{N}$. Por otro lado, para determinar si las k primeras autocorrelaciones simples de (Y_t) son conjuntamente significativas (donde k es un entero bastante más reducido que N), suele emplearse el valor calculado del estadístico Ljung-Box

 $Q_{LB} = N(N-2)\sum_{i=1}^{k} \frac{r_i^2}{N-i}$, que bajo la hipótesis nula de que $\rho_1 = \rho_2 = ... = \rho_k = 0$, sigue aproximadamente una distribución $\chi^2(k)$.

5.6.5.5. Correlación parcial muestral.

La correlación parcial muestral de orden k (k>0) de una muestra $Y = [Y_1, Y_2, ..., Y_N]^t$ es el estimador MCO o MV $\tilde{\phi}_{kk}$ del parámetro ϕ_{kk} en el modelo de regresión (2.2) considerado para t=1,2,....

Otro estimador razonable para ϕ_{kk} es el que se obtiene al evaluar el cociente de la figura (2.4) reemplazando en las matrices A_k y B_k cada autocorrelación simple teórica ρ_k por su estimador (2.4) . La secuencia de valores numéricos $(r_{kk})_{k\geq 1}$ que se obtiene al aplicar los estimadores

 $\tilde{\phi}_{11,}\tilde{\phi}_{22,}...$ a una serie $y_1,\ y_2,...y_N$ se denomina la PACF muestral de dicha serie. Bajo ciertas condiciones $(\tilde{\phi}_{kk}) \approx \text{NIID}(0,1/N)$, de manera que cualquier autocorrelación parcial ϕ_{kk} $(k \ge 1)$ de (Y_t) puede considerarse individualmente significativa al 5% cuando $r_{kk} > 1.96/\sqrt{N}$. Ejemplos.

Observemos algunas series de tiempo de variables económicas con sus respectivas funciones de autocorrelación simple y parcial.

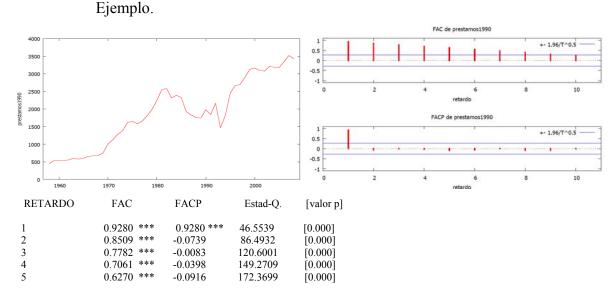


Figura: Préstamos en El Salvador 1958-2007. Ejemplo.

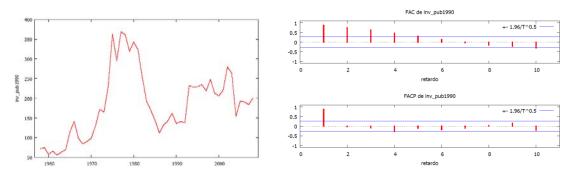


Figura: inversión pública en El Salvador 1958-2007.

RETARDO FAC	C FACP	Estad-Q.	[valor p]								
2 0.74 3 0.62 4 0.45 5 0.29 6 0.12 7 -0.03 8 -0.15 9 -0.21	-0.0959 41 0.0240	40.8259 71.7848 93.7933 105.7943 110.9993 111.9720 112.0471 113.5400 116.5558 122.7085	[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]								
Ejemplo.											
15						FAC de TCE					
10.2				0.5		1	+	- 1.96/T^0.5			
10				0.5		l		· · · · · · · · · · · · · · · · · · ·			
11		~ 1		-0.5				-			
1/W	^ ^ ^	MA		-1 - 0	2	4 6	8	10			
5 1	~ V V \	111	\wedge			retardo					
TQ.	\ \\	1 1/~				FACP de TCE					
0				1 -				1.96/T^0.5			
				0.5			+	1.96/1^0.5			
-s -	\		1	-0.5		•		ļ			
				-1							
-10				0 2	2	4 6	8	10			
1960	1970 1980	1990 2000				retardo					
RETARDO FAC	C FACP	Estad-Q	. [valor p]								
	25 *** 0.6025 ***	19.6268	[0.000]								
	97 *** 0.1047	29.8144	[0.000]								
3 0.180		31.6424	[000.0]								
4 0.076		31.9743	[000.0]								
5 0.022 6 -0.022		32.0051 32.0522	[000.0]								
7 -0.03		32.0322 32.1394	[000.0]								
8 -0.02		2.1839	[0.000] [0.000]								
9 -0.07		32.5616	[0.000]								
10 -0.10		33.2369	[0.000]								
	do orgainian			alvador	1058.2	007					

Figura: Tasa de crecimiento económica en El Salvador 1958-2007.

Aunque la ACF y PACF se han definido en relación con una serie temporal estacionaria, también puede calcularse a partir de cualquier secuencia de datos. En particular, la ACF de una serie estacionaria suele decrecer muy lentamente, mientras que la ACF de una serie estacional suele presentar el mismo tipo de comportamiento periódico que dicha serie. Por lo tanto el correlograma de una serie temporal es un instrumento visual muy útil para decidir sobre la estacionariedad de dicha serie. La ACF y la PACF muestrales de una serie temporal son herramientas fundamentales para la identificación de un modelo ARMA inicial para el proceso estocástico (Y_t) del que supuestamente procede dicha serie. Por otro lado la ACF y la PACF muestrales de la serie de residuos asociada con un modelo estimado para (Y_t), también son dos instrumentos fundamentales para la diagnosis de dicho modelo.

5.6.5.6. Procesos estacionarios y series no estacionarias.

En la realidad muchas series temporales no son estacionarias porque presentan ciertas tendencias claras en su evolución temporal (de manera que no presentan afinidad hacia algún valor constante en el tiempo), porque su variabilidad no es constante, porque son estacionales, o por varias combinaciones de estos motivos. No obstante, muchas series temporales no estacionarias se pueden transformar de forma adecuada para obtener series de aspecto estacionario que pueden ser utilizadas para elaborar modelos estadísticos compatibles con la hipótesis de estacionariedad. Estos serán tratados en las secciones siguientes. Además estudiaremos algunas técnicas sencillas para determinar el carácter de estacionariedad de una serie, esto es, detectar si la serie en cuestión es no estacionaria y además para transformar adecuadamente dichas series (dos operaciones que se llevan a cabo al principio de cualquier análisis empírico).

5.7. Modelos ARMA.

5.7.1. Modelo ARMA(p,q).

Un proceso estacionario (Y_t) sigue un modelo autorregresivo-media móvil de orden (p,q) o ARMA(p,q) (del inglés AutoRegresive-Moving Average, si y sólo si

$$Y_{t} = \mu + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + A_{t} - \theta_{1}A_{t-1} + \theta_{2}A_{t-2} + \dots + \theta_{q}A_{t-q}$$
 (2.6)

Para todo entero t, y donde $(A_t)\sim \mathit{IID}(0,\sigma_A^2)$ y μ , $\phi_1,\phi_2,...,\phi_p,\theta_1,\theta_2,...,\theta_q$ son parámetros tales que todas las raíces de la ecuación polinomial

$$1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p = 0 \qquad (2.7)$$

están fuera del círculo unitario (condición de estacionariedad). Un modelo ARMA(p,q) definido antes es invertible si todas las raíces de la ecuación polinomial

$$1 - \theta_1 x - \theta_2 x^2 - \dots - \theta_a x^q = 0$$
 (2.8)

Están fuera del círculo unitario (condición de invertibilidad).

5.7.2. Operador de retardo.

El operador de retardo se representa con el símbolo B (a veces L, del inglés Backshift o Lag operator) y e define de acuerdo con las relaciones:

$$BX_t = X_{t-1}, \ B^d X_t = B^{d-1} (d \ge 1 \ entero) \ (2,9)$$

Donde X_t es una variable (real o aleatoria) referida a un momento t determinado.

La ecuación (2.6) puede escribirse alternativamente como

$$\phi(B)Y_{t} = \mu + \theta(B)A_{t} \qquad (2.10),$$

Donde

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$
 (2.11)

Es el operador o polinomio autorregresivo AR del modelo y,

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_a B^q$$
 (2.12)

Es el operador o polinomio media móvil (MA).

Estacionariedad-Invertibilidad.

Cuando un proceso estacionario (Y_t) sigue un modelo ARMA(p,q) descrito por (2.6) ó (2.10) la esperanza incondicional de (Y_t) es

$$\mu_{Y} = E[Y_{t}] = \frac{\mu}{1 - \phi_{1} - \phi_{2} - \dots - \phi_{n}} = \frac{\mu}{\phi(1)}$$
 (2.13)

Donde $\phi(1)$ es el operador AR de diferencias cuando B=1. Por lo tanto (2.10) puede escribirse alternativamente como

$$\phi(B)(Y_t - \mu_Y) = \theta(B)A_t, \phi(B)(\tilde{Y}_t) = \theta(B)A_t \quad (2.14)$$

Donde $\tilde{Y}_t = Y_t - E[Y_t] = Y_t - \mu_Y$ para todo $t = 0, \pm 1, \pm 2, ...$

La condición de estacionariedad de un modelo ARMA enunciada antes garantiza que los

parámetros o pesos
$$\psi(B) = \frac{\theta(B)}{\phi(B)} = 1 + \psi_1 B + \psi_2 B^2 + \dots = \sum_{i=0}^{\infty} \psi_i B^i \quad (\psi_0 = 1)$$
 (2.15)

Satisfacen la condición $\sum_{i=0}^{\infty} |\psi_i| < \infty$, que es suficiente para que un proceso (Y_t) tal que

 $\tilde{Y}_t = \psi(B)A_t$ sea estacionario (Teorema de Wold).

La condición de invertibilidad de un modelo ARMA enunciada antes garantiza que los parámetros o pesos π_0 , π_1 ,... del polinomio de orden infinito

$$\pi(B) = \frac{\phi(B)}{\theta(B)} = 1 - \pi_1 B - \pi_2 B^2 - \dots = -\sum_{i=0}^{\infty} \pi_i B^i \ (\pi_0 = -1)$$
 (2.16)

Satisfacen la condición $\sum_{i=0}^{\infty} |\pi_i| < \infty$, lo que indica que (2.14) se escribe como $\pi(B)\tilde{Y}_t = A_t, (Y_t)$

es un proceso estacionario, tal que la correlación parcial entre Y_t e Y_{t-k} (k>0) tiende a cero a medida que el retardo k aumenta.

Observación: Dado que los valores para los parámetros $\phi_1, \phi_1, ..., \phi_p, \theta_1, \theta_2, ..., \theta_q$ de un modelo ARMA, los pesos ψ y los pesos π de (2.15) Y (2.16) pueden calcularse recursivamente, tomando en cuenta que $\phi(B)\psi(B) = \theta(B)$ y que $\theta(B)\psi(B) = \phi(B)$ de manera que, por un lado $\psi_i = \phi_i \psi_{i-1} + \phi_2 \psi_{i-2} + ... + \phi_p \psi_{i-p} - \theta_i$

Para todo i>0, (donde $\psi_0=1$, $\psi_i=0$ si i<0 y $\theta_i=0$ si i>q) y, por otro lado,

$$\pi_i = \theta_1 \psi_{i-1} + \theta_2 \psi_{i-2} + ... + \theta_p \psi_{i-p} - \phi_i$$

Para todo i>0 (donde π_0 =-1, π_i =0, si i<0 y ϕ_i si i>p). Por último de la relación $\psi(B)\pi(B) = 1$ Implícita en (2.15) y (2.16) se deduce que

$$\pi_i = -\sum_{i=0}^{i-1} \pi_j \psi_{i-j} \ (\psi_0 = 1) \text{ para } i \ge 1.$$

Las secuencias $(\psi_i)_{i\geq 1}$ y $(\pi_j)_{i\geq 1}$ calculadas a partir del modelo ARMA(p,q) para un proceso estacionario (Y_i) , siguen exactamente las mismas pautas que la ACF y PACF teóricas de (Y_t) respectivamente implicadas por dicho modelo.

ACF-PACF teóricas en modelos ARMA.

Cuando un proceso estacionario (Y_t) sigue un modelo ARMA(p,q) descrito por (2.6), la esperanza, la varianza, la ACF y la PACF de (Y_t) dependen únicamente de los p+q+2 parámetros $\phi_1,...,\phi_p,\theta_1,...,\theta_q,\mu$ y σ_A^2 que figuran en dicho modelo.

Modelo autorregresivo de primer orden o AR(1).

5.7.3. Ejemplo-modelo autorregresivo de primer orden o AR(1).

Cuando un proceso estacionario (Y_t) sigue un modelo ARIMA(1,0) o AR(1)

$$Y_t = \mu + \phi_1 Y_{t-1} + A_t$$
 (2.17.1)

con $|\phi_1| < 1$ y (A_t) $IID(0, \sigma_A^2)$ puede comprobarse lo siguiente (ver peña 2005):

Media:
$$\mu_{Y} = \frac{\mu}{1 - \phi_{1}}$$
 (2.17.2)

ACF:
$$\rho_k = \phi_1 \rho_{k-1} \ (k \ge 1)$$
 (2.17.3)

Podemos ver que la expresión anterior es una ecuación en diferencias de orden 1 que puede resolverse recursivamente a partir de la condición inicial ρ_0 =1., lo que proporciona ρ_k = ρ_1^k para todo $k \ge 0$ (una exponencial amortiguada)

PACF:
$$\phi_{kk} = \begin{cases} \phi_1 & si \ k = 1, \\ 0 & para \ todo \ k > 1 \end{cases}$$
 (2.17.4)

Varianza:
$$\sigma_Y^2 = \frac{\sigma_A^2}{1 - \phi_1 \rho_1} = \frac{\sigma_A^2}{1 - \phi_1^2}$$
 (2.17.5)

5.7.4. Ejemplo. Modelo autorregresivo (Y_t) de segundo orden o AR(2).

Cuando un proceso estacionario (Y_t) sigue un modelo ARMA(2,0) ó AR(2)

$$Y_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + A_t$$
 (2.18.1)

Con $\phi_2 + \phi_1 < 1$, $\phi_2 - \phi_1 < 1$, $|\phi_2| < 1$ y $(A_t) \sim IID(0, \sigma_A^2)$, puede comprobarse lo siguiente

Media
$$\frac{\mu}{1 - \phi_1 - \phi_2}$$
 (2.18.2)

ACF
$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} \ (k \ge 1)$$
 (2.18.3)

Obsérvese que la expresión anterior es una ecuación en diferencias que puede resolverse recursivamente a partir de las condiciones iniciales ρ_0 y $\rho_1 = \frac{\phi_1}{1-\phi_2}$ que se obtiene de (2.18.3) haciendo k=1;por otro lado, las dos ecuaciones que resultan de (2.18.3) con k=1 y k=2 se denominan ecuaciones de Yule-Walker, en particular si las dos raíces de (2.7) con p=2 son complejas la solución de (2.18.3) es

$$\rho_k = \frac{D^k sen(2\pi fk + F)}{sen(F)} para todo k \ge 0,$$

Cuyo numerador representa una oscilación armónica amortiguada de amplitud D^k , periodo 1/f, frecuencia f, fase inicial $-F/(2\pi F)$ y factor de amortiguamiento D, estas características de ρ_k son funciones de los parámetros ϕ_1 y ϕ_2 de acuerdo con que $D = \sqrt{-\phi_2} \cos(2\pi f) = \frac{\phi_1}{2\sqrt{-\phi_2}}$ y

$$\tan(F) = \frac{1 - \phi_2}{1 + \phi_2} \tan(2\pi f).$$

PACF:
$$\phi_{kk} = \begin{cases} \frac{\phi_1}{1 - \phi_2} & \text{si } k = 1\\ \phi_2 & \text{si } k = 2\\ 0 & \text{para todo } k > 2. \end{cases}$$
(2.18.4)

Varianza:
$$\sigma_Y^2 = \frac{\sigma_A^2}{1 - \phi_1 \rho_1 - \phi_2 \rho_2} = \left[\frac{1 - \phi_2}{1 + \phi_2} \right] \left[\frac{\sigma_A^2}{(1 - \phi_1 - \phi_2)(1 + \phi_1 - \phi_2)} \right]$$
 (2.18.5)

5.7.5. Modelo media móvil de primer orden ó MA(1).

Cuando un proceso estacionario (Yt) sigue un modelo ARMA(0,1) o MA(1)

$$Y_t = \mu + A_t - \theta_1 A_{t-1}$$
 (2.19.1).

Con $|\phi_1| < 1$ $(A_t) \sim IID(0, \sigma_A^2)$, puede comprobarse lo siguiente:

Media: $\mu_Y = \mu$ (2,19.2)

ACF:
$$\rho_k = \begin{cases} \frac{-\theta_1}{1 + \theta_1^2} & \text{si } k = 1\\ 0, \text{ para todo } k > 1 \end{cases}$$
 (2.19.3)

PACF:
$$\phi_{kk} = -\left[\frac{1}{\sum_{i=0}^{k} \theta_i^{2i}}\right] \theta_1^k = -\left[\frac{1 - \theta_1^2}{1 - \theta_1^{2(k+1)}}\right] \theta_1^k, si \ k \ge 1$$
 (2.19.4)

Varianza: $\sigma_Y^2 = (1 + \theta_1^2)\sigma_A^2$ (2.19.5)

5.7.6. Modelo media móvil de segundo orden o MA(2).

$$Y_{t} = \mu + A_{t} - \theta_{1} A_{t-1} - \theta_{2} A_{t-2}$$
 (2.20.1)

Con $\phi_2 + \phi_1 < 1$, $\phi_2 - \phi_1 < 1$, $|\phi_2| < 1$ $y(A_t) \sim IID(0, \sigma_A^2)$, además puede comprobarse los siguiente:

Media $\mu_Y = \mu$ (2.20.2)

$$ACF \qquad \rho_{k} = \begin{cases} -\frac{\theta_{1}(1-\theta_{2})}{1+\theta_{1}^{2}+\theta_{2}^{2}}, & para \ k=1\\ -\frac{\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}, & para \ k=2\\ 0, & para \ todo \ k>2 \end{cases}$$
 (2.20.3)

Varianza
$$\sigma_Y^2 = (1 + \theta_1^2 + \theta_2^2)\sigma_A^2$$
 (2.20.4)

Observación: La expresión analítica de la PACF de un modelo MA(2) depende de la naturaleza de las dos raíces de (2.8) con q=2, en general, dicha expresión es muy complicada. No obstante, la PACF sigue exactamente las mismas pautas que la serie $(\pi_i)_{i\geq 1}$ asociada con (2.16) cuando $\phi(B)$ 1 y $\theta(B) = 1 - \theta_1 B - \theta_2 B^2$. En otros términos, la PACF de un modelo MA(2) es semejante a la ACF de un modelo AR(2).

5.7.8. Modelo autorregresivo-media móvil de orden(1,1) o ARMA(1,1).

Cuando un proceso estacionario (Y_t) sigue un modelo ARMA(1,1)

$$Y_t = \mu + \phi_1 Y_{t-1} + A_t - \theta_1 A_{t-1}$$
 (2.21.1)

Con $|\phi_1| < 1$, $|\theta_1| < 1$ y $(A_t) \sim IID(0, \sigma_A^2)$, puede comprobarse lo siguiente:

Media:
$$\mu_{Y} = \frac{\mu}{1 - \phi_{1}}$$
 (2.21.2)

ACF
$$\rho_{k} = \begin{cases} \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{1 - 2\phi_{1}\theta_{1} + \theta_{1}^{2}} & si \ k = 1\\ \rho_{1}\phi_{1}^{k-1} & si \ k > 1 \end{cases}$$
 (2.21.3)

Varianza:
$$\sigma_Y^2 = \frac{1 - 2\phi_1\theta_1 + \theta_1^2}{1 - \theta_1^2}\sigma_A^2 = \left[1 + \frac{(\phi_1 - \theta_1)^2}{1 - \phi_1^2}\right]\sigma_A^2$$
 (2.21.4)

Es importante observar que en un modelo ARMA(1,1) la PACF consiste en un valor inicial $\phi_{11} = \rho_1$ seguido de una secuencia de valores que siguen exactamente la pauta de un modelo MA(1). Esto es lo mismo que ocurre con la ACF (2.21.3) que consiste en un valor inicial ρ_1 seguido de una secuencia de valores que siguen exactamente la pauta de la ACF en un modelo AR(1).

Observación: Cuando una serie temporal estacionaria (y_t) se observa S>1 veces al año, como por ejemplo en el caso de series mensuales (S=12) o trimestrales (S=4), es muy frecuente utilizar un tipo de modelo para describir esta situación. Estos modelos son llamados modelos ARMA multiplicativos , ó ARMA(p,q)×ARMA(p,q) y son del tipo :

$$\phi_p(B)\Phi_P(B^S)Y_t = \mu + \theta_q(B)\Theta_O(B^S)A_t$$

Dado que el carácter de las series que vamos a utilizar en esta investigación son de carácter anual, no vamos a dar muchos detalles (ver peña 2005).

5.8 Procesos estocásticos no estacionarios.

En la realidad muchas series temporales no son generadas por procesos estocásticos estacionarios porque presentan ciertas tendencias claras en su evolución temporal (de manera que no presentan afinidad hacia algún valor constante en el tiempo), porque su dispersión no es constante, porque son estacionales, o por varias combinaciones de estos motivos. No obstante, muchas series de aspecto no estacionario se pueden transformar de forma adecuada para obtener series de aspecto estacionario que pueden ser utilizadas como punto de partida en la práctica modelos ARIMA(p,q) como los descritos en la sección anterior.

Para convertir una serie no estacionaria en otra estacionaria, suelen emplearse en la práctica dos tipos de transformaciones: un primer tipo para estabilizar su dispersión (es decir, para inducir estacionariedad en varianza) y un segundo tipo para estabilizar su nivel (es decir, para eliminar su tendencia, es decir, para inducir estacionariedad en media).

No estacionariedad en varianza.-Transformación de Box-Cox.

5. 8.1. Función estabilizadora de la varianza.

Sea (Y_t) un proceso estocástico no estacionario tal que

$$\mu_t = E[Y_t] \ y \ \sigma_t^2 = Var[Y_t]$$

Existen y dependen de t (por lo que no son constantes). Si,

$$\sigma_t^2 = \sigma^2 \times h^2(\mu_t) \quad (2.22)$$

Donde $\sigma^2 > 0$ es una constante y h(.)es una función real tal que h(.) $\neq 0$ para cualquier valor de μ_t , entonces una transformación estabilizadora de la varianza de (Y_t) es cualquier función real g(.) tal que, para cualquier valor de μ_t :

$$g'(.) = \frac{1}{h(.)}$$
, para cualquier valor de μ_t (2.23)

Observación: Una aproximación de Taylor lineal a $Y'_t = g(Y_t)$ alrededor de μ_t indica que $Y'_t = g(\mu_t) + g'(\mu_t)(Y_t - \mu_t)$, por tanto , $Var[Y_t] \approx [g'(\mu_t)]^2 \, \sigma_t^2 = \sigma^2 [g'(\mu_t)]^2 \, h^2(\mu_t)$ que es igual a σ^2 cuando g(.) satisface (2.23) . en consecuencia el propósito de una transformación que satisface (2.23) es estabilizar la varianza de un proceso estacionario (Y_t) cuya dispersión local depende de su nivel local, de acuerdo con(2.22).

Ejemplo.

Sea (Y_t) un proceso estocástico no estacionario tal que $\mu_t = E[Y_t]$ y $\sigma_t^2 = Var[Y_t]$ no son constantes. Si σ_t es proporcional a μ_t de manera que $\sigma_t^2 = \sigma^2 \mu_t^2$, entonces $h(\mu_t) = \mu_t$ en (λ) y $g'(\mu_t) = 1/\mu_t$, es decir $g(\lambda) = \ln(\lambda)$; en este caso la varianza del proceso $(Y'_t) = \ln(Y_t)$ es aproximadamente constante. Si σ_t^2 es proporcional a μ_t , de manera que $\sigma_t^2 = \sigma^2 \mu_t^2$ entonces $h(\mu_t) = \sqrt{(\mu_t)}$ en (2.22) y $g'(\mu_t) = 1/\sqrt{(\mu_t)}$ en (2.23), es decir $g(t) = 2\sqrt{(\lambda)}$, en este caso la varianza de $(Y'_t) = 2Y_t^{0.5}$ es aproximadamente constante.

Estas transformaciones que acabamos de presentar pueden escribirse como

$$Y_t' = g(Y_t) = \frac{(Y_t + m)^{\lambda} - 1}{\lambda}$$

Que se denomina transformación de Box-Cox de parámetros λ y m, donde

$$|\lambda| \le 2$$
 y el -1 del numerador se usa tan sólo porque $\lim_{\lambda \to 0} \left\{ \frac{(Y_t + m)^{\lambda} - 1}{\lambda} \right\} = \ln(Y_t + m)$

En particular, $\lambda = m=0$ proporcionan la transformación $Y_t' = \ln(Y_t)$, mientras que $\lambda = \frac{1}{2}$ y m=0 proporcionan la transformación $Y_t' = 2Y_t^{1/2}$.

El hecho de multiplicar un proceso estocástico por una constante no afecta a que su varianza sea o no sea constante; por tanto la presencia de λ en el denominador de la transformación de Box-Cox anterior puede ignorarse en general, lo mismo que el -1 del numerador.

Este asunto de la no estacionariedad en varianza no es tan frecuente como el caso en que haya no estacionariedad en media.

5.8.2 Operador de diferencia regular.

El operador diferencia regular de orden d (d ≥ 1 entero) se representa con el símbolo ∇^d (a veces Δ^d) y se define como $\nabla^d = (1-B)^d$ donde B es el operador de retardo regular ya definido, de manera que

$$\nabla^d X_t = X_t - X_{t-1}, \ \nabla^2 X_t = X_t - 2X_{t-1} + X_{t-2}, \dots$$
 (2.24)

Donde X_t es una variable real o aleatoria referida a un momento t determinado

5.8.3. Proceso integrado.

Un proceso estocástico (Y_t) es integrado de orden d $(d \le 1 \text{ entero})$, o I(d) si y sólo si el proceso $(\nabla^d Y_t)$ sigue un modelo ARMA(p,q) estacionario e invertible. En tal caso suele escribirse $(Y_t)\sim I(d)$.

En particular un proceso estocástico (Y_t) es integrado de orden 0, o I(0) si y sólo si (Y_t) sigue un modelo ARMA (p,q) estacionario e invertible). Además $(Y_t)\sim I(1)$ si y sólo si $(\nabla Y_t)\sim I(0)$, $Y_t\sim I(2)$ si y sólo si $(\nabla^2 Y_t)\sim I(0)$ etc. En general $(Y_t)\sim I(d)$ con $d\geq 1$, entonces (Y_t) es un proceso no estacionario.

5.8.4. Paseo aleatorio.

Un paseo aleatorio (en inglés random walk) es un proceso estocástico (Y_t) tal que

$$Y_t = \mu + Y_{t-1} + A_t$$
, para $t \in Z$ (2.25)

Donde μ es un parámetro (que en muchas ocasiones vale cero) y $(A_t) \approx IDD(0, \sigma_A^2)$ (2.25) implica que

$$\nabla Y_t = Y_t - Y_{t-1} = \mu + A_t \quad \forall t = 0, \pm 1, \pm 2, ..., \quad (2.26)$$

De manera que (∇Y_t) sigue un modelo ARMA(0,0) (con término constante si $\mu \neq 0$). Por lo tanto, $(\nabla Y_t) \sim I(0)$ lo que implica que un paseo aleatorio es un proceso I(1).

Por otro lado (2.25) es una ecuación en diferencias, cuya solución general a partir de un origen temporal k<t dado es

$$(\nabla Y_t) \sim I(0)$$

$$Y_{t} = \left[(yk - \mu k) + A_{t} + \sum_{i=1}^{t-k-1} A_{t-i} \right] + \mu t \quad para \quad t > k.$$
 (2.27)

Si por ejemplo k=0 y y_0 =0 implica que $E[Y_t]$ = μt y $Var[Y_t]$ = σ^2_A t dependen de t, por lo que (Y_t) es un proceso no estacionario (incluso cuando μ =0).

5.8.5. Componente determinista y aleatorio de un paseo aleatorio.

Cuando (Y_t) es un paseo aleatorio descrito por (2.25), la forma funcional de (2.27) no varía aunque el origen temporal k < t tienda a $-\infty$. En este caso puede considerarse que

$$T_{t}[Y_{t}] = \left[(yk - \mu k) + A_{t} + \sum_{i=1}^{t-k-1} A_{t-i} \right] + \mu t, \quad I_{t}[Y_{t}] = A_{t} \quad (2.28)$$

o bien
$$T_t[Y_t] = \mu + Y_{t-1}, \ I_t[Y_t] = A_t$$
 (2.29)

$$T_t[Y_t]$$
 en (2.28) es la ecuación de una recta de nivel $\beta_0 = \left[(yk - \mu k) + \sum_{i=1}^{t-k-1} A_{t-i} \right]$,

(una variable aleatoria) y pendiente μ (una constante). Por lo tanto la tendencia de un paseo aleatorio tiene dos componentes: un componente determinista asociado con el término μ t (que no esta presente si μ =0) y un componente estocástico o aleatorio asociado con el término β_0 , cada uno de los sumandos A_{t-1} , A_{t-2} ,..., A_{k+1} representa una contribución permanente aunque aleatoria al nivel (Y_t).

Por otro lado, (2.26) implica que $T_t[\nabla Y_t] = \mu(cons \tan te)$, $I_t[\nabla Y_t] = A_t$, de manera que (∇Y_t) es en este caso un proceso estocástico sin tendencia.

5.8.6 Modelo MA(1).

Sea (Y_t) un proceso estocástico. Sigue un modelo ARMA(0,1) o MA(1) si,

$$Y_t = Y_{t-1} + A_t - \theta_1 A_{t-1}$$
 para todo $t = 0, \pm 1, \pm 2, ...,$ (2.30)

Donde ϕ_1 es un parámetro tal que $|\phi_1| < 1$, $(A_t) \sim IID(0, \sigma_A^2)$, (2.30) implica que

$$\nabla Y_t = Y_t - Y_{t-1} = A_t - \theta_1 A_{t-1}$$
 para todo $t = 0, \pm 1, \pm 2, ...,$ (2.31).

De manera que (∇Y_t) sigue un modelo MA(1) invertible. Por lo tanto $(\nabla Y_t)\sim I(0)$, lo que implica que un proceso estocástico descrito por (2.30) es un proceso I(1).

Por otro lado, la solución general de (2.30) a partir de un origen temporal k<t dado es

$$Y_{t} = (y_{k} - \theta_{1}a_{k}) + A_{t} + \sum_{i=1}^{t-k-1} (1 - \theta_{1}) A_{t-i} \quad para \ t > k \ (2.32).$$

Si k=0 e y₀=a₀=0, (2.32) implica que Var[Y_t]= $\sigma_A^2 + (1-\theta_1)^2 \sigma_A^2 (t-1)$ depende de t, por lo que (Y_t) no es un proceso estacionario.

Dado que la forma funcional de la solución (2.32) no varía aunque el origen temporal k < t tienda a $-\infty$ a partir de (2.30) y (2.32) puede considerarse en este caso que:

$$T_t[Y_t] = (y_k - \theta_1 a_k) + A_{t-1} + \sum_{i=2}^{t-k-1} (1 - \theta_1) A_{t-i}, \quad I_t[Y_t] = A_t - \theta_1 A_{t-1}$$
 (2.33), o bien

$$T_t[Y_t] = Y_{t-1}, \quad I_t[Y_t] = A_t - \theta_1 A_{t-1} \quad (3.34)$$

 $T[Y_t]$ en (2.33) es puramente estocástica , cada uno de cuyos sumandos A_{t-1} , $(1-\theta_1)A_{t-2}$,..., $(1-\theta_1)A_{k+1}$ representa una contribución permanente aunque aleatoria al nivel de (Y_t) .

Por otro lado, (2.32) implica que $T_t[\nabla Y_t] = 0$, $I_t[\nabla Y] = A_t - \theta_1 A_{t-1}$ de manera que (∇Y_t) es en este caso un proceso estocástico sin tendencia.

Ejemplo. $(Y_t)\sim I(0)$ un proceso estocástico que sigue un modelo AR(1) estacionario del tipo $Y_t = \mu + \phi_1 Y_{t-1} + A_t$, para todo $t = 0, \pm 1, \pm 2,...$ (2.35)

$$|\phi_1| < 1$$
, donde $(A_t) \sim IID(0, \sigma_A^2)$

La solución de (2.35) a partir de un origen temporal k<t dado es

$$Y_{t} = \phi_{1}^{t-k} y_{k} + \sum_{i=0}^{t-k-1} \phi_{1}^{i} A_{t-i} + \left(\sum_{i=0}^{t-k-1} \phi_{1}^{i}\right) \mu, \ para \ t > k$$
 (2.36)

Oue tiende a

$$Y_{t} = \frac{\mu}{1 - \phi_{1}} + \sum_{i=0}^{\infty} \phi_{1}^{i} A_{t-i} \quad para \ todo \ t = 0, \pm 1, \pm 2, \dots$$
 (2.37)

Cuando $k \to -\infty$. Por lo tanto, en este caso puede considerarse que

$$T_t[Y_t] = \frac{\mu}{1 - \phi_1}$$
, $I_t[Y_t] = \sum_{i=0}^{\infty} \phi_i^i A_{t-i} = \phi_1 I_{t-1}[Y_t] + A_t$ (2.38) de manera que (Y_t) es un proceso

estocástico sin tendencia.

5.9. Modelos ARIMA.

5.9.1. Un proceso estocástico (Y_t) es integrado de orden d $(d \ge 0)$ si y sólo si (Y_t) sigue un modelo autorregresivo- integrado- media- móvil de orden (pd,q) o ARIMA(p,d,q), del tipo

$$\phi(B)\nabla^d Y_t = \mu + \theta(B)A_t, \ t \in Z$$
 (2.39)

Donde las raíces de las ecuaciones $\phi(x) = 0$ y $\theta(x) = 0$ están fuera del círculo unitario. Ejemplo.

Un paseo aleatorio es un proceso ARIMA(0,1,0) para un proceso I(1). Si en el modelo no aparece parte autorregresiva tenemos un modelo ARIMA(0,1,1) o IMA(1,1), para un proceso I(1). Un modelo ARIMA(1,1,0) o ARI(1,1), para un proceso I(1) es

$$(1-\phi_1 B)\nabla Y_t = \mu + A_t$$
, o bien $Y_t = \mu + (1+\phi_1)Y_{t-1} - \phi_1 Y_{t-2} + A_t$,

Donde $|\phi_1| < 1$, mientras que el modelo ARIMA(1,1,1) para un proceso I(1) es

$$(1 - \phi_1 B) \nabla_t Y_t = \mu + (1 - \theta_1 B) A_t \text{ o bien } Y_t = \mu + (1 + \phi_1) Y_{t-1} - \phi_1 Y_{t-2} + A_t - \phi_1 A_{t-1},$$

Donde $|\phi_1| < 1$, $|\theta_1| < 1$ y $\theta_1 \neq \theta_1$.

Tendencias en modelos invertibles.

El modelo ARIMA(p,d,q) para (Y_t)~I(d) definido antes puede escribirse como

$$\phi(B)[\nabla^d Y_t - \mu_w] = \theta(B)A_t \qquad (2.40) \text{ donde } \mu_w = E[\nabla^d Y_t] = \frac{\mu}{\phi(1)}, \text{ o bien como},$$

$$\nabla^{d} Y_{t} = \mu_{w} + \frac{\theta(B)}{\phi(B)} A_{t} = \mu_{w} + \psi(B) A_{t}$$
 (2.41)

Con
$$\psi(B) = \frac{\theta(B)}{\phi(B)}$$
, por lo cual,

$$Y_t = \mu_t + \psi(B)A_t^*$$
, o bien $Y_t = \mu_t \psi^*(B)A_t$ (2.42)

Donde μ_t , A_t^* $y \psi^*(B) = \sum_{i=0}^{\infty} \psi_i^* B^i$, $(\psi_0^* = 1)$, se definen de acuerdo con que

$$\nabla^{d} \mu_{t} = \mu_{w}, \nabla^{d} A_{t}^{*} = A_{t}, \nabla^{d} \psi^{*}(B) = \psi(B) \quad (2.43)$$

En consecuencia un modelo ARIMA(p,d,q) para un proceso (Y_t)~ I(d) implica que

$$Y_{t} = \underbrace{\mu_{t} + \psi(B)(A_{t}^{*} - A_{t})}_{T_{t}[Y_{t}]} + \underbrace{\psi(B)A_{t}}_{I_{t}[Y_{t}]} = \mu_{t} + \underbrace{[\psi^{*}(B) - \psi(B)]A_{t}}_{T_{t}[Y_{t}]} + \underbrace{\psi(B)A_{t}}_{I_{t}[A_{t}]}$$
(2.44)

Donde la tendencia $T_t[Y_t]$ es la suma de un componente determinista y un componente estocástico, la parte irregular $I_t[Y_t]$ es un proceso ARMA estacionario e invertible.

5.9.2. Tendencia en los modelos no invertibles.

Cuando el operador MA en (2.40) es tal que $\theta(x)=0$ tiene exactamente d raíces unitarias , $\theta(B)$ puede factorizarse como $\theta(B) = \mathcal{G}(B)\nabla^d$, donde $\mathcal{G}(B)$ es un operador invertible.

En este caso (Y_t) no es un proceso I(d) (ver (2.45)), y (2.44) daría la falsa impresión de que (Y_t) tiene un componente tendencial estocástico.

Cuando $\theta(B) = \mathcal{G}(B)\nabla^d$, (2.41)-(2.43) implican que

$$Y_{t} = \mu_{t} + \frac{\mathcal{G}(B)}{\phi(B)} A_{t},$$

Por lo que o bien la tendencia de (Y_t) es puramente determinista (si d \ge 1 y $\mu\ne$ 0), o bien $(Y_t)\sim I(0)$ y no tiene tendencia (si d=0 y $\mu=$ 0)

5.10 Elaboración de modelos ARIMA.

El modelo ARIMA más general que se obtiene al considerar todas las posibilidades descritas en las secciones 2.3, 2.4 y 2.5 anteriores, puede escribirse como:

$$\phi_p(B)\Phi_p(B^s)[\nabla^d\nabla_s^DY_t' - \mu_w] = \theta_a(B)\Theta_O(B^s)A_t \qquad (2.45)$$

Pasos para la elaboración:

Identificación.

Entrada: $(y_t)_{t=1}^N$ (serie temporal original), S periodo estacional.

- 1.1 Tratamiento de la estacionariedad en varianza. Elección de λ y m en la transformación Box- Cox . Se obtiene una serie $(y_t')_{t=1}^N$ con $y_t'=\ln(y_t+m)$ si $\lambda=0$, $y_t'=(y_t+m)^\lambda$ si $\lambda\neq 0$.
- 1.2 . Elección de d y D- Gráfico temporal (tendencias) y ACF muestral(amortiguamiento) de (y_t) se obtiene una serie $w_t = \nabla^d \nabla_S^D y_t$, supuestamente estacionaria.
- 1.3. Inclusión de μ_w contraste de significación de $\mu_w = E[w_t] = E[\nabla^d \nabla_S^D Y_t]$ a partir de la media muestral de la serie.
 - 1.4. Elección de p, P,q,Q ACF y PACF muestrales de (w_t) comparadas con ACF y PACF teóricas de modelos ARMA $(p,q) \times$ ARMA(p,Q). El criterio central es el reconocimiento de las configuraciones:

- Un valor grande en la ACF o en la PACF muestrales en un retardo k dado, puede ser no relevante si se encuentra aislado y k es grande.
- Una configuración reconocible de valores pequeños en la ACF o en la PACF muestrales, si puede ser relevante.

Salida: $(w_t)_{t=1}^n = (\nabla^d \nabla^D_S y_t^i)_{t=1}^n$ serie supuestamente estacionaria con n = N - d - DS; Órdenes p,P,q y Q.

Fase de estimación:

Entrada $(w_t)_{n=1}^n = (\nabla^d \nabla_S^D y_t^i)_{t=1}^n$ (una serie de aspecto estacionario), la cual es el modelo identificado para el proceso estocástico supuestamente estacionario $(W_t) = (\nabla^d \nabla_S^D Y_t^i)_{t=1}^n$; estimaciones iniciales de los parámetros del modelo; variables de control para el método de estimación escogido.

- 2.1 Utilizar máxima verosimilitud. Esto es minimizar la forma cuadrática $(\tilde{w}'\Sigma^{-1}\tilde{w})|\Sigma|^{\frac{1}{n}}$, $\operatorname{Con}\Sigma = \sigma_{A}^{-2}Var[W] \text{ (distribución implicada por el modelo)}.$
- 2.2. Problema. Evaluar la forma cuadrática $(\tilde{w}'\Sigma^{-1}\tilde{w})$ y el determinante $|\Sigma|$ a través de una estimación no lineal(no existen soluciones analíticas).
- 2.3. La alternativa a la máxima verosimilitud es usar mínimos cuadrados ordinarios para minimizar $(\tilde{w}'\Sigma^{-1}\tilde{w})$

Salida:

$$\tilde{w}, \tilde{\phi} = [\tilde{\phi}_{1,...,}\tilde{\phi}_{p}]', \tilde{\Phi} = [\tilde{\Phi}_{1},...,\tilde{\Phi}_{p}]', \tilde{\theta} = [\tilde{\theta}_{1},...,\tilde{\theta}_{q}]', \Theta = [\tilde{\Theta}_{1,...,}\tilde{\Theta}_{Q}]', \tilde{\sigma}_{A}^{2} \text{ (modelo estimado); V}$$
 (matriz de covarianzas estimadas); serie $(\tilde{a}_{t})_{t=1}^{n}$ de residuos.

3. Diagnósis.

Entrada: Modelo estimado, residuos.

- 3.1. Parámetros: significación individual y conjunta; correlaciones estimadas entre estimadores; estacionariedad e invertibilidad.
- 3.2. Residuos: (reemplazan a un proceso de ruido blanco en el modelo estimado): gráfico temporal; ACF y PACF residuales (Ljung-Box); media muestral; normalidad.

3.3. Posible reformulación según los resultados de 3.1 y 3.2.

Salida: si el modelo tiene que ser reformulado, se debe volver a la estimación. Si el modelo es adecuado, el modelo se puede usar para prever, hacer análisis de intervención, análisis multivariante, etc.

5.10.1. Criterios de información.

Para un modelo que contiene m parámetros y ha sido estimado con n observaciones, el criterio de información de AKAIKE es la cantidad:

$$AIC = -\frac{2L^*}{n} + \frac{2m}{n}$$
 (2.46)

Donde L* es el logaritmo neperiano de la función de verosimilitud asociada con el modelo estimado, evaluada en las estimaciones obtenidas de los parámetros de dicho modelo.

5.10.2. Criterio BIC de selección de un modelo.

Para un modelo que contiene m parámetros y ha sido estimado con n observaciones, el criterio de información bayesiano de Schwarz es la cantidad

$$BIC = -\frac{2L^*}{n} + \frac{m \ln(n)}{n}$$
 (2.47)

Donde L^* es el logaritmo neperiano de la función de verosimilitud asociada con el modelo estimado, evaluada en las estimaciones obtenidas de los parámetros de dicho modelo. Contraste de no estacionariedad de Shin-Fuller.

5.10.3. Contraste de no estacionariedad de Shin Fuller.

Cuando el operador autorregresivo de orden p en un modelo ARMA(p,q) puede factorizarse como $\phi_p(B) = (1 - \phi B)\phi_{p-1}(B)$, el contraste de no estacionariedad de Shin-Fuller (1998) consiste en rechazar la hipótesis nula de $\phi=1$ a favor de la alternativa $\phi<1$ (con un nivel de significación dado) cuando :

$$SF\begin{cases} L^* - \overline{L}, & si\hat{\phi} \le 1 - \frac{4}{n-1} \\ 0, & en \ otro \ caso \end{cases}$$
 (2.48)

Es mayor que el valor crítico correspondiente de la tabla (2.1). En (2.48), L* es el logaritmo neperiano de la función de verosimilitud en la estimación por máxima verosimilitud exacta

(MVE) no restringida del modelo, $\hat{\phi}$ es la estimación no restringida del parámetro ϕ , y \overline{L} es el logaritmo neperiano de la función de verosimilitud en la estimación por MVE restringida a $\phi = 1 - \frac{4}{n-1}$.

Tabla 2.1 Nivel de significación

n-1	10%	5%	1%
25	1.02	1.68	3.33
50	1.06	1.75	3.41
100	1.07	1.75	3.41
250	1.07	1.76	3.44
500	1.08	1.77	3.46

Valores críticos para el contraste de no estacionariedad de Shin-Fuller. (1998) Contraste de no invertibilidad de Davis-Chen-Dunsmuir.

5.10.4. Contraste de no invertibilidad de Davis-Chen-Dunsmuir.

En un modelo MA(1) del tipo $Y_t = (1-\theta_1 B)A_t$, el contraste MLE de no invertibilidad de Davis-Chen-Dunsmuir (1995) consiste en rechazar la hipótesis nula $\theta_1 = 1$, en favor de la hipótesis alternativa $\theta_1 < 1$ (con un nivel de significación dado) cuando $n(1-\theta_1)$ es mayor que el valor crítico b_{MLE} correspondiente de la tabla (2.2) (o bien cuando $\hat{\theta}_1 < 1 - \frac{b_{MLE}}{n}$), donde $\hat{\theta}_1$ es la estimación por MVE no restringida de $\hat{\theta}_1$.

Nivel	1	•	. ~		,
11170	40	010	m1+1.	0001	an
INIVEL	uc	215		caci	OH

	10%	5%	2.5%	1%
$b_{\!\scriptscriptstyle MLE}$	4.90	6.80	8.97	11.93
$b_{\scriptscriptstyle GLR}$	1.00	1.94	2.95	4.41

Tabla 2.2

Valores críticos asintóticos para los contrastes de no invertibilidad de Davis-Chen-Dunsnuir. Definición.

En un modelo MA(1) del tipo $Y_t = (1 - \theta_1 B) A_t$, el contraste GLR de no invertibilidad de Davis-Chen-Dunsmuir (1995) consiste en rechazar la hipótesis nula $\theta_1 = 1$, en favor de la hipótesis alternativa $\theta_1 < 1$ (con un nivel de significación dado)cuando

$$DCD = 2(L * -\overline{L}) \qquad (2.49)$$

Es mayor que el valor crítico correspondiente de la tabla 2.2 anterior. En (2.49). L* es el logaritmo neperiano de la función de verosimilitud de la estimación por MVE no restringida del modelo MA(1), y L barra es el logaritmo neperiano de la función de verosimilitud Evaluada en $\theta_1 = 1$

5.11 Previsión con modelos ARIMA.

5.11.1. Definición.

La previsión puntual en origen k (dado) a horizonte $l \ge 1$ (variable) de un proceso estocástico (Y_t) , se representa mediante el símbolo $Y_k(l)$ y se define como el valor esperado de Y_{k+1} condicionado por toda la información disponible hasta un momento k dado de la historia de (Y_t) , es decir,

$$Y_k(1)=E_k[Y_{k+1}], \text{ para } l=1,2,3,...$$
 (2.56)

5.11.2. Definición.

El error de previsión en origen k(dado) a horizonte $l\ge 1$ (variable) de un proceso estocástico (Y_t) , es la variable aleatoria

$$E_k(1)=Y_{k+1}-Y_k(1)$$
, para $l=1,2,3,...$ (2.57)

Es decir, la diferencia entre el valor observado Y_{k+l} de (Y_t) en un momento k+l de su historia y el valor previsto $Y_k(l)$ en origen k a horizonte l de (Y_t) .

5.11.3. Definición.

La función de previsión en origen k a horizonte $l \ge 1$ de un proceso $(Y_t) \sim I(d)$ que sigue un modelo ARIMA del tipo $\phi'(B)Y_t = \mu + \theta(B)A_t$, donde:

$$\phi'(B) = \phi(B)\nabla^d = 1 - \sum_{i=1}^{p'} \phi_i' B^i \quad con \ p' = p + d$$

Es:
$$Y_k(l) = E[Y_{k+l}] = \mu + \sum_{i=1}^{p'} \phi_i' E[Y_{k+l-i}] + E_k[A_{k+l}] - \sum_{i=1}^{q} \theta_i E_k[A_{k+l-i}]$$
 (2.58).

O bien,

$$Y_k(l) = E_k[Y_{k+l}] = \mu_{k+l} + E_k[\psi^*(B)]A_{k+l}$$
 (2.59)

Donde $\psi^*(B) = \sum_{i=0}^{\infty} \psi_i^* B^i$ (ψ_0^*) se define de acuerdo con que $\nabla^d \psi^*(B) = \psi(B)$.

5.11.4. El error de previsión en origen k a horizonte $l \ge 1$ de un proceso $(Y_t) \sim I(d)$ que sigue un modelo ARIMA del tipo $\phi'(B)Y_t = \mu + \theta(B)A_t$, puede escribirse de acuerdo con (2.42) y (2.59) como :

$$E_k(l) = Y_{k+l} - Y_k(l) = \psi^*(B)A_{k+1} - E_k[\psi^*(B)A_{k+1}], \text{ donde}$$

$$\psi^*(B)A_{k+1} = \sum_{i=0}^{\infty} \psi_i^* A_{k+l-i} = A_{k+l} + \psi_1^* A_{k+l-1} + \psi_2^* A_{k+l-2} + \dots$$
, por lo tanto,

$$E_{k}[I] = A_{k+l} + \psi_{1}^{*} A_{k+l-1} + \dots + \psi_{l-1}^{*} A_{k+1} = \sum_{i=0}^{l-1} \psi_{i}^{*} A_{k+l-i}. \quad (2.60),$$

Donde los parámetros ψ_1^* del polinomio $\psi^*(B) = \sum_{i=0}^{\infty} \psi_i^* B^i \ (\psi_0^* = 1)$ pueden calcularse, teniendo

en cuenta que
$$\nabla^d \psi^*(B) = \psi(B)$$
, $con \psi(B) = \frac{\theta(B)}{\phi(B)}$.

Para ver algunos ejemplos para unos modelos particulares se remite al lector a [Mauricio 2007].

Previsiones puntuales – Intervalos de confianza.

El modelo ARIMA más general considerado en la sección 2.6,

$$\phi_p(B)\Phi_P(B^S)[\nabla^d\nabla_S^D Y_t^I - \mu_w] = \theta_q(B)\Theta_Q(B^S)A_t$$
, puede escribirse como:

$$\Phi^*(B)Y_t' = \mu + \Theta^*(B)A_t$$
 (2.76)

Donde
$$\Phi^*(B) = \phi_p(B)\Phi_P(B^S)\nabla^d\nabla_S^D = 1 - \sum_{i=1}^{p^*} \Phi_i^* B^*$$
,

$$\Theta^*(B) = \theta_q(B)\Theta_Q(B^S) = 1 - \sum_{i=1}^{q^*} \Theta_i^* B^i, \quad \mu = [\phi_p(1)\Phi_P(1)]\mu_w, \quad p^* = (p+d) + (p+D)S, \quad q^* = q + QS.$$

Por lo tanto(2.76) queda
$$Y_{t}' = \mu + \sum_{i=1}^{p^*} \Phi_{i} Y_{t-i}' + A_{t} - \sum_{i=1}^{q^*} \Theta_{i}^{*}$$
 (2.77)

Cálculo de las previsiones puntuales para la serie transformada.

$$\hat{y}_{N}'(l) = \hat{\mu} + \sum_{i=1}^{p^{*}} \hat{\Phi}_{i}[y_{N+l-i}'] - \sum_{i=1}^{q^{*}} \hat{\Theta}_{i}^{*}[a_{N+l-i}] \quad (l \ge 1), \quad (2.78) \text{ , donde ,}$$

$$[y'_{j}] = \begin{cases} y'_{j}, & \text{si } j \leq N \\ \hat{y}'_{N}(j-N), & \text{si } j > N \end{cases}$$

$$[a_{j}] = \begin{cases} \hat{a}_{j} = y'_{j} - \hat{y}'_{j-1}, & \text{si } j \leq N \\ 0, & \text{si } j > N \end{cases}$$

Cálculo de los intervalos de confianza para la serie transformada.

$$IC'_{1-\alpha}(l) = [\hat{y}'_{N}(l) \mp u \times \sqrt{\hat{v}(l)}]$$
 (2.79)

Donde u=1.65, 1.96 \(\text{o} \) 2.58, según si \(\alpha = 0.1, 0.05 \(\text{o} \) 0.01, \(\hat{v}(l) = \hat{\sigma}_A^2 \sum_{i=0}^{l-1} (\hat{\psi}_i^*)^2 \), y,

$$\hat{\psi}_{i}^{*} = -\hat{\Theta}_{i}^{*} + \sum_{j=1}^{p^{*}} \hat{\Phi}_{j}^{*} \psi_{i-j}^{*} \quad (i \ge j), \tag{2.80}$$

Con
$$\hat{\psi}_0^* = 1$$
, $\hat{\psi}_i^* = 0$ si $i < 0$, $\hat{\psi}_i^* = 0$, si $i > q^*$.

Criterios de evaluación de previsiones.

5.11.5. Definición.

Sean $\hat{y}_N(1), \hat{y}_N(2),...,\hat{y}_N(L)$ una secuencia de previsiones calculadas en origen N a horizontes 1,2,...,L. La raíz del error cuadrático medio (RMSE, del inglés Root Mean Squared Error) asociada con dicha secuencia es:

$$RMSE = \sqrt{\frac{1}{L} \sum_{l=1}^{L} [\hat{y}_{N}(l) - y_{N+l}]^{2}} = \sqrt{\frac{1}{L} \sum_{l=1}^{L} (\hat{e}_{N}(l))^{2}}$$
 (2.82)

Es decir, la desviación típica muestral de los errores de previsión $\hat{e}_N(1), \hat{e}_N(2), ..., \hat{e}_N(L)$.

5.11.6. Definición.

Sea $\hat{y}_N(1), \hat{y}_N(2),...,\hat{y}_N(L)$ una secuencia de previsiones calculadas en origen N a horizontes 1,2,...,L . El error absoluto medio (MAE, del inglés Mean Absolute Error) asociado con dicha secuencia es:

$$MAE = \frac{1}{L} \sum_{l=1}^{L} |\hat{y}_{N}(l) - y_{N+l}| = \frac{1}{L} \sum_{l=1}^{L} |\hat{e}_{N}(l)|$$
 (2.83)

Es decir, la media de los valores absolutos de los errores de previsión.

5.11.7. Definición

Sea $\hat{y}_N(1), \hat{y}_N(2),...,\hat{y}_N(L)$ una secuencia de previsiones calculadas en origen N a horizontes 1,2,...,L. El error porcentual absoluto medio (MAPE, del inglés Mean Absolute Percentage Error) asociado con dicha secuencia es

$$MAPE = \frac{100}{L} \sum_{l=1}^{L} \left| \frac{\hat{y}_{N}(l) - y_{N+l}}{y_{N+l}} \right| = \frac{100}{L} \sum_{l=1}^{L} \left| \frac{\hat{e}_{N}(l)}{y_{N+l}} \right|$$
(2.84)

5.12. Modelos multivariantes

5.12.1. Aspectos generales de los modelos multivariantes.

Introducción.

La realidad económica de un país se explica por la relación existente entre diferentes variables y no por variables de manera aislada. Los modelos ARIMA univariantes son un paso inicial necesario, para modelizar aspectos de interés, pero son de utilidad limitada, porque ignoran la interrelación entre variables. No son de mucha utilidad para generación de políticas. Recordemos que estos modelos se construyen en base a variables estacionarias. En caso de no serlo, se efectúan las operaciones necesarias para hacerlas estacionarias. En el caso de modelos multivariantes ocurre algo similar.

El modelo ARMA univariante estacionario vimos tiene la forma: $W_t = E(W_t | pasado) + a_t$ Donde $E(W_t | pasado)$ y a_t (innovaciones) se representan en general en términos de valores pasados de W_t y a_t .

A nivel multivariante se puede definir un modelo ARMA vectorial de la misma forma; por ejemplo si W_t es un vector de 2 componentes tenemos:

• Considerando un retardo de cada componente de W_t :

$$\begin{split} W_{1t} - \phi_{11} W_{1,t-1} - \phi_{12} W_{2,t-1} &= a_{1t} - \theta_{11} a_{1,t-1} - \theta_{12} a_{2,t-1} \\ &= a_{2t} - \theta_{22} a_{1,t-1} - \theta_{12} a_{2,t-1} \\ \end{split}$$

$$Es \ decir, W_{2t} - \phi_{21} W_{1,t-1} - \phi_{22} W_{2,t-1} &= a_{2t} - \theta_{22} a_{1,t-1} - \theta_{12} a_{2,t-1} \\ W_{1t} &= \phi_{11} W_{1,t-1} + \phi_{12} W_{2,t-1} - \theta_{11} a_{1,t-1} - \theta_{12} a_{2,t-1} \\ &= \underbrace{(W_{1t})}_{\hat{l} nnovación} deW_{1t} \\ W_{2t} &= \underbrace{(W_{2t})}_{\hat{l} nnovación deW_{2t}} + \underbrace{(W_{2t})}_{\hat{l} nnovación deW_{2t}} \\ \end{split}$$

Ahora, esto se puede generalizar, si W_t representa un vector de n variables y cualquier cantidad de retardos.

El modelo resultante será un modelo ARMA vectorial llamado VARMA(p,q).

Por ejemplo si p=q=1 y n=2, usando operadores de retardo y notación matricial, tenemos:

$$\begin{pmatrix} 1 - \phi_{11}L & -\phi_{12}L \\ -\phi_{21}L & 1 - \phi_{22}L \end{pmatrix} \begin{pmatrix} W_{1t} \\ W_{2t} \end{pmatrix} = \begin{pmatrix} 1 - \theta_{11}L & -\theta_{12}L \\ -\theta_{21}L & 1 - \theta_{22}L \end{pmatrix} \begin{pmatrix} a_{1t} \\ a_{2t} \end{pmatrix}$$

La construcción de estos modelos VARMA suele ser muy compleja, especialmente en las etapas de especificación y validación, por lo que no suelen usarse mucho.

Al igual que en el caso univariante un modelo VARMA invertible puede representarse de forma puramente autorregresiva.

Cuando un VARMA sólo tiene parte autorregresiva se le denomina VAR(p).

Actualmente la popularidad de los modelos VAR es mucho mayor entre los economistas que la de los modelos VARMA; de hecho, es muy difícil encontrar manuales de Econometría o de Análisis de Series Temporales aplicados a la Economía en los que se mencione siquiera la posibilidad de modelizar un proceso multivariante a través de un proceso VARMA. Lo mismo ocurre en los programas informáticos disponibles para hacer estos análisis.

Veamos el siguiente caso particular:

El modelo VAR(2), caso bivariante, quedaría:

$$\begin{pmatrix} 1 - \phi_{11}^{(1)} L - \phi_{11}^{(2)} L^2 & -\phi_{12}^{(1)} L - \phi_{12}^{(2)} L^2 \\ -\phi_{21}^{(1)} L - \phi_{21}^{(2)} L^2 & 1 - \phi_{22}^{(1)} L - \phi_{22}^{(2)} L^2 \end{pmatrix} \begin{pmatrix} X_{1t} \\ X_{2t} \end{pmatrix} = \begin{pmatrix} a_{1t} \\ a_{2t} \end{pmatrix}$$

$$\Phi(L)X_{t} = a_{t}$$

 $\Phi(L)X_t = a_t$ O sea, donde $\Phi(L)$ es una matriz polinomial.

Esto implica que se puede despejar la variable X_{ii} en cada ecuación y escribir el modelo de la forma: $X_t = \Phi_1 X_{t-1} - \Phi_2 X_{t-2} - \dots + a_t$ en el caso general. Así, por ejemplo en el caso bivariante: $X_{t} = \Phi_{1}X_{t-1} - \Phi_{2}X_{t-2} + a_{t}$

$$\Phi_{1} = \begin{pmatrix} \phi_{11}^{(1)} & \phi_{12}^{(1)} \\ \phi_{21}^{(1)} & \phi_{22}^{(1)} \end{pmatrix} \qquad \Phi_{2} = \begin{pmatrix} \phi_{11}^{(2)} & \phi_{12}^{(2)} \\ \phi_{21}^{(2)} & \phi_{22}^{(2)} \end{pmatrix}$$

Son matrices de parámetros.

Y los residuos tienen una matriz de varianzas y covarianzas

$$Var(a_t) = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}$$

5.12.2. Modelos de regresión dinámica: ideas generales.

Un modelo de regresión dinámica es una representación de la relación existente entre dos o más series temporales. Un modelo simple supone dos variables x_t , y_t , que siguen procesos de ruido blanco, (es decir son variables aleatorias. IID $(0, \sigma_A^2)$) y expresa la media condicionada de la variable dependiente o endógena yt, en función de la variable explicativa o exógena xt, mediante $y_t = \beta_0 + \beta_1 x_t + u_t$, donde las variables u_t representan las innovaciones del modelo que siguen también un proceso de ruido blanco. Ahora, si las variables no son ruido blanco, estas podrían tener dependencia temporal, por ejemplo un incremento en x_t puede ejercer influencia en la variable yt hacia adelante o hacia atrás. El efecto dinámico será tanto más complejo cuanto más intervalos de tiempo sean necesarios para la transmisión completa del efecto. Es necesario hacer algunas consideraciones, el modelo planteado supone que hay una relación de la variable x_t a la variable y_t , pero no que la variable y_t influye sobre la variable x_t . Decimos que la variable y_t es endógena, influenciada por x_t , pero que x_r es exógena o explicativa, lo que implica que no hay relación entre y_{t-k} y x_t para cualquier k>0. Sin embargo puede ocurrir que las variables tengan relación bidireccional y el método de análisis para el modelo debe replantearse. La solución a este problema se hace usando modelos multivariantes, los cuales explicaremos más adelante.

5.12.3 Relaciones entre series estacionarias: función de covarianzas y correlaciones cruzadas.

Supongamos dos procesos estacionarios x_t e y_t , esto es con esperanzas constantes. Supongamos que sus medias son respectivamente μ_x , μ_y . Se introduce medidas de dependencia lineal para distintos retardos. Definimos la función de covarianzas cruzadas mediante,

$$\gamma_{xy}(t,t+k) = E\left[\left(x_t - \mu_x\right)\left(y_{t+k} - \mu_y\right)\right]$$

Esta función depende del orden en que se toman las variables y de los instantes en que se consideran cada una de ellas. Mide la relación lineal entre las dos variables x_t y y_{t+k} , donde el valor de k puede ser positivo o negativo. Diremos que dos procesos estacionarios x_t , y_t son conjuntamente estacionarios si cada uno de ellos es estacionario y las covarianzas cruzadas

sólo dependen del retardo k, entre las variables y, no del instante inicial considerado. Entonces tenemos $\gamma_{xy}(t,t+k) = \gamma_{xy}(k)$, $k=0\pm1,\pm2,...$

De la misma forma que las autocovarianzas permiten identificar el orden del modelo ARMA univariante, podría pensarse en utilizar la función de covarianzas cruzadas para identificar si la relación es en una dirección o bidireccional. Lastimosamente no es así, ya que la función de autocorrelación tiene muchas limitaciones, sin embargo este problema se resolverá más adelante como veremos en el presente desarrollo teórico.

5.12.4. Función de autocorrelación cruzada.

Esta función resulta de estandarizar la función de covarianzas cruzadas. Es decir, si tenemos dos procesos estocásticos conjuntamente estacionarios x_t e y_t , definimos la función de correlación cruzada

$$\rho_{xy} = \frac{\gamma_{xy}(k)}{\sigma_x \sigma_y}$$
 con k cualquier entero.

La función de autocorrelación cruzada tiene varias propiedades, pero aquí se presentan las siguientes que resultan de mayor interés para nuestro estudio:

$$1 - \left| \rho_{xy}(k) \right| \le 1$$

$$2-\rho_{xy}(k) = \rho_{xy}(k)$$

Pero en general $\rho_{xy}(k) = \rho_{xy}(-k)$, y la función no es simétrica con respecto al origen. Para k>0 mide la relación desde x hacia y, mientras que para k<0 la relación desde y hacia x.

Estimación de de las funciones de covarianzas y correlaciones cruzadas.

Las autocovarianzas teóricas de un proceso z_t se estiman mediante las muestrales, definidas por:

$$\hat{\gamma}_z(k) = \frac{1}{T} \sum_{t=1}^{T-k} (z_t - \overline{z}) (z_{t+k} - \overline{z}) \quad \text{, donde T es el número de elementos de la muestra.}$$

Ahora dadas dos series temporales x_t , y_t estimaremos sus covarianzas cruzadas mediante las fórmulas

$$\hat{\gamma}_{xy}(k) = \frac{1}{T} \sum_{t=1}^{T-k} (x_t - \overline{x}) (y_{t+k} - \overline{y})$$

Y las correlaciones cruzadas muestrales por:

$$r_{xy} = \frac{\hat{\gamma}_{xy}(k)}{s_x s_y}$$

Donde,

$$S_x = \hat{\gamma}_x^{1/2}(0) \ y \ S_y = \hat{\gamma}_y^{1/2}(0)$$

5.12.5. Modelo dinámico entre series estacionarias.

Partamos del hecho que tenemos series temporales estacionarias ya que si no lo fueran más adelante vamos a ver los mecanismos para hacer los ajustes necesarios.

Supongamos que existe una relación unidireccional de la serie x hacia la serie y, pero no al contrario Una relación unidireccional de x_t hacia y_t entre dos procesos estocásticos estacionarios de media cero, puede representarse mediante,

 $Y_t=v_0x_t+v_1x_{t-1}+v_2x_{t-2}+...+\eta_t$, donde los coeficientes v_i describen la relación dinámica entre las dos series y el proceso η_t , que es también estacionario, recoge el efecto de todas las otras variables que pueden tener efecto sobre y_t . Esta relación llamada en algunas áreas de la ciencia como función de transferencia y en las ciencias económicas modelos econométricos dinámicos. Esta ecuación puede escribirse de forma más compacta utilizando el operador de retardo.

$$y_t = v(B)x_t + \eta_t$$

Donde $v(B)=v_0+v_1B+v_2B^2+...$

Se denomina función de transferencia y a los coeficientes se les llama función de respuesta a impulsos. La ganancia de la función de transferencia es $g = v(1) = \sum_{i=0}^{\infty} v_i$ y representa el efecto a largo plazo que experimenta y_t cuando x_t aumenta en una unidad y permanece constante a continuación.

La representación que dimos de la función de transferencia no es muy práctica para efectos de la estimación de los parámetros, ya que si el proceso x_t tiene alta correlación, las variables x_t , x_{t-1} , x_{t-2} ,... estarán muy correladas entre sí y será muy difícil separar sus efectos por el problema de la multicolinealidad. Además si la relación es larga, tendremos que estimar muchos parámetros, con lo que el problema se complica. Una forma alternativa de escribir la función de transferencia es usando la idea de aproximar una función infinita como cociente de polinomios:

$$v(B) = \frac{w_m(B)}{\delta_a(B)} B^b,$$

Donde el término B^b tiene en cuenta que la relación inicial puede establecerse con un retardo inicial b y, $w_m(B) = w_0 + w_1 B + ... + w_m B^m$, es el numerador de la función de transferencia que juega un papel similar a la parte MA de un modelo ARMA, y, $\delta_a(B) = 1 - \delta_1 B - ... - \delta_a B^a$, es el denominador, que juega el papel de la parte AR. Los factores de esta ecuación deben ser menores que la unidad para que el sistema proporcione una respuesta finita a una modificación finita de la x_t . Es decir si escribimos $\delta_a(B) = (1 - \alpha_1 B)...(1 - \alpha_a B)$, entonces $|\alpha_i| < 1$. En la práctica los órdenes de m y a son pequeños, no mayores que 3. La ganancia de la función de transferencia se calcula como antes:

$$g = v(1) = \frac{w_m(1)}{\delta_a(1)} = \frac{\sum_{j=0}^m w_j}{1 - \sum_{i=1}^a \delta_i},$$

Puede demostrarse (apéndice 17.4, Peña 2005).que toda función de transferencia de orden máximo k puede escribirse como:

$$v_k(B) = g + \sum_{i=0}^{k-1} \alpha_i \nabla B^i$$
, donde ∇ denota el operador diferencia habitual.

Utilizando esta representación, en vez de la dada inicialmente podemos escribir:

$$y_{t} = gx_{t} + \sum_{i=0}^{k-1} \alpha_{i} \nabla x_{t-i} + \eta_{t}$$
,

Que separa el efecto a largo plazo, medido por g=v(1), de los efectos a corto plazo medidos por los coeficientes α_i . La ventaja de esta representación es que las variables ∇x_{t-i} estarán mucho menos correladas entre sí que las x_t , con lo que sus efectos se estimarán mejor.

5.12.6. Construcción del modelo.

Las etapas para el ajuste de un modelo de regresión dinámica entre variables estacionarias son las mismas que para un modelo ARIMA: identificación del modelo, estimación y diagnosis. Por ejemplo, supongamos que la variable y_t sigue un proceso ARMA (p_y,q_y) , y x_t sigue un proceso ARMA (p_x,q_x) .

El método para identificar la función de transferencia depende del grado de autocorrelación de la variable x_t . Si esta variable sigue un proceso de ruido blanco o tiene una estructura de correlación muy pequeña, podemos estimar el modelo:

$$y_t = \beta_0 + \sum_{i=0}^k v_i x_{t-i} + \eta_t,$$

Y estudiar la estructura de los coeficientes v_i para decidir el orden del numerador y del denominador para la función de transferencia. El orden k se elige, teniendo en cuenta el tamaño muestral y procurando incluir todos los retardos posibles donde puedan existir efectos. Por ejemplo con datos anuales como en el caso que se pretende estudiar k será muy pequeño, $k \le 2$. Si la variable x_t tiene fuerte autocorrelación la formulación de la función de transferencia no es conveniente, ya que los coeficientes v_i serán difíciles de estimar por la alta multicolinealidad entre las variables explicativas. Es mejor estimar modelos del tipo:

$$y_t = \beta_0 + \frac{w_0 + w_1 B}{1 - \delta B} B^b x_t + \eta_t$$
, aclarando que este aún es un caso particular de otros modelos

más generales ya mencionados antes. Las condiciones de estabilidad de estos modelos se estudiarán en el desarrollo de la teoría y tienen relación con las raíces unitarias.

En estos modelos es importante comprobar si encontramos coeficientes significativos que nos indican la forma de respuesta.

Si la correlación de la x_t es fuerte, una solución simple sería estimar un modelo que nos separe los efectos a corto y a largo plazo, con los planteados antes. En esta fase exploratoria no conviene seguir reglas estrictas al eliminar coeficientes, y mantener aquellos que sean grandes aunque no sean formalmente significativos.

5.12.6.1 Modelo con varias variables explicativas.

Estos modelos que hemos comentado se pueden generalizar sin dificultad para p variables explicativas.

El modelo será entonces:

$$y_{t} = \frac{w_{1}(B)B^{b_{1}}}{\delta_{1}(B)}x_{1t} + \dots + \frac{w_{p}(B)B^{b_{p}}}{\delta_{p}(B)} + \eta_{t}$$

Con varias variables explicativas que pueden estar correladas entre sí, en lugar de intentar identificar la función de transferencia para cada una, conviene pasar a estimar directamente el modelo conjunto y reformularlo a la vista del resultado.

Cuando las variables explicativas tengan alta correlación, o estén altamente correladas entre sí, no conviene estimar un modelo inicial del tipo

$$y_{t} = \sum v_{1i}x_{i,t-i} + ... + \sum v_{pi}x_{p,t-i} + \eta_{t}$$

Ya que existirá multicolinealidad muy alta y los coeficientes se estimarán muy ineficientemente. Es mejor reescribir las funciones de transferencia separando la ganancia de los efectos a corto plazo, como lo vimos para una variable. Por ejemplo, podemos estimar un modelo inicial:

$$y_{t} = \sum_{i=1}^{p} \beta_{0i} x_{it} + \sum_{i=1}^{p} \beta_{1i} \nabla x_{i,t} + \eta_{t}$$

Que separa los efectos a largo plazo, medidos por β_{0i} , de los a corto plazo, dados por β_{1i} . Para las $p_1 \le p$ variables donde se observen efectos significativos a corto plazo, podemos aumentar la dinámica a corto plazo añadiendo un término en la variable $\nabla^2 x_{i,i}$ y así

sucesivamente hasta obtener el modelo
$$y_t = \sum_{i=1}^p \beta_{0i} x_{it} + \sum_{j=1}^{p_1} \beta_{1j} \nabla x_{j,t} + ... + \sum_{i=1}^n \beta_{im} \nabla^i x_{m,t} + \eta_t$$

La estimación, selección y diagnosis de estos modelos se realiza con los mismos principios que se usan para los modelos ARMA.

Cuando las variables en cuestión no son estacionarias no podemos confiarnos en los procedimientos tradicionales, ya que la inferencia con variables no estacionarias requiere, en general, distribuciones no estándar. El riesgo de obtener regresiones espurias, por la autocorrelación en la perturbación es especialmente importante en este caso. Para resolver el problema de la no estacionariedad una opción tentadora es diferenciar las series y luego aplicar los métodos vistos anteriormente. Sin embargo esta técnica tiene sus inconvenientes. Es posible que aunque las dos series sean no estacionarias una de ellas explique totalmente el comportamiento no estacionario de la otra. Una estrategia para construir modelos que tengan en cuenta estos problemas se basa en una relación llamada relación de cointegración.

Recordemos que una serie temporal es integrada de orden d, y lo representamos por I(d), si es necesario aplicar d diferencias para transformarla en estacionaria o I(0). Diremos que las series I(d) integradas, x_t , y_t están cointegradas si existe una combinación lineal entre ellas que es de orden de integración menor que d. Es decir, si podemos construir una serie η_t^* :

$$\eta_t^* = \alpha_1 y_t + \alpha_2 x_t \quad (1)$$

que es I(d), donde d_1 <d. A la relación (α_1,α_2) se le denomina la relación de cointegración. Esta relación no es única, ya que cualquier relación del tipo $(c\alpha_1,c\alpha_2)$ es también de cointegración para cualquier $c \neq 0$. Cuando existe cointegración, una de las variables explica

$$y_t = \beta x_t + \eta_t , (2)$$

donde $\beta = -\frac{\alpha_2}{\alpha_1} y \eta_t = \frac{\eta_t^*}{\alpha_1}$ es un proceso I(d). En la ecuación (2) la relación de cointegración es $(1, -\beta)$ y estimar la relación de cointegración equivale a estimar la relación a largo plazo entre las variables dadas por β .

Para variables no estacionarias, el modelo puede construirse en tres etapas cono sigue:

parte de la tendencia de la otra. Al manipular la ecuación (1) podemos escribir:

- 1. Estimar por mínimos cuadrados una regresión entre las dos variables: $\hat{y}_t = \hat{\beta}_0 + \hat{g}x_t$
- Obtener los residuos de esta ecuación: \$\hat{\eta}_t = y_t \hat{\beta}_0 \hat{\eta} x_t\$
 Y comprobar si son estacionarios. Si lo son, las variables están cointegradas, Si no lo son, las variables no están cointegradas y debemos diferenciarlas para construir la relación
- 3. Construir un modelo para la serie estacionaria $\hat{\eta}_t$.

Esto será tratado con más detalle más adelante.

Puede verse (Peña 2005) que si estimamos por mínimos cuadrados una regresión entre dos variables, la pendiente estimará la ganancia, o efecto a largo plazo entre las variables y el ruido será estacionario. Esto justifica que llamemos a la relación de cointegración obtenida por regresión, la relación a largo plazo entre las variables.

Puede ocurrir que las variables tengan el mismo orden de cointegración, entonces la perturbación tendrá como máximo también ese orden de cointegración. La estimación puede hacerse por mínimos cuadrados generalizados. Una vez calculado el modelo y eliminado los coeficientes que no sean significativos, calculamos la serie de perturbación $\hat{\eta}_t$ mediante diferencia y construimos un modelo univariante para esta serie. Puede ocurrir que el proceso de perturbación sea estacionario o no: si ocurre que son estacionarios, las variables están cointegradas. Sustituyendo el modelo univariante identificado para η_t y reformulando la ecuación obtenida volveremos a estimarla para obtener estimadores más

eficientes de los parámetros, Luego de eliminar los coeficientes que no sean significativos hacemos la diagnosis sobre los residuos del modelo.

Si el proceso $\hat{\eta}_t$ no es estacionario, entonces las variables no están cointegradas y deberíamos reestimar el modelo, permitiendo un ruido no estacionario. Luego se puede considerar diferenciar $\hat{\eta}_t$ para hacerlo estacionario y así sucesivamente.

Estas ideas se generalizan sin dificultad para cualquier número de variables explicativas. Utilizando la formulación de función de transferencia, será

$$y_t = \sum_{i=1}^p \frac{w_i(B)}{\delta_i(B)} x_{i,t} + \frac{\theta(B)\phi(B^s)}{\theta(B)\phi(B^s)} a_t$$

Y, separando los efectos a corto de a largo e incluyendo la primera diferencia de las variables para distintos retardos:

$$y_{t} = \sum_{i=1}^{p} g_{i} x_{i,t} + \sum_{i=1}^{p} \sum_{i=0}^{k-1} \alpha_{i,j} \nabla x_{i,t-j} + \eta_{t}$$

La construcción de este modelo se hace con los mismos principios. Si por ejemplo las variables son I(1), es posible que exista cointegración y que el ruido sea estacionario o que no los sea. Comenzaremos permitiendo la presencia de cointegración y supondremos que el ruido es estacionario. Escribiendo las funciones de transferencia, separando los efectos a corto y a largo plazo estimamos el modelo y comprobamos si la perturbación es o no estacionaria. Si lo es, las variables están cointegradas y las variables explicativas son capaces de explicar la tendencia o componente no estacionario de la variable respuesta. Si la perturbación no es estacionaria, estimaremos el modelo en diferencias de las variables.

5.12.7. Instrumentalización de la metodología de vectores autorregresivos (VAR).

Brevemente se analizará los detalles técnicos asociados con la estimación y uso de los Vectores Autorregresivos (VAR) cuyas componentes son series de tiempo que pueden ser estacionarias o no estacionarias. Nuestro mayor interés es abordar el caso más general, en el que las series de tiempo puedan ser no estacionarias, ya que es el caso frecuentemente encontrado en diversos estudios econométricos. Este procedimiento nos permitirá analizar la interrelación entre las diferentes series de tiempo. El objetivo fundamental de la técnica que se pretende utilizar es proporcionar una estrategia de modelización que evite la generosa imposición de restricciones en que se apoya la identificación de los modelos econométricos

convencionales, y que nos permita reflejar lo más fielmente posible las regularidades empíricas e interacciones entre las variables objeto de análisis.

Cuando se tienen varias series, es necesario tomar en cuenta la interdependencia entre ellas. Una forma de hacerlo es estimar un modelo de ecuaciones simultáneas, pero con rezagos en todas las variables. Este modelo se conoce como modelo dinámico de ecuaciones simultáneas. Sin embargo, esta formulación supone dos pasos: primero, es preciso clasificar las variables en dos categorías: endógenas y exógenas; segundo: deben imponerse ciertas restricciones en los parámetros para lograr la identificación. Para superar esto se propone el uso de los "vectores autorregresivos" que no es más que una generalización del modelo autorregresivo AR(p) a las series de tiempo múltiples.

Los vectores autorregresivos han proveído una exitosa técnica para hacer pronósticos en sistemas de variables de series de tiempo interrelacionadas, donde cada variable ayuda a pronosticar a las demás variables. Un VAR es un sistema de variables que hace de cada variable endógena una función de su propio pasado y del pasado de otras variables endógenas del sistema. El estudio de las interacciones dinámicas estimadas es una de las motivaciones fundamentales de los usuarios de los modelos VAR y, de hecho, los usos típicos de estos modelos reflejan esta motivación. Tales usos son el cómputo de las funciones impulsorespuesta y de la descomposición de la varianza del error de predicción. Las implicaciones dinámicas del modelo estimado dependerán evidentemente de la estructura de correlaciones contemporáneas reflejada en la matriz de perturbaciones. Explicar cómo realizar esta incorporación, el cómputo de las estimaciones VAR, de la función impulso-respuesta y de la descomposición de la varianza del error de predicción, serán el objeto de estudio para poder dar respuesta al problema de la formulación del modelo. La estimación del modelo VAR es más sencillo, ya que es posible utilizar el método de los Mínimos Cuadrados Ordinarios (MCO). En caso de tratarse de series estacionarias las series en estudio, el trabajo se simplifica un poco.

5.12.8. Introducción a la metodología de vectores autorregresivos (VAR).

La metodología VAR es, en cierta forma, una respuesta a la imposición de restricciones a priori que caracteriza a los modelos econométricos convencionales: en un sistema de ecuaciones simultáneas se requiere imponer restricciones sobre los parámetros de las mismas para garantizar la identificación y posible estimación de las ecuaciones que lo conforman. Para

ello, además, es indispensable diferenciar entre las variables endógenas y las predeterminadas, es decir, aquellas cuyos valores no son determinados por el modelo en el período actual. Estas últimas pueden ser exógenas o endógenas rezagadas.

El VAR presenta alternativamente, un sistema de ecuaciones simultáneas en el que cada una de las variables son explicadas por sus propios rezagos y los del resto de variables del sistema. Es decir no se admite restricciones a priori y todas las variables son consideradas endógenas. La única información a priori que se incluye está referida al número de rezagos de las variables explicativas que se incorporan en cada ecuación.

No obstante, en términos operativos, una correcta especificación del sistema requiere que la determinación de las variables a ser incluidas en él, se base en el conocimiento de un modelo teórico relevante.

Así por ejemplo un modelo VAR(p) estacionario tiene en general la siguiente especificación:

$$W_{t} = C + \Phi_{1}W_{t-1} + \dots + \Phi_{p}W_{t-p} + a_{t}$$

Donde

$$E(a_t) = 0$$

$$E(a_t a_s') = \begin{cases} 0, & t = s \\ \Omega, & t \neq s \end{cases}$$

y Ω es una matriz simétrica definida positiva.

Como se observa, todas las variables explicativas del sistema son predeterminadas (endógenas rezagadas); además, los errores tienen una varianza constante y no presentan autocorrelación. Por ello, el mejor estimador asintótico de este modelo es el de mínimos cuadrados ordinarios (MCO) aplicado ecuación por ecuación. En términos prácticos se recomienda:

- 1-Establecer el carácter de estacionariedad de cada una de las series.
- 2-Estimar por MCO cada ecuación individualmente.
- 3-Determinar el número de rezagos de las variables explicativas que deben permanecer en cada ecuación.

Para esto último hay algunos tipos de test específicos como el test F por bloques, para probar la hipótesis nula de que un número i de rezagos deben incluirse como explicativas en cada ecuación, versus la alternativa de que dicho número es i + r > i, r>0. De esto se hará una discusión a fondo en su momento.

5.12.9. Estimación y calibrado econométrico VAR.

Desde una perspectiva Bayesiana, el problema de estimación consiste en obtener una estimación de los coeficientes partiendo de la distribución de los mismos y la nueva información incorporada en el vector de observaciones de las variables endógenas. La estimación se completa cuando se han procesado todas las observaciones muéstrales de acuerdo con las ecuaciones de actualización, obviamente, llevar a término el proceso requiere especificar el sistema VAR, así como la distribución que debe ser interpretada como condicional en la historia premuestral. Un principio básico de esta metodología es evitar a priori exclusiones injustificadas de variables; por otro lado, la introducción de coeficientes que dependen del tiempo tiene como objetivo capturar posibles no linealidades en el vector estocástico modelado.

Los coeficientes estimados de un VAR son difíciles de interpretar. Por causa de esto es muy probable observar en la función de impulso-respuesta y de descomposición de la varianza del sistema, ciertas implicaciones acerca del VAR.

Teóricamente, en cada ecuación el coeficiente de la propia variable rezagada tendrá una media inicial de 1, y todos los demás tendrán una media inicial de 0, con la varianza de la variable a priori disminuyendo a medida que aumenta la longitud del rezago. Al aumentar la longitud del rezago, disminuye la varianza; es decir, cada vez es mayor la certeza de que el coeficiente es cero. Para todos los demás coeficientes, dicho valor inicial será de 0 y los valores iniciales de los coeficientes rezagados se concentrarán más en torno a cero.

Como el objetivo de la modelación VAR es el estudio de las interacciones dinámicas de diferentes tipos de perturbaciones y controles fortuitos, y de hecho, los usos típicos de esta modelación reflejan esta motivación, se pasará al análisis de las funciones impulso-respuesta y de la descomposición de la varianza, a fin de realizar evaluación de políticas y el análisis del poder predictivo del sistema.

5.12.10. Función impulso-respuesta.

Esta función es simplemente la representación de medias móviles asociada con el modelo estimado y explica la respuesta del sistema a shocks en los componentes del vector de perturbaciones. La función impulso-respuesta traza la respuesta de las variables endógenas en el sistema ante un shock en los errores. Un cambio en ξ_1 cambiaría inmediatamente el valor de

Y. Ello además cambiaría todos los valores futuros de las demás variables endógenas del sistema, debido a la estructura dinámica del sistema.

Una función impulso-respuesta, separa los determinantes de las variables endógenas dentro de los shocks o identifica innovaciones con variables específicas. Entonces, traza el efecto corriente y valores futuros de las variables endógenas ante un "shock" de una desviación estándar a las innovaciones (variables estocásticas).

Si todos los componentes estocásticos de nuestro sistema VAR son incorrelados, la interpretación es directa, ξ_1 es la innovación Y, ξ_2 es la innovación X, y así sucesivamente. Una función impulso-respuesta para ξ_2 mide el efecto de una desviación estándar ante un shock en X actual y futuro para las variables endógenas.

Por desgracia, este no es casi nunca el caso pues los errores son totalmente incorrelados. Cuando los errores se correlacionan, ellos tienen un componente común el cual no puede ser identificado con cualquier variable específica. Un método algo arbitrario de negociación con este problema es atribuir todo el efecto a cualquier componente común a la variable, aquel que venga primero en el sistema VAR. En nuestro sistema, el componente común de ξ_1 y ξ_2 es totalmente atribuido a ξ_1 , porque ξ_1 precede a ξ_2 ; ξ_1 es la innovación Y y ξ_2 es la innovación X transformado o removido el componente común.

Más técnicamente los errores son ortogonalizados por una descomposición Choleski, así la matriz de covarianzas resultante es triangular inferior (los elementos por encima de la diagonal principal son cero).

5.12.11. Descomposición de la varianza del error de predicción.

La descomposición de la varianza de un VAR brinda información acerca de la potencia relativa de innovaciones aleatorias para cada variable endógena. Este ejercicio consiste en descomponer la varianza de las variables endógenas en componentes que permitan aislar el porcentaje de variabilidad de una endógena explicado por una de las innovaciones para distintos horizontes predictivos. Tal descomposición se obtiene luego de "ortogonalizar" el vector de perturbaciones, que consiste en distribuir la responsabilidad de las correlaciones reflejadas en la matriz de covarianza entre los distintos componentes del vector de perturbaciones. La intención al hacer explícita esta conexión entre el modelo originalmente estimado y el obtenido, es clarificar que el modelo obtenido una vez realizada la ortogonalización, no es una forma reducida, sino una forma estructural; y que por tanto, el

proceso de ortogonalización es de hecho una forma de identificación. De esta manera se pueden calcular las contribuciones de las innovaciones sobre el error de predicción del período siguiente. Es de esperar que en el corto plazo la propia innovación explique la mayor proporción de este error.

5.12.12. Evaluación de políticas y análisis del poder predictivo de un sistema VAR.

Uno de los objetivos finales de la Econometría y tal vez el que le dé mayor uso potencial, es la evaluación de políticas. Este objetivo se refiere a una situación en la cual los que realizan la toma de decisiones deben elegir una política, denominada "plan", a partir de un conjunto de políticas alternativas dado. La evaluación de políticas esta íntimamente relacionada con la predicción y, al igual que la predicción, se asumirá que la elección de políticas es cuantitativa, explícita e inequívoca. De hecho, la predicción y la evaluación de políticas están interrelacionadas dentro de un sistema de retroalimentación: un pronóstico debe estar basado, en parte, en supuestos concernientes a la elección de quienes toman decisiones relevantes. A la inversa, la evaluación de políticas debe estar fundamentada, también en parte, sobre predicciones de los efectos de las distintas políticas alternativas.

De esta manera el cálculo de las funciones impulso-respuesta y de descomposición de la varianza, sugieren las mismas interacciones dinámicas. La opción para calcular estas desviaciones es el conocido método de Montecarlo (aunque será necesario hacer algunos supuestos sobre los errores) utilizando la distribución a posteriori del operador autorregresivo. El método de Montecarlo es la única vía practicable para este cálculo dado la relación no lineal que existe entre las representaciones autorregresivas y de medias móviles y será tratado con detalle en su momento.

5.12.13. Otras ideas sobre cointegración.

Recordemos que en general un proceso estocástico no estacionario invariante Y_t , es integrado de orden d ($d \ge 0$, entero) si al diferenciarlo d veces se vuelve un proceso estacionario. En ese caso denotamos $Y_t \sim I$ (d). Ahora si tenemos un proceso estocástico multivariante (Y_t), con $Y_t \equiv \left[Y_{t1}, Y_{t2}, ..., Y_{tM}\right]^t$ decimos que es integrado de orden d ó I(d) si y sólo si cada proceso componente del vector es I(d), es decir, $Y_{ti} \sim I(d)$. Estas definiciones se trasladan al caso en el que los procesos estocásticos son series temporales. La relación contemporánea que existe

entre tales series componentes del proceso vectorial de series temporales se describe a través de la relación de cointegración, la cual se define a continuación.

Se dice que un vector de series de tiempo X_T es cointegrado de orden (d,b), si siendo todas las series del vector, series integradas de orden d (que se denota I(d)), existe un vector de coeficientes α tal que $Z = \alpha'X \sim I(d-b)$, b > 0. En particular, si N=2 y d=b=1 se tiene para las series X_T y Y_T , las cuales son I(1), que si bien en general cualquier combinación lineal de ellas es I(1), si existe un α tal que $Z_T = X_T - \alpha Y_T$ es I(0), ellas son cointegrados de orden 1 y el parámetro de cointegración α es único.

Ahora bien, el hecho de que esta combinación lineal es I(0) a pesar de que las series individualmente sean I(1), en otras palabras, de que Z_T , por oposición a X_T y a Y_T individualmente no tienen componentes dominantes de onda larga significa que α es tal que el grueso de los componentes de largo plazo de Y_T y αX_t se cancelan mutuamente. Por otra parte, cuando se deriva de la teoría económica la operación de fuerzas que tienden a mantener X_T y Y_T juntas y se postula la existencia de una relación de equilibrio de largo plazo entre ellas, se está implicando que X_t e Y_T no pueden alejarse mucho, lo cual expresado en términos del error de equilibrio Z_T , significa que ϵ debe ser estacionario. Por consiguiente, esta reducción del orden de integración de manera que Z_T es I(0) aparece como la condición de posibilidad estadística de la postulación de una relación de equilibrio entre X_T e Y_T . ó para ponerlo en términos de las pruebas de hipótesis de la representación de paseo aleatorio para Z_T , el equilibrio estimado sería desalentador e irrelevante.

Resulta entonces claro que hacer pruebas de cointegración entre X_T e Y_T no es diferente de hacer pruebas de estacionariedad de Z_T ; más precisamente, con el fin de comprobar la hipótesis nula de no cointegración para esas series lo único que se necesita hacer es comprobar la hipótesis nula de una representación de paseo aleatorio para Z_T . Y por consiguiente, el procedimiento metodológico obvio con el fin de hacerlo es correr la regresión de cointegración $X_T = C + \alpha Y_T + \epsilon_T$, por mínimos cuadrados ordinarios y aplicar alguna de las pruebas de raíz unitaria. Es de notarse que un síntoma de cointegración entre variables es un valor alto del R^2 acompañado de valores no muy bajos del estadístico de Durbin y Watson.

Granger y Engle (1987) muestran que, en el caso de cointegración, el procedimiento de mínimos cuadrados ordinarios produce resultados consistentes para los parámetros de la ecuación (mejor aún, superconsistentes, en el sentido de que los parámetros tienden a su

verdadero valor en forma inversamente proporcional al número de observaciones y no a la raíz cuadrada de ese número como es el caso usual con series estacionarias), muestran también que las pruebas de hipótesis usuales no son válidas. Ellos muestran también que, en el caso de dos variables, la ecuación de cointegración esta identificada (en el sentido econométrico no en el sentido de series de tiempo) por la condición de que es la única combinación lineal de las variables con varianza finita; en el caso de varias variables puede haber diversas relaciones de cointegración y es necesario introducir criterios adicionales de identificación, normalmente por exclusión de variables como en la situación clásica.

En cuanto a las pruebas de Dickey-Fuller y de Dickey-Fuller ampliada, de nuevo se utilizan las tablas no estándar del "t" con el objeto de rechazar una hipótesis de raíces unitarias en favor de la estacionariedad; sin embargo, debe enfatizarse que en el caso de haber más de dos variables en el vector de cointegración, caso en el cual α no es necesariamente único, de manera que pueden existir varias relaciones de equilibrio, los valores críticos del estadístico "t" son ahora correspondientemente altos. Por otra parte, en cuanto a la prueba de Sargan y Bhargava, en la misma forma que cuando se comprobaba la presencia de raíces unitarias, un DW de la regresión $X_T = c + u_t$ significativamente mayor que cero permitía rechazar la hipótesis de que X_T era paseo aleatorio, cuando se comprueba cointegración un DW de la regresión de cointegración (notado como CRDW) significativamente mayor que cero permite rechazar la hipótesis de no cointegración.

5.12.14. Test de cointegración en un sistema VAR.

Un grupo de series de tiempo está cointegrado si es que existe una combinación lineal estacionaria y dicha combinación no tiene una tendencia estocástica. La combinación lineal es llamada "ecuación de cointegración". Su interpretación normal es a largo plazo, estudiando las relaciones de equilibrio a largo plazo. Si tenemos "n" variables endógenas, cada una integrada de primer orden (esto es, cada una con raíz unitaria o tendencia estocástica o con elementos de camino aleatorio), los cuales pueden ir desde cero a n-1 con vectores cointegrados linealmente independientes, si esto no se cumple, se tendrían que aplicar primeras diferencias a la muestra hasta lograr su estacionariedad.

El test de Johansen determina el número de ecuaciones de cointegración. Este número es llamado "rango de cointegración". Si hay n ecuaciones de cointegración, las medias de las series están integradas actualmente y el VAR puede reformularse en términos de niveles de

todas las series. El test aumentado de Dickey-Fuller (ADF) muestra que algunas de las series son integradas, pero el test de Johansen muestra que el rango de Cointegración es "n". Esto una secuencia de modelos anidados, los modelos más restringidos, con el menor número de parámetros, no poseen ecuación de cointegración, este es un VAR irrestricto en primeras diferencias. Cada ecuación de cointegración añade parámetros asociados con el término de envolvencia de niveles para las series que se añade a cada ecuación. El test de Johansen procura computar el ratio estadístico de verosimilitud (likelihood ratio) para cada ecuación de cointegración añadida. Este test no tiene una distribución chi-cuadrado usual; el contraste de estos estadísticos se debe realizar a partir de las tablas de Johansen y Juselius (1990) diseñadas específicamente para este fin. Estos test que hemos mencionado serán tratados con más detalle posteriormente.

5.12.15. Metodología de johansen (1991).

La especificación de esta metodología se basa en una generalización multivariada del procedimiento de Dickey y Fuller. Si X_t es un vector de n variables que siguen un proceso AR(1):

$$X_t = A_t X_{t-1} + \zeta_t$$

Entonces, restando X_{t-1} en ambos lados de la ecuación se obtiene:

$$\Delta X_{t} \! = \ A_{t} X_{t\text{--}1} - X_{t\text{--}1} + \zeta_{t} = \ \left(A_{t} \! - \! I \ \right) X_{t\text{--}1} + \zeta_{t} \ = \ \prod X_{t\text{--}1} + \zeta_{t}$$

El rango de a matriz Π es de especial importancia para determinar el número de relaciones de cointegración entre los componentes de X_t . Por ejemplo si el rango de Π es M (el número de componentes del vector), entonces $(X_t) \sqcup I(0)$.

Para el caso mas general en un proceso AR(p), de modo análogo se tiene:

$$\Delta X_t = \mu\text{-}{\prod}_1 X_{t\text{-}1} + \ \sum\nolimits_{i=1}^{\mathit{p-1}} \ F_i \ \Delta X_{t\text{-}i} + \ \zeta_t$$

Donde,
$$\prod \equiv I - \sum_{i=1}^{p} A_i$$
 y $F_i \equiv \sum_{i=i+1}^{p-1} A_i$

Esta es la fórmula general, que no es otra cosa que el llamado Modelo de Corrección de Errores (MCE), en el que el ajuste se produce con "p" rezagos. Así, note que el término de corrección hacia la relación de largo plazo es ΠX_{t-1} . Dado que la determinación del número de vectores de cointegración depende del rango de Π y, por ende, del número de raíces características distintas de cero de dicha matriz, se requiere utilizar un test para verificar dicho

número. Estos test para cointegración serán estudiados a fondo en el desarrollo del trabajo. Sin embargo, se describe brevemente el test de cointegración de Johansen en el siguiente párrafo: Este es un test de cointegración muy usado con variables no estacionarias (series que presentan una clara inclinación a permanecer por encima o por debajo de su valor central en la muestra). El número de los vectores cointegrantes distintos entre sí pueden obtenerse chequeando la significancia de las raíces características (eigenvalues), sabiendo que el rango de la matriz es igual al número de sus raíces características diferentes de cero. El test de Johansen nos permite determinar la existencia de parámetros cointegrantes (ajuste a largo plazo) con sus respectivas "velocidades de ajuste" indicadas por los coeficientes de las variables cointegrantes. Luego se utiliza la metodología del Modelo de Corrección del Vector de Error (VEC) para tener garantía de que el VAR contiene variables cointegradas.

La hipótesis que se plantea en este test es la siguiente:

 H_0 = No existe cointegracion.

 H_1 = Existe cointegracion.

La idea es que al efectuar la prueba de cointegración, se rechace estadísticamente la hipótesis nula de no cointegración lo cual asegura que tanto los signos y los valores de los parámetros estén acorde con la teoría económica y que la ecuación testeada se aproxime a su correcta especificación dinámica de largo plazo, lo cual asegura también que los estimadores de MCO de los parámetros de cointegración converjan a sus valores de largo plazo más rápidamente que con variables estacionarias.

5.12.16. Metodología del modelo de corrección del vector de error (VEC) en un VAR.

El modelo VEC es un VAR restringido diseñado para series no estacionarias que sabemos se pueden cointegrar. La especificación VEC restringe la conducta a largo plazo para las variables endógenas para que converjan a sus relaciones de cointegración, mientras que permitimos un extenso rango dinámico de corto plazo.

Como la especificación VEC sólo se aplican a series cointegradas, este se debe llevar a cabo una vez que ha pasado por el test de cointegración de Johansen como una especificación VEC. Esto nos permite confirmar que las variables son cointegradas y así determinar el número de ecuaciones de cointegración usando el procedimiento de Johansen. La primera diferencia para cada variable endógena es regresionada con un período de rezago en la ecuación de cointegración y los primeros rezagos diferenciados en todas las variables

endógenas es guiado por desequilibrios percibidos y asegura una eventual convergencia a la posición de equilibrio de largo plazo. Se pone de manifiesto otra de las características de las ecuaciones dinámicas: diferentes clases de ajustes realizados , por lo que un Vector de Corrección de Error (VEC) es un tipo de estructura VAR cointegrada. Para examinar mejor la estructura, consideremos un esquema que tenga media y que la ecuación de cointegración tenga intercepto, especificando el VEC:

$$\Delta Y_{1,t} = \alpha_1 + \delta_0 (Y_{2,t-1} - \mu - \beta Y_{1,t-1}) + \epsilon_{1,t}$$

$$\Delta Y_{2,t} = \alpha_2 + \delta_1 (Y_{2,t-1} - \mu - \beta Y_{1,t-1}) + \epsilon_{2,t}$$

Aquí los interceptos de las ecuaciones están fuera del paréntesis, correspondiendo a una tendencia lineal.

La metodología de cointegración ofrece un procedimiento que cumple con varias características importantes: a) permite distinguir entre regresiones espurias y regresiones válidas, en el sentido que representan una relación estable de largo plazo entre las variables, con mecanismos de ajuste que tienden a disminuir las discrepancias que se presenten, b) permite combinar la metodología de series de tiempo con información de teorías económicas de equilibrio de largo plazo, con lo cual se eliminan muchas de las objeciones que se hacen a cada una de estas metodologías tomadas por separado, c) permite la mezcla de información de distinta periodicidad, por ejemplo, la ecuación de cointegración podría hacerse con datos anuales y la de corrección de errores con información mensual, d) es relativamente fácil de aplicar, su uso consiste en la estimación de varias ecuaciones por mínimos cuadrados ordinarios, la dificultad principal estriba en la teoría estadística que esta por detrás de las pruebas, teoría que es mucho más difícil que la teoría usual.

Uno de los problemas básicos al que uno se enfrenta al instrumentalizar la metodología VAR, es el de la rápida desaparición de los grados de libertad del modelo a medida que se incrementa la longitud de rezago. Para superar este inconveniente, se sugiere la estimación Bayesiana (BVAR). En este método se asignan distribuciones a priori a los coeficientes de las autorregresiones vectoriales para permitir que el análisis transcurra en un marco gaussiano.

Los modelos tipo VAR han alcanzado una considerable aceptación como herramientas de predicción, cuyo objetivo es que a partir de series temporales se pueda interpretar o diseñar conclusiones de política económica, incluso aplicables a modelos no lineales de equilibrio general. De hecho en la práctica usual de los predictores que usan VAR no es un enfoque

completamente bayesiano, pero puede interpretarse como aproximación al tratamiento ideal. A pesar de que este entorno general no es en esencia bayesiano, se pretende implementar a futuras extensiones el pleno tratamiento subjetivista bayesiano. El modelo planteado aquí, pretende facilitar la comunicación científica e indirectamente la toma de decisiones. En resumen se trata de una teoría que parece muy adecuada para una buena cantidad de problemas que se presentan en Economía.

Luego de éstos planteamientos un tanto generales de los modelos de regresión dinámicos, vamos a profundizar un poco más sobre estos modelos que están contenidos en los modelos multivariantes de series temporales. Nos enfocaremos en los modelos que están más relacionados con la investigación que desarrolló. Por lo que dejaremos de lado algunos modelos, los cuales pueden ser revisados con más detalles en la bibliografía sugerida.

5.13 Modelos multivariantes estacionarios.

5.13.1. Definición.

Un proceso estocástico multivariante (Y_t) , $Y_t = [Y_{t1}, ..., Y_{tM}]^t$ cuyos momentos de primer y segundo orden son finitos, es estacionario en autocovarianza si y sólo si:

- $E[Y_t]$ y $Var[Y_t]$ son constantes (no dependen de t) para todo $t \in Z$.
- $Cov[Y_t, Y_{t+k}]$ depende a lo sumo de k(entero), pero no de t, para todo $t \in Z$.

5.13.2. Ejemplos.

Modelo VAR(1) bivariante.

Un proceso bivariante estacionario ($\mathbf{Y_t}$) donde $\mathbf{Y_t} = [Y_{t1}, Y_{t2}]^t$ sigue un modelo VAR(1) (autorregresivo vectorial de orden1) cuando

$$Y_{t1} = \mu_1 + \phi_{11}Y_{t-1,1} + \phi_{12}Y_{t-1,2} + A_{t1}$$

$$Y_{t2} = \mu_2 + \phi_{21}Y_{t-1,1} + \phi_{22}Y_{t-1,2} + A_{t2}$$
(3.1)

O bien.

$$Y_{t1} = \mu + \Phi Y_{t-1,1} + A_t \tag{3.2}$$

Donde $A_t = [A_{t1}, A_{t2}]^t$, $(A_t) \sim IID(0, \Sigma)$ (ruido blanco vectorial)

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \Phi_1 = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}, \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{22} & \sigma_2^2 \end{bmatrix}$$
(3.3)

Y las raíces de la ecuación $|I - \Phi_1 x| = 0$ están fuera del círculo unitario (lo cual equivale a que los autovalores de la matriz Φ_1 de (1.8) estén dentro del círculo unitario.

5.13.3. Proceso VARMA(p,q).

Un proceso estacionario (Y_t) sigue un modelo ARMA multivariante o vectorial de orden (p,q), si y sólo si

$$Y_{t} = \mu + \Phi_{1}Y_{t-1} + \Phi_{2}Y_{t-2} + ... + \Phi_{p}Y_{t-p} + A_{t} - \Theta_{1}A_{t-1} - \Theta_{2}A_{t-2} - ... - \Theta_{q}A_{t-q}, \ \forall t \in \mathbb{Z},$$

$$(3.4)$$

$$, donde$$

$$(A_t) \sim IID(0, \Sigma_A) y \mu \Phi_1, \Phi_2, ..., \Phi_p, \Theta_1, \Theta_2, ..., \Theta_q$$

Son matrices de parámetros, tales que todas las raíces de la ecuación:

 $|I - \Phi_1 x - \Phi_2 x^2 - \dots - \Phi_p x^p| = 0$ están fuera del círculo unitario (condición de estacionariedad).

Un modelo VARMA(p,q) descrito por (3.4) es invertible si todas las raíces de la ecuación polinomial $\left|I-\Theta_1x-\Theta_2x^2-...-\Theta_qx^q\right|=0$ están fuera del círculo unitario (condición de invertibilidad)

5.13.4. Ejemplo.

Un proceso bivariante estacionario (Y_t) , donde $Y_t = [Y_t, X_t]^t$ sigue un modelo de función de transferencia –ruido de orden (s,b,r) cuando

$$Y_t = \alpha_0 + \frac{\omega(B)}{\delta(B)} B^b X_t + N_t , (3.5)$$

Con $\omega(B) = \omega_0 - \omega_1 B - \omega_2 B^2 - ... - \omega_s B^s$, $\delta(B) = 1 - \delta_1 B - \delta_2 B^2 - ... - \delta_r B^r$, las raíces de la ecuación $\delta(x) = 0$ están fuera del círculo unitario, y $(N_t) \sim I(0)$ es un proceso de ruido (no necesariamente ruido blanco) con media cero, independiente de (X_t)

5.13.5. Función de transferencia en modelos VARMA.

Un proceso multivariante estacionario (Y_t) , donde $Y_t = [Y_t X_{t1}, X_{t2}, ..., X_{tM}]^t$, sigue un modelo de función de transferencia de ruido, o TFN (del inglés Transfer Function Noise), con inputs múltiples si y sólo si:

$$Y_{t} = \alpha_{0} + \frac{\omega_{1}(B)}{\delta_{1}(B)} B^{b_{1}X_{t1}} + \frac{\omega_{2}(B)}{\delta_{2}(B)} B^{b_{2}X_{t2}} + \dots + \frac{\omega_{M}(B)}{\delta_{M}(B)} B^{b_{M}X_{tM}} + N_{t}$$
 (3.6)

Con
$$\omega_i(B) = \omega_{i0} - \omega_{i1}B - \omega_{i2}B^2 - ... - \omega_{iS_i}B^{S_i}$$
; $\delta_i(B) = 1 - \delta_{i1}B - \delta_{i2}B^2 - ... - \delta_{in}B^{r_i}$

Las raíces de $\delta_i(x)$ están fuera del círculo unitario (i=1,2,...,M) y (N_t)~I(0) es un proceso de ruido (no necesariamente ruido blanco) con media cero, independiente de (X_t) , $X_t = [X_{t1}, X_{t2}, ..., X_{tM}]^t$, donde (X_t) sigue un modelo VARMA estacionario e invertible de dimensión M (ver definición 3.1.3).

5.14. Modelos de regresión con perturbaciones ARMA.

5.14.0. Modelo ARMA con perturbaciones.

Un modelo de regresión con perturbaciones ARMA para un proceso estacionario (Y_t) donde $Y_t=[Y_t,X_{tl},...,X_{tM}]^t$, es un caso particular de (3.6) son $s_i=b_i=r_i=0$ para todo i=1,2,3,...,M- En este caso (3.6) queda

$$Y_t = \alpha_0 + \omega_{10} X_{t1} + ... + \omega_{M0} X_{tM} + N_t$$
 (3.7)

Donde (N_t)~I(0) tiene media cero, es independiente de (X_t), X_t=[X_{t1},...,X_{tM}]^t y sigue un modelo ARMA(p,q) estacionario e invertible del tipo $\phi(B)N_t = \theta(B)A_t$.

5.14.1. Análisis de intervención.

Sea (Y_t) un proceso estocástico tal que $Y_t = \eta_t + N_t$, donde (η_t) representa el efecto sobre el nivel de (Y_t) derivado de un suceso especial o de intervención, quizás fácilmente identificable) ocurrido en el momento t*dado, de la historia de (Y_t) .

 $\operatorname{Si}(\eta_t) = (Y_t - \eta_t) \sim I(0)$ un modelo plausible para (Y_t) podría ser:

$$Y_t = \alpha_0 + \omega_0 \xi_t + N_t \quad (3.8)$$

Donde (N_t) ~ARMA(p,q) y ξ_t es una variable determinista o de intervención del tipo

Im pulso
$$\xi_t^{I,t^*} = \begin{cases} 1, & \text{si } t = t^* \\ 0, & \text{si } t \neq t^* \end{cases}$$
 (3.9.1)

Escalón
$$\xi_t^{E,t^*} = \begin{cases} 1, & \text{si } t \ge t^* \\ 0, & \text{si } t < t^* \end{cases}$$
 (3.9.2)

En muchas ocasiones, los valores anómalos o atípicos presentes en una serie temporal pueden corregirse mediante términos de intervención como los presentados en (3.9.1) y (3.9.2). No obstante, en general dichas correcciones sólo deben figurar explícitamente en un modelo

cuando se dispone información extra-muestral que justifica su presencia, o bien cuando los valores atípicos correspondientes son influyentes (aunque no se disponga de información extra-muestral en este caso). En la práctica los software disponibles en el mercado incluyen procedimientos para considerar el efecto de datos atípicos o anómalos. En la mayoría de casos las variables que se consideran son de alguno de los tipos mencionado antes.

5.14.2. Modelos multivariantes no estacionarios.

Cointegración.

Si un proceso bivariante $(Z_t)\sim I(1)$ $(Z_t=[Z_{t1},Z_{t2}]^t$), es tal que cualquier combinación lineal de sus componentes también es un proceso I(1), entonces no existe entre (Z_{t1}) y (Z_{t2}) relación lineal alguna del tipo $Z_{t1}=\gamma_0+\gamma_2Z_{t2}+V_t$ que sea estable en el tiempo, ya que en este caso $(V_t)\sim I(1)$ (un proceso no estacionario). No obstante, puede que sí exista algún tipo de relación entre (∇Z_{t1}) y (∇Z_{t2}) (dos procesos estacionarios) Por el contrario, si un proceso bivariante $(Y_t)\sim I(1)$ $(Y=[Y_{t1},Y_{t2}]^t)$ es tal que existe una combinación lineal de sus componentes que es un proceso I(0), entonces sí existe entre (Y_{t1}) e (Y_{t2}) al menos una relación lineal del tipo $Y_{t1}=\beta_0+\beta_2Y_{t2}+U_t$ que es estable en el tiempo , ya que en este caso $(U_t)\sim I(0)$ (un proceso estacionario).

En el segundo caso, se dice que (Y_{t1}) e (Y_{t2}) presentan cointegración de orden (1.1) porque el orden de integración de los procesos es 1 y existe una combinación lineal de ambos que es un proceso I(1-1)=I(0), lo cual se representa como $(Y_t)\sim CI(1,1)$, con vector de cointegración $\beta = [1, -\beta_2]^t$, porque $(\beta^t Y_t) \sim I(0)$.

5.14.2.1 . Modelos para procesos no estacionarios cointegrados

Cuando $(Z_t)\sim I(1)$ $(Z_t=[Z_{t1},Z_{t2}]^t$) y sus componentes no están cointegrados , sólo tiene sentido plantear algún modelo de relación lineal entre (Z_{t1}) y (Z_{t2}) en términos de sus diferencias regulares (∇Z_{t1}) y (∇Z_{t1}) que son procesos estacionarios .

Plantear en este caso un modelo de relación lineal directamente entre (Z_{t1}) y (Z_{t2}) suele dar lugar a obtención de relaciones espurias que carecen de sentido.

5.14.2.2 Modelos para procesos no estacionarios-cointegrados.

Cuando $(Y_t) \sim CI(1,1) \quad (Y_t = [Y_{t1}, Y_{t2}]^t)$, sí tiene sentido plantear algún modelo de relación lineal directamente entre (Y_{t1}) y (Y_{t2}) . (por ejemplo, un modelo de regresión lineal simple, un modelo ADL(1,1) como el que figura en (1.6), o un ECM, donde $(Y_{t1}-\lambda Y_{t2})\sim I(0)$ para algún λ no nulo.

5.14.3. Ejemplo. Modelo VAR(1) con raíces.

Si (Y_t) sigue un modelo VAR(1) del tipo (1.7)-(1.9) tal que al menos uno de los dos autovalores de Φ_1 es igual a 1 (lo que implica que la ecuación | I- Φ_1 | = 0 tiene al menos una raíz unitaria), entonces (Y_t) es un proceso no estacionario cuyas características están determinadas por los autovalores λ_1 y λ_2 de la matriz Φ_1 :

- $\lambda_1 = 1, |\lambda_2| < 1$ entonces $(Y_t) \sim CI(1,1)$. Nótese que en este caso el rango de la matriz $\Pi = I \Phi_1$ que describimos antes es igual a 1, lo que indica que existe una relación de cointegración entre dos componentes I(0) de (Y_t) .
- $\lambda_1 = 1$, $\lambda_2 = 1$, $\Phi_1 \neq I$., entonces $(Y_t) \sim CI(2,1)$. En este caso, el rango de $\prod = I \Phi_1$ también es igual a 1, lo que indica que existe una relación de cointegración entre los dos componentes I(2) de (Y_t) que proporciona un proceso I(1).
- $\lambda_1 = 1$, $\lambda_2 = 1$, $\Phi_1 = I$, entonces $(Y_t) \sim I(1)$, pero (Y_{t1}) y (Y_{t2}) no están cointegrados. En este caso el rango de la matriz $\Pi = I \Phi_1$ es igual a cero, lo que indica que no existe ninguna relación de cointegración entre los dos componentes de (Y_t)

El rango de la matriz Π =I- Φ_1 está relacionada con los autovalores λ_1 , λ_2 de la matriz Φ_1 porque los autovalores de Π =I- Φ_1 son (1- λ_1) y (1- λ_2). Cuando los dos autovalores de Φ_1 están dentro del círculo unitario, $|\lambda_1| < 1$, $|\lambda_2| < 1$, (Y_t) es un proceso estacionario. En este caso el rango de la matriz Π =I- Φ_1 es igual a 2.

5.14.4. Realimentación en modelos VAR.

• En los modelos VAR hay realimentación: En el ejemplo los retardos X_{2t} influyen en los de X_{1t} y viceversa. Además incorporan una dependencia contemporánea a través

de la covarianza residual. De aquí que puede estudiarse la relación que guarde una variable con respecto a otra y viceversa. También puede ocurrir que nos interese establecer específicamente la relación de dependencia de una variable con respecto a otra y no al revés. En ese caso puede ignorarse la relación de dependencia que podría existir. De esto se discutirá más adelante cuando se aborde la causalidad en el sentido granger.

5.14.5. Estacionariedad de un VAR.

La noción de estacionariedad en el caso univariante se extiende al caso vectorial:

La condición de estacionariedad viene determinada por las raíces de la ecuación característica correspondiente al polinomio autorregresivo: todas ellas deben ser en valor absoluto menor que la unidad.

En el caso bivariante, por ejemplo:

$$\begin{pmatrix} 1 - \phi_{11}L & -\phi_{12}L \\ -\phi_{21}L & 1 - \phi_{22}L \end{pmatrix} \begin{pmatrix} W_{1t} \\ W_{2t} \end{pmatrix} = \begin{pmatrix} a_{1t} \\ a_{2t} \end{pmatrix}$$

La ecuación característica es correspondiente al determinante de la matriz polinomial:

$$\det(\Phi(L)) = (1 - \phi_{11}L)(1 - \phi_{22}L) - \phi_{12}\phi_{21}L^2 = 0$$

es decir.

$$1 - (\phi_{11} + \phi_{22})L + (\phi_{11}\phi_{22} - \phi_{12}\phi_{21})L^2 = 0$$

O sea que la ecuación auxiliar:

$$1 - \alpha_1 Z - \alpha_2 Z^2 = 0$$

Tenga todas sus raíces en módulo mayor que la unidad.

Por comodidad se analiza mejor que las raíces de la ecuación

$$Z^2 - \alpha_1 Z - \alpha_2 = 0$$

sean en módulo inferiores a la unidad; es decir estén dentro del círculo unitario.

5.15. CAUSALIDAD EN EL SENTIDO GRANGER.

En un sistema la variable Y no causa a la variable Z en el sentido Granger si para todo s>0, el error cuadrático medio de la predicción de Z_{t+s} dado $(Z_{1,...},Z_{t})$ es el mismo error cuadrático medio de la predicción de Z_{t+s} dado $(Y_{1,...},Y_{t},Z_{1,...},Z_{t})$.

Para contrastar la causalidad en el sentido Granger se formula el modelo:

$$Z_{t} = c + \alpha_{1}Z_{t-1} + \dots + \alpha_{p}Z_{t-p} + \beta_{1}Y_{t-1} + \dots + \beta_{p}Y_{t-p} + a_{t}$$

• Y, se contrasta la hipótesis:

$$H_0: \beta_1 = ... = \beta_p = 0$$

Si no se rechaza H₀ se dice que la variable Y no causa a variable Z en el sentido Granger.

Esta es una manera formal de ver si una variable causa a otra y viceversa.

A partir de estas regresiones se puede obtener:

- 1- Ausencia de causalidad en ambos sentidos.
- 2-Causalidad unidireccional de Y hacia Z.
- 3-Causalidad unidireccional de Z hacia Y.
- 4- Causalidad bidireccional.

En la práctica se analizan las correlaciones cruzadas, lo cual lleva a resultados parecidos (éstas las veremos más adelante), luego puede hacerse una prueba de hipótesis formal.

Modelo 1: ARMAX, usando las observaciones 1961-2008 (T = 48)

Variable dependiente: (1-L) inv_priv1990					
	Coeficiente	Desv. Tipica	Estadístico z	Valor p	
const	3.16222	25.1609	0.1257	0.89999	
pibconst1990	0.400825	0.0635973	6.3025	<0.00001	dedició:
pibconst199_1	-0 <i>.</i> 553594	0.122724	-4 .51 09	<0.00001	***
pibconst199 2	0.0914047	0.12426	0.7356	0.46198	
pibconst199_3	0.0586891	0.0661157	0.8877	0.37472	
Media de la vble. de	p. 20 .3	0003 D.T.	de la vble. dep.	85.	B7909
media innovaciones	0.00	9091 D.T.	innovaciones	61.5	B1268
Log-verosimilitud	-266	.0663 Crita	rio de Akaike	544	1.1325
Criterio de Schwarz	555	3597 Crit.	de Hannan-Qui	inn 548	3753

Podemos afirmar por contraste de hipótesis anterior que la variable PIB causa la variable inversión privada en el sentido granger.

Es importante aclarar que si hay causalidad unidireccional en un VAR, este tiene estructura triangular, es decir en el modelo

$$X_{t} = c + \Phi_{1}X_{t-1} + ... + \Phi_{p}X_{t-p} + a_{t}$$

Las matrices Φ_i son matrices triangulares.

Estos son los modelos de interés para nuestro estudio.

5.16. Modelos var recursivos.

Un modelo VAR es recursivo si:

- A) Es posible ordenar las variables, de forma que la matriz de polinomios dinámicos tenga una estructura triangular.
- B) La matriz de varianzas y covarianzas es diagonal. (esto puede no ocurrir, en tal caso se ortogonaliza los residuos y así, resulta diagonal).

Un modelo uniecuacional extraído de un VAR recursivo no es más que un modelo de regresión dinámica múltiple. Este se puede formular de dos formas:

- 1) De la forma habitual que en un modelo de regresión, y entonces se le denomina modelo de retardos autorregresivos distribuidos o modelos ADL.
- 2) De forma de cocientes de polinomios, y entonces se le denomina modelo de retardos racionales o de función de transferencia.

Estos modelos son de mucha importancia para nuestro estudio, ya que nos interesa establecer la relación unidireccional de varias variables económicas sobre la variable inversión privada.

5.16.1. Modelos de uso común en econometría.

5.16.1.1. Modelos ADL:

Se supone que las variables

$$X_1,...X_n$$
son exógenas con respecto a Y.

$$\alpha(L)Y_{t} = \beta_{1}(L)X_{1t} + ... + \beta_{k}(L)X_{kt} + a_{t}$$

Donde $\alpha(L), \beta_1(L), ..., \beta_k(L)$ son polinomios de operadores de retardos.

Se ponen suficientes retardos de la variable exógena y endógena, de modo que el término residual sea ruido blanco. Esta formulación sólo requiere conocer $(Y_t, X_{1t}, ..., X_{kt})$

5.16.1.2. Modelos de retardos racionales (modelos de función de transferencia)

Estructura general:
$$Y_{t} = \sum_{j=1}^{k} \frac{W_{j}(L)}{\delta_{i}(L)} X_{jt} + \frac{\theta(L)}{\phi(L)} a_{t}$$

En este la relación entre $\frac{Y_t}{V_j}$ y cada variable explicativa $\frac{X_{jt}}{V_j}$ viene recogida por un cociente de polinomios: $\frac{W_j(L)}{\delta_j(L)}$

Además las variables omitidas pueden tener un efecto dinámico en Y_t y se recogen en $N_t = \frac{\theta(L)}{\phi(L)} a_t$

5.16.1.3. Relación entre los modelos adl y los modelos de funcion de

Transferencia.

Veamos un caso con pocas variables, luego sólo se generaliza al caso general.

FT:
$$Y_{t} = \frac{W(L)}{\delta(L)} X_{t} + \frac{\theta(L)}{\phi(L)} a_{t}$$

ADL:
$$\alpha(L)Y_t = \beta(L)X_t + a_t$$

Como los cocientes polinomiales son convergentes, se pueden aproximar:

$$\frac{W(L)}{\delta(L)} \cong \beta'(L)$$
 $\qquad \qquad Y \qquad \frac{\theta(L)}{\phi(L)} \cong \frac{1}{\alpha'(L)}$

$$Y_{t} = \beta'(L)X_{t} + \frac{1}{\alpha'(L)}a_{t}$$

$$\underbrace{\alpha'(L)}_{\alpha(L)}Y_{t} = \underbrace{\alpha'(L)\beta'(L)}_{\alpha(L)}X_{t} + a_{t}$$

5.17 Modelos multivariantes no estacionarios. Caso general.

5.17.1. Un proceso estocástico multivariante (Y_t) , $Y_t = [Y_{t1}, Y_{t2}, ..., Y_{tM}]^t$ es integrado de orden d si y sólo si $(Y_{ti}) \sim I(d)$ (ver 2.4.5) para todo i=1,2,3,...,M, En tal caso suele decirse $(Y_t) \sim I(d)$. 5.17.2. Definición.

Un proceso multivariante $(Y_t)\sim I(d)$, $Y_t=[Y_{t1},Y_{t2},...,Y_{tM}]^t$, presenta cointegración de orden (d,b) con $(1 \le b \le d)$ si y sólo si existe un vector de cointegración $B=[\beta_1,\beta_2,...,\beta_M]^t$ con al menos dos de sus componentes distintos de cero, tal que el proceso de error $(U_t)=(\beta_0+B^*Y_t)\sim I(d-b)$, en tal caso se escribe $(Y_t)\sim CI(d,b)$.

5.17.3. Ejemplo.

Sea (Y_t) , $Y_t = [Y_{tl}, Y_{t2}]^t$, un proceso bivariante que sigue un modelo VAR(1)

$$\begin{bmatrix} Y_{t1} \\ Y_{t2} \end{bmatrix} = \begin{bmatrix} 1.2 & -0.2 \\ 0.6 & 0.4 \end{bmatrix} \begin{bmatrix} Y_{t-1,1} \\ Y_{t-1,2} \end{bmatrix} + \begin{bmatrix} A_{t1} \\ A_{t2} \end{bmatrix}$$
(4.1)

(4.1) es un modelo para $(Y_t)\sim I(1)$, restringido a que $(Y_t)\sim CI(1,1)$. Para verlo, nótese en primer lugar que los dos autovalores de Φ_1 son $\lambda_1=1$ y $\lambda_2=0.6<1$, por lo tanto,

$$\Phi_{1} = \begin{bmatrix} -0.5 & -0.5 \\ -0.5 & -1.5 \end{bmatrix} \begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 0.6 \end{bmatrix} \begin{bmatrix} -3.0 & 1.0 \\ 1.0 & -1.0 \end{bmatrix} = P\Lambda P^{-1}$$
(4.2)

(4.1) puede escribirse como

$$\underbrace{P^{-1}Y_{t}}_{Z_{t}} = \underbrace{P^{-1}\Phi_{1}P}_{\Lambda}\underbrace{P^{-1}Y_{t-1}}_{Z_{t-1}} + \underbrace{P^{-1}A_{t}}_{U_{t}}$$
(4.3)

Es decir,

$$\begin{bmatrix} Z_{t1} \\ Z_{t2} \end{bmatrix} = \begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 0.6 \end{bmatrix} \begin{bmatrix} Z_{t-1,1} \\ Z_{t-1,2} \end{bmatrix} + \begin{bmatrix} U_{t1} \\ U_{t2} \end{bmatrix}$$

De manera que $(1-B)Z_{t1} = U_{t1}$, $(1-0.6B)Z_{t2} = Z_{t2} = U_{t2}$. En consecuencia, $(Z_{t1}) \sim I(1)$ (un paseo aleatorio) y $(Z_{t2}) \sim I(0)$ [que sigue un modelo AR(1) estacionario]. Dado que (4.3) implica que $Y_t = PZ_t$, o bien

$$\begin{bmatrix} Y_{t1} \\ Y_{t2} \end{bmatrix} = \begin{bmatrix} -0.5 & -0.5 \\ -0.5 & -1.5 \end{bmatrix} \begin{bmatrix} Z_{t1} \\ Z_{t2} \end{bmatrix} = -0.5 \begin{bmatrix} Z_{t1} + Z_{t2} \\ Z_{t1} + 3Z_{t2} \end{bmatrix}$$
(4.5)

Entonces $(Y_t)\sim I(1)$, ya que sus dos componentes son combinaciones lineales de un proceso I(1) (un paseo aleatorio) y de un proceso I(0), (que sigue un modelo AR(1) estacionario) Recíprocamente, (4.3) también implica que $\mathbf{Z_t}=\mathbf{P^{-1}Y_t}$, o bien,

$$\begin{bmatrix} Z_{t1} \\ Z_{t2} \end{bmatrix} = \begin{bmatrix} -3.0 & 1.0 \\ 1.0 & -1.0 \end{bmatrix} \begin{bmatrix} Y_{t1} \\ Y_{t2} \end{bmatrix} = \begin{bmatrix} -3Y_{t1} + Y_{t2} \\ Y_{t1} - Y_{t2} \end{bmatrix}$$
(4.6)

Cuya segunda fila y la segunda fila de (4.4) implican que $(Z_{t2})=(Y_{t1}-Y_{t2})\sim I(0)$, es decir, $(Y_t)\sim CI(1,1)$ con vector de cointegración $B=[1,-1]^t$.

5.17.4. Definición.

El modelo de corrección de error vectorial (VEC) asociado con un modelo VAR(p) del tipo

$$\Phi(B)Y_{t} = \mu + A_{t} \text{ \'o } Y_{t} = \mu + \sum_{i=1}^{p} \Phi_{i}Y_{t-i} + A_{t}$$
 (4.7)

Para un proceso multivariante $(Y_t)\sim I(d)$, $Y_t=[Y_{t1},Y_{t2},...,Y_{tM}]^t$, es

$$\nabla Y_t = \mu - \Pi Y_{t-1} + \sum_{i=1}^{p-1} F_i \nabla Y_{t-1} + A_t$$
 (4.8)

Donde,
$$\Pi = \Phi(1) = I - \sum_{i=1}^{p} \Phi_i$$
, $F_i = -\sum_{i=1}^{p} \Phi_j$ $(i = 1, 2, ..., p - 1)$ (4.9)

Cuando d $d \ge 1$ el rango de la matriz Π determina el número de relaciones de cointegración entre los componentes de de $(Y_t)\sim I(d)$. Si el rango de Π es M, entonces $(Y_t)\sim I(0)$.

5.18. Raíces unitarias.

Cuando un proceso estocástico (Y_t) es integrado de orden d ≥ 1 , (ver 4.1.1) suele decirse que tiene raíces unitarias. Por ejemplo un proceso univariante $(Y_t)\sim I(1)$ tiene una raíz unitaria, porque (Y_t) sigue en este caso un modelo ARIMA(p,1,q) del tipo $\phi'(B)Y_t = \mu + \theta(B)A_t$ cuyo operador autorregresivo $\phi'(B) = \phi(B)\nabla$ es tal, que la ecuación $\phi'(x) = 0$ tiene una raíz igual a

1; en la práctica, muchas series temporales no estacionarias, son compatibles con la hipótesis de haber sido generados por procesos I(1).

La problemática fundamental asociada con la elaboración de modelos para procesos con raíces unitarias puede resumirse en dos puntos:

- En primer lugar, los estimadores (MCO, MVE, ...) y los estadísticos de contraste (t, F, LR, ...) habituales, no siguen distribuciones estándar ni siquiera asintóticamente. En general, en modelos para procesos con raíces unitarias, cualquier inferencia realizada sobre la base de dichas distribuciones estándar (t, F, Chi Cuadrado, Normal, ...) es incorrecta y puede llevar a conclusiones erróneas.
- En segundo lugar, la diferenciación regular conjunta de todos los componentes de un proceso multivariante (Y_t)~ I(d), aunque proporciona un proceso (∇^dY_t)~ I(0) no es adecuada, cuando los componentes de (Y_t) están cointegrados.

Por lo tanto es importante en la práctica de disponer de instrumentos fiables para decidir el orden de integración de un proceso univariante y para decidir si los componentes de un proceso multivariante están cointegrados y así poder hacer inferencias correctas en presencia de procesos con raíces unitarias.

5.18.1. Contrastes de raíces unitarias.

En muchas ocasiones, el orden de integración de un proceso estadístico se puede determinar de manera bastante fiable a la vista del gráfico temporal y del correlograma de una serie generada por el proceso considerado.

En los casos en los que el orden de integración de un proceso no está claro a la vista de dichos instrumentos gráficos, un contraste formal de raíces unitarias puede ayudar a decidir si, por ejemplo es I(0) ó I(1), ó si es I(1) ó I(2).En cualquier caso la determinación fiable del orden de integración de un proceso es importante en relación con la forma correcta de hacer inferencia en cada caso, la posibilidad de estimar las relaciones espurias, la posibilidad de estimar relaciones de cointegración y las implicaciones correspondientes.

Si un proceso estocástico univariante sigue (Y_t) sigue un modelo AR(1) del tipo

$$Y_{t} = \phi_{1} Y_{t-1} + A_{t} \qquad (4.12)$$

Entonces $(Y_t) \sim I(o)$ si $|\phi_1| < 1$, mientras que $(Y_t) \sim I(1)$ (un paseo aleatorio) si $\phi_1 = 1$.

Una manera de contrastar H_0 : $(Y_t)\sim I(1)$ frente a H_1 : $(Y_t)\sim I(0)$ en este caso, consiste en contrastar H_0 : $\phi_1=1$ frente a $\phi_1<1$ en (4.12).

El contraste H_0 : $\phi_1 = 1$ frente a $\phi_1 < 1$ es equivalente (restando Y_{t-1} en ambos lados de (4.12)) al contraste de

$$H_0$$
: $\gamma = 0$ frente a H_1 : $\gamma < 0$ (4.13)

En el modelo

$$\nabla Y_t = \gamma Y_{t-1} + A_t \tag{4.14}$$

Donde $\gamma = \phi_1 - 1$. El estadístico t habitual asociado con γ para contrastar (4.13) en (4.14), no sigue bajo H_0 en (4.13) un distribución t de Student ni una distribución N(0,1), ni siquiera asintóticamente. No obstante, la distribución del estadístico t bajo H_0 en (4.13) es conocida y suele denominarse una distribución de Dickey-Fuller (DF). El estadístico t asociado con γ en (4.14) se representa habitualmente como τ (tau).

El contraste DF de (4.13) en (4.14) consiste en rechazar H_0 a favor de H_1 cuando el valor calculado del estadístico τ es menor que el valor crítico de la distribución DF correspondiente para un nivel de significación dado. La primera fila de la tabla (4.1) contiene los valores críticos asintóticos para distintos niveles de significación.

	Nivel de Significación		
	1%	5%	10%
DF Estadístico $ au$	-2.56	-1.94	-1.62
DF Estadístico $ au_{\mu}$	-3.43	-2.86	-2.57
DF Estadístico τ_{τ}	-3.96	-3.41	-3.13
N(0,1) Estadístico t	-2.33	-1.65	-1.28

Tabla 4.1.

Valores cíticos asintóticos para los contrastes DF- ADF de raíces unitarias.

Contrastes DF (Dickey-Fuller)- ADF.

Ejemplo.

Una primera extensión del contraste básico de 4.31 consiste en permitir la presencia de un término constante en (4.12)o, equivalentemente, en (4.14,) de manera que $\nabla Y_t = \mu + \gamma Y_{t-1} + A_t$ (4.15)

En este caso, el contraste DF de (4.13) en (4.15) consiste en rechazar H_0 a favor de H_1 cuando el valor calculado del estadístico t asociado con γ en (4.15) que suele representarse como τ_{μ} , es menor que el valor crítico de la distribución DF correspondiente para un nivel de significación dado. La segunda fila de la tabla 4.1 contiene los valores críticos asintóticos para niveles de significación del 1%, 5%, y del 10%.

Ejemplo.

Una segunda extensión del contraste básico de 4.3.1. consiste en permitir que (Y_t) siga un modelo AR(p) con término constante $y p \ge 2$, de manera que

$$Y_{t} = \mu + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + A_{t}$$

O bien, (ver 4.1.5)

$$\nabla Y_{t} = \mu + \gamma Y_{t-1} + \sum_{i-1}^{p-1} \phi_{i}^{*} \nabla Y_{t-i} + A_{t}$$
 (4.16)

Donde
$$\gamma = -\phi(1) = -1 + \sum_{i=1}^{p-1} \phi_i$$
, $\phi_i^* = -\sum_{i=i+1}^{p} \phi_i$, $i=1,...,p-1$. En este caso, si el operador

$$\phi(B) = 1 - \sum_{i=1}^{p} \phi_i B$$
 tiene una raíz unitaria, entonces $\phi(1) = -\gamma = 0$; por lo tanto, contrastar H₀:

 $(Y_t)\sim I(1)$ frente a H_1 : $(Y_t)\sim I(0)$ en este caso es equivalente (de nuevo) a contrastar (4.13) en (4.16). Este contraste (que se denomina ADF, del inglés Augmented Dickey-Fuller) se lleva a cabo exactamente igual que en 4.3.1(cuando $\mu = 0$) ó en (4.3.2.) si ($\mu \neq 0$).

5.18.2. Alternativas a los contrastes ADF.

A pesar de que los contrastes ADF basados en (4.17)-(4.18) son probablemente los más populares en la práctica actual, sus inconvenientes han provocado la aparición de decenas de contrastes alternativos (ninguno de los cuales, por otro lado, parece haber alcanzado la popularidad de los contrastes AFD).

Entre ellos, en algunos se plantea como hipótesis nula el que un proceso sea I(0) (al contrario que los contrastes ADF), ver por ejemplo , Kwiatkowski, D., Phillips, P.C.B., Scmidt, P., y Shin, Y. (1992).

En general, los contrastes de raíces unitarias más fiables disponibles actualmente son el contraste de no estacionariedad de Shin-Fuller y los contrastes de no invertibilidad de Davis – Chen-Dunsmuir, descritos en la sección 2.6.

5.18.3. Modelos VAR con raíces unitarias.

Ejemplo

Sea(Y_t), $Y_t = [Y_{t1}, Y_{t2}]^t$, un proceso bivariante que sigue un modelo VAR(1) del tipo

$$\begin{bmatrix} Y_{t1} \\ Y_{t2} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} Y_{t-1,1} \\ Y_{t-1,2} \end{bmatrix} + \begin{bmatrix} A_{t1} \\ A_{t2} \end{bmatrix}, \quad (A_t) \sim IID(0, \Sigma_A) \tag{4.19}$$

Tal que los dos autovalores de $\Phi_1, \lambda_1, y \lambda_2$, son distintos entre sí. En este caso,

$$\Phi_{1} = P\Lambda P^{-1} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} p_{(1)1} & p_{(1)2} \\ p_{(2)1} & p_{(2)2} \end{bmatrix} = \begin{bmatrix} p_{1} & p_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} p_{(1)}^{t} \\ p_{(2)}^{t} \end{bmatrix}, (4.20)$$

Donde p_1 y p_2 son dos autovectores de Φ_1 linealmente independientes, asociados con λ_1 y λ_2 , respectivamente. El modelo VAR(1) en (4.19) puede escribirse como :

$$\underbrace{P^{-1}Y_{t}}_{Z_{t}} = \underbrace{P^{-1}\mu}_{\mu_{0}} + \underbrace{P^{-1}\Phi_{1}P}_{\Lambda}\underbrace{P^{-1}Y_{t-1}}_{Z_{t-1}} + \underbrace{P^{-1}A_{t}}_{U_{t}}$$
(4.21)

Donde

$$Z_{t} = \begin{bmatrix} Z_{t1} \\ Z_{t2} \end{bmatrix} = \begin{bmatrix} p_{(1)}^{t} Y_{t} \\ p_{(2)}^{t} Y_{t} \end{bmatrix} = \begin{bmatrix} p_{(1)1} Y_{t1} + p_{(1)2} Y_{t2} \\ p_{(2)1} Y_{t1} + p_{(2)2} Y_{t2} \end{bmatrix}, (4.22)$$

Es decir,

$$\begin{bmatrix}
Z_{t1} \\
Z_{t2}
\end{bmatrix} = \begin{bmatrix}
\mu_{01} \\
\mu_{02}
\end{bmatrix} + \begin{bmatrix}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{bmatrix} \begin{bmatrix}
Z_{t-1,1} \\
Z_{t-1,2}
\end{bmatrix} + \begin{bmatrix}
U_{t1} \\
U_{t2}
\end{bmatrix} (U_{t}) \sim IID(0, \mathbf{P}^{-1}\Sigma_{\mathbf{A}}\mathbf{P}^{-1}), \quad (4.23)$$

De manera que $(1-\lambda_1 B)Z_{t1} = \mu_{01} + U_{t1}$, $(1-\lambda_2 B)Z_{t2} = \mu_{02} + U_{t2}$. En consecuencia $(Z_{ti}) \sim I(0)$, o bien $(Z_{ti}) \sim I(1)$ en función de si $|\lambda_i| < 1$ o bien, $|\lambda_i| = 1$, respectivamente. Por otro lado (4.21) también implica que $Y_t = PZ_t$, es decir,

$$Y_{t} = \begin{bmatrix} Y_{t1} \\ Y_{t2} \end{bmatrix} = p_{1}Z_{t1} + p_{2}Z_{t2} = \begin{bmatrix} p_{11}Z_{t1} + p_{12}Z_{t2} \\ p_{21}Z_{t1} + p_{22}Z_{t2} \end{bmatrix}$$
(4.24)

Caso 1 : $|\lambda_1| < 1$, $|\lambda_2| < 1$, $(\lambda_1 \neq \lambda_2)$

(4.23) implica que (Z_{t1})~I(0), por lo que (4.24) implica que (Y_t)~I(0).

Caso 2: $\lambda_1 = 1$, $|\lambda_2| < 1$.

 $(4.23 \) \ implica \ que \ (Z_{t1}) \sim I(1) \ y \ (Z_{t2}) \sim I(0), \ por \ lo \ que \ (4.24) \ implica \ que \ (Y_t) \sim I(1).$

Juntando este resultado con la segunda fila de (4.22), $Z_{t2} = p_2^t Y_t = p_{(2)1} Y_{t1} + p_{(2)2} Y_{t2}$, resulta que $(p_{(2)}^T Y_t) \sim I(0)$, por lo que $(Y_t) \sim CI(1,1)$, con vector de cointegración $\beta = [\beta_1, \beta_2]^t = p(2) = [p_{(2)1}, p_{(2)2}]^t$, la segunda fila de P^{-1} en (4.20). En este caso ,el modelo VEC (ver (4.1.5)) asociado con (4.19) es $\nabla Y_t = \mu - \Pi Y_{t-1} + A_t$, donde $\Pi = I - \Phi_1$ puede escribirse (ver (4.20)) como

$$\Pi = P(I-\Lambda)P^{-1} = [p_1, p_2] \begin{bmatrix} 0 & 0 \\ 0 & 1 - \lambda_2 \end{bmatrix} \begin{bmatrix} p_{(1)}^t \\ p_{(2)}^t \end{bmatrix} = [p_2(1-\lambda_2)] [p_{(2)}^t] = \alpha\beta^t \quad (4.25), \quad \text{Es} \quad \text{decir},$$

 $\nabla Y_t = \mu - \alpha \beta^t Y_{t-1} + A_t$ o bien;

$$\begin{bmatrix} \nabla Y_{t1} \\ \nabla Y_{t2} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} - \begin{bmatrix} \alpha_1 (\beta_1 Y_{t-1,1} + \beta_2 Y_{t-1,2}) \\ \alpha_2 (\beta_1 Y_{t-1,1} + \beta_2 Y_{t-1,2}) \end{bmatrix} + \begin{bmatrix} A_{t1} \\ A_{t2} \end{bmatrix}, \quad (4.26)$$

Donde $\alpha_1 = p_{12}(1 - \lambda_2)$, $\alpha_2 = p_{22}(1 - \lambda_2)$, $|\lambda_2| < 1$, $\beta_1 = p_{(2)1}$, $\beta_2 = p_{(2)2}$. Nótese que el rango de Π en (4.25) es 1, y (4.26) no es un modelo VAR para (∇Y_1) ~I(0).

Caso 3:
$$\lambda_1 = \lambda_2 = \lambda = 1$$

Si Φ_1 en (4.19) no es una matriz diagonal, pero sus autovalores son iguales, entonces:

$$\Phi_{1} = \underbrace{QJQ^{-1}}_{Z_{t}} = \underbrace{Q^{-1}\mu}_{\mu_{0}} + \underbrace{Q^{-1}\Phi_{1}Q}_{J} \underbrace{Q^{-1}Y_{t-1}}_{Z_{t-1}} + \underbrace{Q^{-1}A_{t}}_{U_{t}}$$
(4.28)

Donde.

$$Z_{t} = \begin{bmatrix} Z_{t1} \\ Z_{t2} \end{bmatrix} \begin{bmatrix} q_{(1)}^{t} Y_{t} \\ q_{(2)}^{t} Y_{t} \end{bmatrix} = \begin{bmatrix} q_{(1)1} Y_{t1} + q_{(1)2} Y_{t2} \\ q_{(2)1} Y_{t1} + q_{(2)2} Y_{t2} \end{bmatrix}$$
(4.29)

Es decir,

$$\begin{bmatrix} Z_{t1} \\ Z_{t2} \end{bmatrix} = \begin{bmatrix} \mu_{01} \\ \mu_{02} \end{bmatrix} + \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} Z_{t-1,1} \\ Z_{t-1,2} \end{bmatrix} + \begin{bmatrix} U_{t1} \\ U_{t2} \end{bmatrix} (U_t) \sim IID(0, Q^{-1}\Sigma_A(Q^{-1})^t), \quad (4.30)$$

De manera que $(1-\lambda B)Z_{t1} = \mu_{01} + Z_{t-1,2} + U_{t1}$, $(1-\lambda B)Z_{t2} = \mu_{02} + U_{t2}$. En consecuencia cuando $\lambda = 1$, $(Z_{t2}) \sim I(1)$, y bien $(Z_{t1}) \sim I(2)$. Por otro lado, (4.28) también implica que $Y_t = QZ_t$, es decir,

$$Y_{t} = \begin{bmatrix} Y_{t1} \\ Y_{t2} \end{bmatrix} = q_{1}Z_{t1} + q_{2}Z_{t2} = \begin{bmatrix} q_{11}Z_{t1} + q_{12}Z_{t2} \\ q_{21}Z_{t1} + q_{22}Z_{t2} \end{bmatrix}$$
(4.31)

De manera que (Y_t)~I(2) cuando $\lambda = 1$. Juntando este resultado con la segunda fila de (4.29) $Z_{t2} = q_{(2)}^t Y_t = q_{(2)1} Y_{t1} + q_{(2)2} Y_{t2}$, resulta que $(q_{(2)}^t Y_t)$ ~I(1), por lo que (Y_t),+CI(2,1) con vector de cointegración $\beta = [\beta_1, \beta_2]^t = q(2) = [q_{(2)1}, q_{(2)2}]^t$, la segunda fila de Q⁻¹ en (4.27). En este caso el modelo VEC (ver 4.1.5) asociado con (4.19) es $\nabla Y_t = \mu - \Pi Y_{t-1} + A_t$ donde $\Pi = I - \Phi_1$ puede escribirse (ver (4.27)) como ;

$$\Pi = Q(I-J)Q^{-1} = [q_1, q_2] \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} q_{(1)}^t \\ q_{(2)}^t \end{bmatrix} = -[q_1][q_2^t] = \alpha \beta^t \quad (4.32)$$

Es decir, $\nabla Y_t = \mu - \alpha \beta^t Y_{t-1} + A_t$, o bien

$$\begin{bmatrix} \nabla Y_{t1} \\ \nabla Y_{t2} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} - \begin{bmatrix} \alpha_1 (\beta_1 Y_{t-1,1} + \beta_2 Y_{t-1,2}) \\ \alpha_2 (\beta_1 Y_{t-1,1} + \beta_2 Y_{t-1,2}) \end{bmatrix} + \begin{bmatrix} A_{t1} \\ A_{t2} \end{bmatrix}, \quad (4.33)$$

Donde, $\alpha_1 = -q_{12}$, $\alpha_2 = -q_{22}$, $\beta_1 = p_{(2)1}$, $\beta_2 = p_{(2)2}$. Nótese que el rango de Π en (4.32) es 1, y (4.33) no es un modelo VAR para $(\nabla Y_t) \sim I(1)$. La situación en este caso es completamente análoga al caso 2 anterior, aunque ahora $(Y_t) \sim CI(2,1)$.

Caso 4.
$$\lambda_1 = \lambda_2 = \lambda = 1$$
, porque $\Phi_1 = I$.

En este caso especial, (4.19) queda $\nabla Y_t = \mu + A_t$ de manera que $(Y_t) \sim I(1)$. Además, en la expresión $\nabla Y_t = \mu + A_t$ no está presente ningún término de corrección de error, lo que indica que no existe ninguna combinación lineal de los componentes de (Y_t) que sea I(0); en otros términos $\Pi = I - \Phi_1 = 0$, cuyo rango es igual a cero. En este caso los dos componentes de $(Y_t) \sim I(1)$ no están cointegrados. Como vemos la cointegración queda determinada por el rango de la matriz Π , esto lleva a plantear la siguiente definición:

5.18.4. Rango de cointegración.

El rango de cointegración de un proceso (Y_t) , $Y_t = [Y_{t1}, Y_{t2}, ..., Y_{tM}]^t$ integrado de orden d ≥ 1 , que sigue un modelo VAR(p) del tipo:

$$\Phi(B)Y_t = \mu + A_t$$
, o bien $Y_t = \mu + \sum_{i=1}^p \Phi_i Y_{t-i} + A_t$ (4.40)

Es el rango de la matriz $\Pi = \Phi(I) = I - \sum_{i=1}^{p} \Phi_{i}$ que figura en la representación VEC (ver 4.1.5) asociada con (4.40):

$$\nabla Y_{t} = \mu \text{-}\Pi Y_{t\text{-}1} + \sum_{i=1}^{p\text{-}1} F_{i} \nabla Y_{t\text{-}1} + A_{t}$$

Si $P=rango(\Pi)$, entonces P es el número de relaciones de cointegración linealmente independiente que existen entre los componentes de $(Y_t)\sim I(d)$. Nótese que:

- (1) Si P=M, entonces $|\Pi| = |\Phi(1)|$ es distinto de cero, lo que indica que $|\Phi(x)| = 0$ no tiene raíces unitarias; por lo tanto en este caso $(Y_t) \sim I(0)$. En consecuencia, si $(Y_t) \sim I(d)$ con $d \ge 1$, entonces $0 \le P \le M-1$.
- (2)Si P=0, entonces Π =0, por lo que (∇Y_{t}) ~VAR(p-1). (estacionario si d=1).
- (3) La situación intermedia entre las dos anteriores ($1 \le P \le M-1$) indica que existen P relaciones de cointegración entre los componentes de (Y_t) , que es un proceso integrado de orden 1 o superior. En este caso, Π puede factorizarse como $\Pi = AB^t$, donde A y B son matrices de orden M×P, con rango(A)=rango(B)=P; las P columnas de B (o las P filas de B^t)contienen los P vectores de cointegración (linealmente independientes) entre las componentes de (Y_t) .

5.19. Estimación de las relaciones de cointegración.

Cuando $(\mathbf{Y_t})\sim CI(1,1)$, es importante poder hacer inferencias sobre al menos uno de los vectores de cointegración $\beta=[\beta_1,\beta_2,...,\beta_M]^t$ asociado con una de la M-1 posibles relaciones de cointegración entre los componentes de $(\mathbf{Y_t})$.

Aunque es lógico contrastar la presencia de relaciones de cointegración antes de estimarlas, también es cierto que resulta más sencillo discutir como estimar relaciones de cointegración antes de discutir como contrastar su presencia ;ver sección 4.6.

5.19.1 Estimación directa de la cointegración.

La manera más sencilla y directa de estimar una posible relación de cointegración del tipo $(U_t) = (\beta_0 + \beta^t Y_t) \sim I(0)$ (ver 4.1.2.) entre los componentes de $(Y_t) \sim CI(1,1)$, consiste en estimar

por MCO la regresión lineal de un componente dado de (Y_t) sobre todos los demás. Si $Y_t[Y_{t1}, Y_{t2}, ..., Y_{tM}]^t$, se trata de estimar por MCO una regresión del tipo

$$Y_{t1} = -\beta_0 - \beta^t Y_{t2} + U_t$$
 (4.42)

Donde $Y_{t2} = [Y_{t2},...,Y_{tM}]^t$, $\beta_2 = [\beta_2,...,\beta_M]^t$, de manera que el vector de cointegración en la posible relación considerada es $\beta = [1,\beta_2^t]^t$.

Estimación a través de un modelo de corrección de error.

Cuando (Y_t)~CI(1,1), (Y_t) sigue un modelo VEC como (4.41). Si se considera una ínica relación de cointegración, entonces $\Pi = \alpha \beta^t$ en (4.41), donde $\alpha = [\alpha_1,...,\alpha_M]^t$ contiene al menos un elemento distinto de cero, y $\beta = [1,\beta_2^t]^t$ (como en el apartado anterior) es el vector de cointegración (normalizado) que se puede estimar.

La primera fila de (4.41) puede escribirse en este caso como:

$$\nabla Y_{t1} = \mu_1 - \alpha_1 (Y_{t-1,1} + \beta_2^t Y_{t-1,2}) + \sum_{i=1}^{p-1} \Phi_{i1}^t \nabla Y_{i-1} + A_{t1}$$
 (4.43)

Donde Φ_{i1}^t representa la primera fila de \mathbf{F}_i en (4.41). Si por ejemplo, M=2, p=1, la expresión anterior queda

$$\nabla Y_{t1} = \mu_1 - \alpha_1 (Y_{t-1,1} + \beta_2 Y_{t-1,2}) + A_{t1} \quad (4.44)$$

Que coincide con la primer afila de (4.26) en el caso 2 del ejemplo 4.4.1 (imponiendo la normalización $\beta_1 = 1$). La expresión anterior es un modelo de corrección de error (EC) del tipo presentado en la sección (3.3.) para procesos estacionarios, lo que sugiere plantear para estimar β_2 un modelo del tipo:

$$\nabla Y_{t1} = \mu_1 - \alpha_1 (Y_{t-1,1} + \beta_2^t Y_{t-1,2}) + \Phi_0^t \nabla Y_{t2} + \sum_{i=1}^m \Phi_i^t \nabla Y_{i-1} + U_1$$
 (4.45)

En lugar de (4.43), donde $\Phi_0 = [\phi_{02},...,\phi_{0M}]^t$ recoge los posibles efectos contemporáneos de $\nabla Y_{t2} = [\nabla Y_{t2},...,\nabla Y_{tM}]^t$ sobre ∇Y_{t1} , y $\Phi_i = [\phi_{i1},\phi_{i2},...,\phi_{iM}]^t$ recoge los posibles efectos de $\nabla Y_{t-i} = [\nabla Y_{t-i,1},...,\nabla Y_{t-i,M}]^t$ sobre ∇Y_{t1} para i=1,2,...,m.

Si por ejemplo, M=2, m=0, (4.45) queda:

$$\nabla Y_{t1} = \mu_1 - \alpha_1 (Y_{t-1,1} + \beta_2 Y_{t-1,2}) + \phi_{02} \nabla Y_{t2} + U_{t1} \quad (4.46)$$

Que es formalmente idéntico al modelo EC (3.13) en el ejemplo 3.3.4.

5.19.2. Inferencia.

Por lo visto hasta ahora parece que la teoría asintótica estándar, nunca es aplicable cuando una regresión contiene variables explicativas I(1). Esto es cierto en regresiones espurias, en regresiones asociadas a los modelos ADF, en algunas regresiones asociadas con la estimación de una regresión de cointegración como (4.12) y los modelos EC (4.45)-(4.46).

Sin embargo, no es cierto que el estadístico t para cada parámetro en cualquier regresión con regresores I(1) siga una distribución no estándar asintóticamente. De hecho, ni siquiera es cierto que el estadístico t de cada parámetro asociado con un regresor I(1) siga una distribución de ese tipo. Por el contrario, puede3 demostrarse que el estadístico t de cualquier parámetro asociado únicamente con un regresor I(0) (quizás después de reorganizar la regresión correspondiente), sigue una distribución N(0,1) asintóticamente.

De modo análogo, el estadístico F para un contraste de significación conjunta, sigue la distribución asintótica habitual cuando todos los parámetros indicados en dicho contraste pueden figurar al mismo tiempo multiplicando a regresores I(0).

Por el contrario, cualquier estadístico t o F que no satisfaga las condiciones anteriores, sigue en general una distribución asintótica no estándar.

Ejemplo.

En la representación (4.48) del modelo EC (4.46),

$$\nabla Y_{t1} = \mu_1 - \alpha_1 Y_{t-1,1} - \delta_2 Y_{t-1,2} + \phi_{02} \nabla Y_{t2} + U_t \quad (4.50)$$

Si $(Y_{t1})\sim I(1)$ e $(Y_{t2})\sim I(1)$ no están cointegrados, entonces, no es posible reorganizar (4.50) para que α_1 sólo multiplique a una variable I(0); por lo tanto, el estadístico t para α_1 en (4.50) sigue en este caso un distribución no estándar.

Dado que (4.50) es equivalente a (4.46), cuando (Y_{t1}) e (Y_{t2}) sí están cointegrados, con vector de cointegración $[1,\beta]^t$, α_1 en (4.46) multiplica a $(Y_{t-1,1}+\beta_2\ Yt_{-1,2})$, que es I(0), por lo que en este caso, el estadístico t para α_1 en (4.50) sigue una distribución N(0,1) asintóticamente.

Por otro lado, (4.50) también puede escribirse como

$$\nabla Y_{t1} = \mu_1 - \delta_2(\beta_1 Y_{t-1,1} + Y_{t-1,2}) + \phi_{02} \nabla Y_{t2} + U_{t1}$$
 (4.51)

Donde $\beta_1=1/\beta_2=\alpha_1/\delta_2$. En (4.51), el término al que multiplica δ_2 es I(0) cuando (Y_{t1}) e (Y_{t2}) están cointegrados con vector de cointegración[1, β_2]^t ó [β_1 , 1]^t, por lo que en este caso el estadístico t para δ_2 en (4.50) también es N(0,1) asintóticamente.

En todos los casos, los estadísticos t asociados con μ_1 y ϕ_{02} también sigue distribuciones N(0,1) asintóticamente. En resumen si (Y_{t1}) e (Y_{t2}) en (4.50) está cointegrados con vector de cointegración $[1,\beta_2]^t$, entonces el estadístico t para cada uno de los parámetros de (4.50) sigue una distribución N(0,1) asintóticamente.

Ejemplo.

La regresión (4.17) con m=1 asociada con un contraste ADF para (Y_t),

$$\nabla Y_{t} = \mu + \gamma Y_{t-1} + \rho_{1} \nabla Y_{t-1} + V_{t}$$
 (4.52)

Puede escribirse como

$$\nabla Y_{t} = \mu + \gamma Y_{t-1} + \rho_{1} \nabla Y_{t-1} - \rho_{1} \nabla Y_{t-2} + V_{t}$$

$$= \mu + \gamma (Y_{t-1} - Y_{t-2}) + \rho_{1} Y_{t-1} + (\gamma - \rho_{1}) Y_{t-2} + V_{t},$$

Lo que indica que cuando $(Y_t)\sim I(1)$, (4.52) no puede escribirse de tal forma que γ sólo multiplique a una variable I(0). Por lo tanto, el estadístico t para γ en (4.52) no sigue una distribución estándar.

Por otro lado $(Y_t)\sim I(1) \Leftrightarrow (\nabla Y_t)\sim I(0)$, por lo que el estadístico t para ρ_1 en (4.52) sí sigue una distribución N(0,1) asintóticamente.

En general, cualquier, estadístico F para el contraste de significación conjunta de varios retardos de ∇Y_t en (4.17), sigue la distribución asintótica habitual lo que permite decidir de forma estándar cuántos retados deben incluirse en (4.17).

Estimación a través de un modelo VAR_VEC..

De acuerdo con los resultados de la sección 4.4, cuando $(Y_t)\sim CI(1,1)$, donde $Y_t = [Y_{tl}, Y_{t2}, ..., Y_{tM}]^t$, si (Y_t) sigue un modelo VAR(p), entonces (ver 4.4.3)

$$\nabla Y_{t} = \mu - AB^{t}Y_{t-1} + \sum_{i=1}^{p-1} F_{i}\nabla Y_{t-i} + A_{t}$$
 (4.53)

Donde A y B son matrices $M \times P$ con rango(A)=rango(B)=P ($1 \le P \le M-1$).

Las P columnas de B contienen P vectores de cointegración (linealmente independientes) entre los componentes de (Y_t) , de manera que $(B^tY_t)\sim I(0)$.

La estimación del modelo VEC (4.53) proporciona una estimación de cada una de las P relaciones de cointegración entre los M componentes de $(Y_t)\sim I(1)$.

5.20. Contrastes de cointegración.

Los métodos de estimación mostrados en las secciones anteriores pueden extenderse para contrastar la existencia de dichas relaciones entre un conjunto de procesos univariantes I(1).

El método basado en un modelo VEC también puede emplearse para determinar el número de relaciones de cointegración de dichas relaciones de cointegración de dichas procesos.

En lo siguiente se van a discutir algunos contrastes basados en la estimación de regresiones lineales como (4.42) y en la estimación de los modelos VEC como(4.53).

5.20.1. Contraste de Engle-Granger.

La manera más sencilla y probablemente más popular de contrastar las relaciones de cointegración entre las componentes de un proceso ($(Y_t)\sim I(1)$ consiste en:

- Estimar por (4.42) por MCO y guardar los residuos $\hat{u}_t = \hat{\beta}_0 + y_{t1} + \beta_2^t y_{t2}$.
- Contrastar H₀: (U_t)~I(1) frente a (U_t)~I(1), mediante el contraste de H_0 : $\gamma = 0$ frente a H_1 : $\gamma < 0$ en la regresión

$$\nabla U_{t} = \gamma U_{t-1} + \sum_{i=1}^{m} \rho_{i} \nabla U_{t-i} + A_{t} \quad (4.58)$$

Utilizando la serie de residuos (\hat{u}_t) .

Los valores críticos para el contraste Engle-Granger.

	Nivel de s	siginificación	(M-2)	Nivel de s	Nivel de siginificación (M-3)		
N	1%	5%	10%	1%	5%	10%	
50	-4.123	-3.461	-3.130	-4.592	-3.195	-3.578	
100	-4.008	-3.398	-3.087	-4.441	-3.828	-3.514	
200	-3.954	-3.368	-3.067	-4.368	-3.785	-3.483	
500	-3.921	-3.350	-3.054	-4.326	-3.760	-3.464	

5.20.2. Contrastes basados en un modelo VAR-VEC

En la práctica, el método más recomendable para contrastar las relaciones de cointegración entre los M componentes de $(Y_t)\sim I(1)$, es algún método basado en la estimación conjunta de todos los parámetros de un modelo VEC como (4,53).

Un método de este tipo, permite además, determinar el número de relaciones de cointegración [el rango P $(0 \le P \le M-1)$ de la matriz $\Pi = \Phi(1) = \sum_{i=1}^{p} \Phi_i$, ver (4.4.3.)], así como contrastar

hipótesis sobre los vectores de cointegración y sobre los factores de ajuste de una manera muy sencilla.

Los procedimientos que se describen a continuación están basados en la estimación de (4.53).

5.20.2.1. Logaritmo neperiano de la función de verosimilitud.

El logaritmo neperiano de la función de verosimilitud asociada con el modelo VEC (4.53) [que es un modelo VAR como (4.40)-(4.41) para $(Y_t)\sim I(1)$, restringido a que existan P relaciones de cointegración $(0 \le P \le M-1)$ entre los M componentes de (Y_t)] evaluada en las estimaciones de μ , A,B,F_i, (i=1,2,...,p-1) y Σ_A es igual a :

$$L(P) = -\frac{N}{2} \left[M(1 + \ln(2\pi) + \ln|\hat{\Sigma}_{11}|) \right] - \frac{N}{2} \sum_{i=1}^{P} \ln(1 - \lambda_i)$$
 (4.59)

Donde $\hat{\Sigma}_{11}$ y λ_i (i=1,2,...,P), representan la matriz de varianzas y covarianzas residuales y los P autovalores más grandes de la matriz Ψ . (ver Mauricio P-255, para los detalles).

Hay más procedimientos entre los cuales están el estadístico de la traza y el estadístico del máximo pero no se incluyen en este desarrollo teórico y pueden ser revisados en Mauricio 2007.

En resumen, en este desarrollo teórico se ha expuesto más teoría de la que necesitamos en nuestro estudio, puesto que el modelo que se planteará será un modelo bastante simplificado; sin embargo se quiso contextualizar el modelo en el contexto más general posible, puesto que en otro estudio que pudiese intentarse, puede que el resultado no sea tan simplificado y se necesite conocer más al respecto.

6. METODOLOGIA.

6.1 DISEÑO DE LA INVESTIGACION.

El primer paso para decidir si se realizaría o no esta investigación fue la búsqueda y obtención de los datos que servirían de materia prima en el presente estudio. En un inicio se consultó en las páginas web de instituciones como el BCR, DIGESTYC, FUSADES y CEPAL. Sin embargo los resultados no fueron muy satisfactorios pues los datos que presentan estas

instituciones corresponden a periodos de tiempos muy cortos y el estudio que se pretende desarrollar es un estudio de largo plazo. Ni en los centros de documentación de estas instituciones facilitan la información que se requiere para esta clase de estudios. Existe una página de un centro de información (llamado OXLAD) de la Universidad de Oxford en Inglaterra donde se encuentran datos de algunas de las variables requeridas por periodos que comprenden desde el inicio del siglo pasado. Sin más opción se recurrió a extraer los datos de la biblioteca del Banco Central de Reserva. La información se halló específicamente en las revistas trimestrales que el BCR publica permanentemente. Se consideraron las revistas desde el año 1950; sin embargo, algunas de las variables sólo aparecen desde el año 1958, por lo que se decidió que el estudio se haría desde ese año. Los datos del índice de precios al consumidor (IPC) de algunos años fueron obtenidos del centro de documentación de la DIGESTYC. Las variables de las que de dispone de información desde 1958 son préstamos disponibles para inversión, exportaciones e importaciones totales, deuda externa, PIB (producto interno bruto), inversión pública y privada, IPC (índice de precios al consumidor) e índice de términos de intercambio.

El método a seguir para las estimaciones econométricas consta de varias partes: primero, se lleva a cabo un análisis previo de las variables a ser consideradas en el modelo, con la intención de establecer si las series consideradas son estacionarias y en que orden de integración lo son. Para tal fin, se hace tanto una visualización de las series, a través de los correlogramas. Se determinará el orden de integración de cada una de las series utilizadas en el análisis, mediante la aplicación de los tests de estacionariedad o de raíces unitarias. Al comienzo, se efectuará el test de Dickey-Fuller aumentado (Dickey y Fuller, 1981), denotado por la sigla DFA. La decisión sobre la estacionariedad de una serie cronológica se basará también en la inspección visual de su correlograma, dado que los tests de raíces unitarias son una formalización de esta inspección. Cuando hay quiebres estructurales el test DFA puede señalar erróneamente la no estacionariedad de una serie que sea estacionaria, una alternativa será el test de raíces unitarias sugerido por Perron. Este test procura establecer el orden de integración de una serie cronológica tomando en cuenta la posibilidad de que ocurran cambios estructurales en su comportamiento. Se usará según lo que se obtenga en los datos.

En la segunda etapa se identificarán las variables y sus desfases respectivos, que son significativos en la ecuación de la inversión privada. Siguiendo la metodología "de lo general a lo particular", se estimará primero un modelo general con desfases distribuidos, conocido

como ADL. Mediante los tests de restricciones, el modelo es reducido gradualmente a través de la eliminación de las variables y desfases que se muestren estadísticamente no significativos.

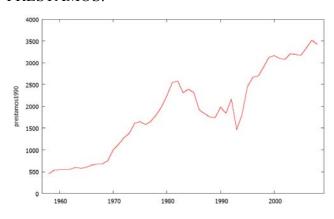
En la tercera etapa se procederá a verificar las hipótesis de cointegración de las series en cuestión. Por ejemplo, se utilizará el método de Engle y Granger (1987) para verificar la hipótesis de cointegración en las series que se muestren integradas de orden uno, con la estimación posterior del modelo de diferencias con el mecanismo de corrección de errores. También se utilizará el método ya descrito de Johansen (1988), que analiza los vectores de cointegración mediante un modelo VAR, para determinar con mayor precisión el número de relaciones de cointegración y las estimaciones de los vectores de coeficientes de estas relaciones. En una serie con una tendencia estocástica se necesitan tests en cuanto a la cointegración para verificar si, incluso siendo individualmente no estacionaria, una combinación lineal de dos o más series cronológicas puede generar un residuo estacionario. La cointegración de dos o más series cronológicas sugiere una relación de largo plazo entre ellas, mientras que el mecanismo de corrección de errores sólo indica la inclusión del residuo estacionario desfasado en el modelo de corto plazo, para conciliar el comportamiento de corto plazo con el equilibrio de largo plazo.

En nuestro caso el modelo que se planteará será un modelo VAR recursivo del tipo de retardos autorregresivos o ADL, que es un tipo simplificado de los modelos VARMA(p,q) generales.

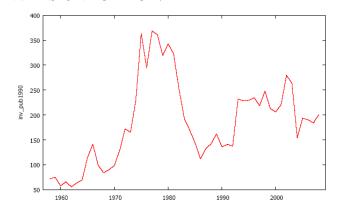
6.2 AJUSTE DE MODELOS UNIVARIANTES

6.2.1 ANALISIS DESCRIPTIVO. GRAFICOS DE SERIES TEMPORALES

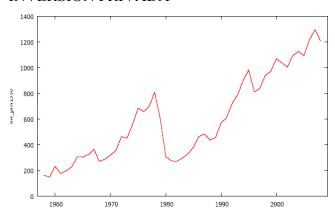
PRESTAMOS:



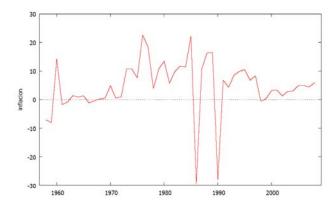
INVERSION PUBLICA:



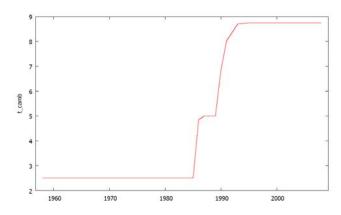
INVERSION PRIVADA



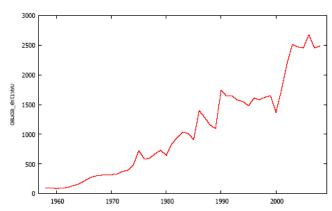
INFLACION:



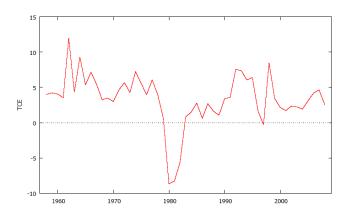
TASA DE CAMBIO:



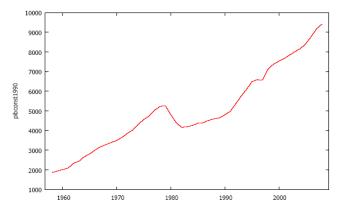
DEUDA EXTERNA:



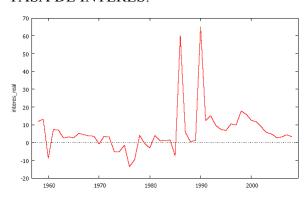
TASA DE CRECIMIENTO ECONOMICO:



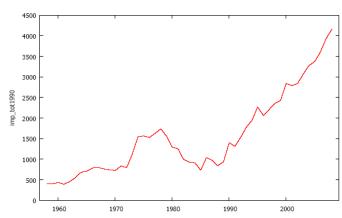
PRODUCTO INTERNO BRUTO:



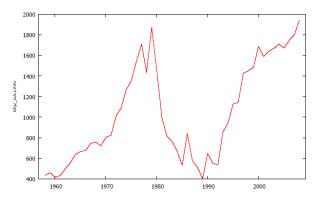
TASA DE INTERES:



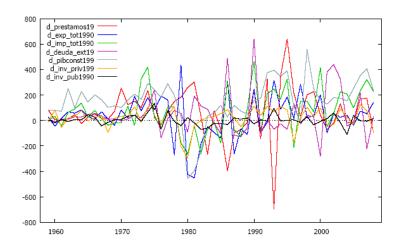
IMPORTACIONES TOTALES.



EXPORTACIONES TOTALES:

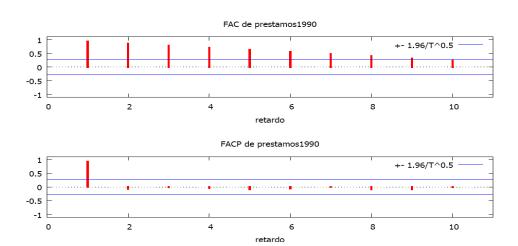


Al hacer una diferencia a las variables que resultaron con tendencia, podemos ver que las series se estabilizan. (Dado el proceso Y(t), definimos la diferencia regular de primer orden como $\Delta Y(t)=Y(t)-Y(t-1)$). Al graficar:



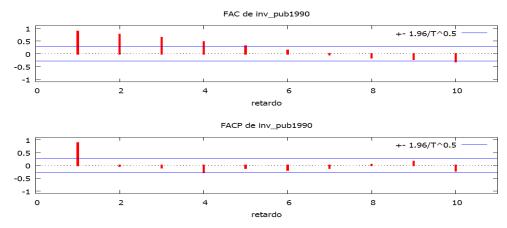
6.2.2 GRAFICA DE FUNCIONES DE AUTOCORRELACION SIMPLE Y PARCIAL.

PRESTAMOS:



RETARDO	FAC	FACP	Estad-Q.	[valor p]
1	0.9280 ***	0.9280 ***	46.5539	[0.000]
2	0.8509 ***	-0.0739	86.4932	[0.000]
3	0.7782 ***	-0.0083	120.6001	[0.000]
4	0.7061 ***	-0.0398	149.2709	[0.000]
5	0.6270 ***	-0.0916	172.3699	[0.000]

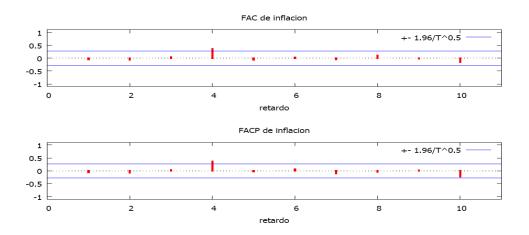
INVERSION PUBLICA:



Función de autocorrelación para inv_pub1990

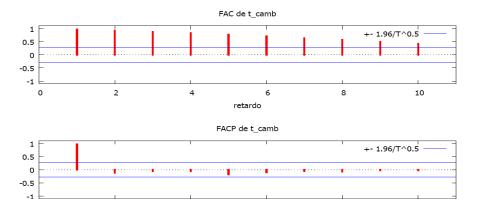
RETARDO	FAC	FACP	Estad-Q.	[valor p]
1	0.8690 ***	* 0.8690 ***	40.8259	[0.000]
2	0.7491 ***	* -0.0247	71.7848	[0.000]
3	0.6252 ***	* -0.0837	93.7933	[0.000]
4	0.4568 ***	* -0.2601 *	105.7943	[0.000]
5	0.2976 **	-0.0967	110.9993	[0.000]
6	0.1273	-0.1703	111.9720	[0.000]
7	-0.0350	-0.0959	112.0471	[0.000]
8	-0.1541	0.0240	113.5400	[0.000]
9	-0.2165	0.1568	116.5558	[0.000]
10	-0.3055 **	-0.2037	122.7085	[0.000]

INFLACION:



RETARDO	FAC	FACP	Estad-Q.	[valor p]
1	-0.0498	-0.0498	0.1339	[0.714]
2	-0.0603	-0.0629	0.3343	[0.846]
3	0.0359	0.0298	0.4070	[0.939]
4	0.3638 ***	0.3661 ***	8.0199	[0.091]
5	-0.0603	-0.0177	8.2337	[0.144]
6	0.0300	0.0697	8.2878	[0.218]
7	-0.0504	-0.0928	8.4441	[0.295]
8	0.0983	-0.0386	9.0517	[0.338]
9	-0.0088	0.0122	9.0567	[0.432]
10	-0.1583	-0.2155	10.7095	[0.381]

TASA DE CAMBIO:



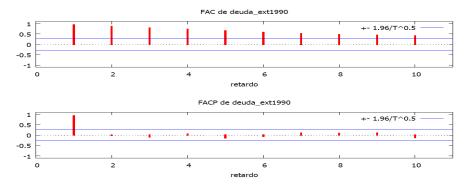
8

10

Función de autocorrelación para t_camb

RETARDO	FAC	FACP	Estad-Q	. [valor p]
1	0.9634	*** 0.9634 ***	50.1753	[0.000]
2	0.9196	*** -0.1186	96.8264	[0.000]
3	0.8734	*** -0.0481	139.7796	[0.000]
4	0.8249	*** -0.0509	178.9107	[0.000]
5	0.7655	*** -0.1749	213.3448	[0.000]
6	0.6994	*** -0.1048	242.7303	[0.000]
7	0.6314	*** -0.0509	267.2183	[0.000]
8	0.5614	*** -0.0620	287.0292	[0.000]
9	0.4912	*** -0.0239	302.5596	[0.000]
10	0.4210	*** -0.0290	314.2434	[0.000]

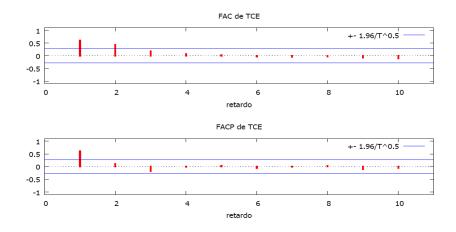
DEUDA EXTENA:



Función de autocorrelación para deuda_ext1990

RETARDO	FAC	FACP	Estad-Q	. [valor p]
1	0.9263 ***	* 0.9263 ***	* 46.3897	[0.000]
2	0.8561 ***	* -0.0139	86.8230	[0.000]
3	0.7799 ***	* -0.0800	121.0720	[0.000]
4	0.7161 ***	* 0.0439	150.5634	[0.000]
5	0.6385 ***	* -0.1306	174.5181	[0.000]
6	0.5613 ***	* -0.0542	193.4427	[0.000]
7	0.5025 ***	* 0.0978	208.9536	[0.000]
8	0.4608 ***	* 0.0730	222.2993	[0.000]
9	0.4358 **	* 0.0914	234.5201	[0.000]
10	0.3954 **	* -0.1182	244.8255	[0.000]

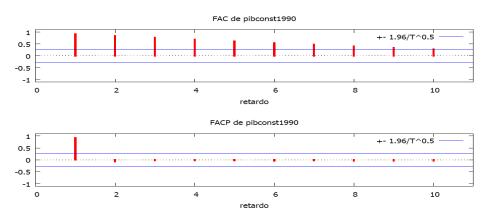
TASA DE CRECIMIENTO ECONOMICA:



Función de autocorrelación para TCE

FAC	FACP	Estad-Q	. [valor p]
0.6025	*** 0.6025 **	* 19.6268	[0.000]
0.4297	*** 0.1047	29.8144	[0.000]
0.1802	-0.1821	31.6424	[0.000]
0.0760	-0.0035	31.9743	[0.000]
0.0229	0.0383	32.0051	[0.000]
-0.0280	-0.0581	32.0522	[0.000]
-0.0377	-0.0079	32.1394	[0.000]
-0.0266	0.0342	2.1839	[0.000]
-0.0766	-0.1043	32.5616	[0.000]
-0.1012	-0.0536	33.2369	[0.000]
	0.6025 0.4297 0.1802 0.0760 0.0229 -0.0280 -0.0377 -0.0266 -0.0766	0.6025 *** 0.6025 *** 0.4297 *** 0.1047 0.1802	0.6025 **** 0.6025 **** 19.6268 0.4297 *** 0.1047 29.8144 0.1802 -0.1821 31.6424 0.0760 -0.0035 31.9743 0.0229 0.0383 32.0051 -0.0280 -0.0581 32.0522 -0.0377 -0.0079 32.1394 -0.0266 0.0342 2.1839 -0.0766 -0.1043 32.5616

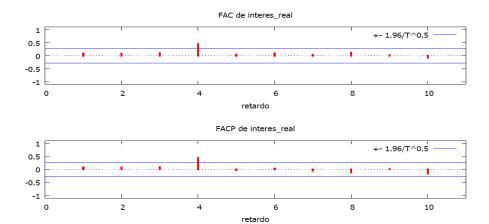
PRODUCTO INTERNO BRUTO:



Función de autocorrelación para pibconst1990

RETARDO	FAC	FACP	Estad-Q	[valor p]
1	0.9226 ***	0.9226 ***	46.0186	[0.000]
2	0.8415 ***	-0.0655	85.0814	[0.000]
3	0.7627 ***	-0.0279	117.8383	[0.000]
4	0.6865 ***	-0.0277	144.9427	[0.000]
5	0.6145 ***	-0.0176	167.1309	[0.000]
6	0.5426 ***	-0.0450	184.8132	[0.000]
7	0.4735 ***	-0.0267	198.5839	[0.000]
8	0.4061 ***	-0.0356	208.9496	[0.000]
9	0.3401 **	-0.0381	216.3941	[0.000]
10	0.2762 **	-0.0354	221.4229 [0.000	0]

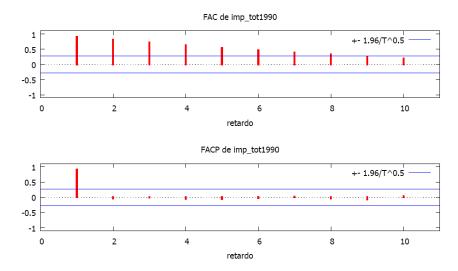
TASA DE INTERES REAL



Función de autocorrelación para interes_real

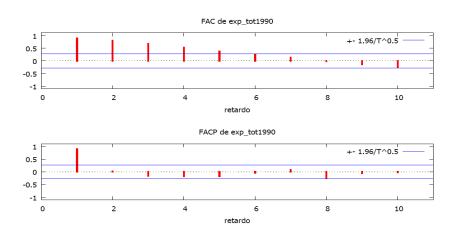
RET	ARDO	FAC	FACP	Estad-Q. [valor p]
1	0.0811	0.0811	0.3553	[0.551]
2	0.0805	0.0744	0.7128	[0.700]
3	0.1073	0.0964	1.3609	[0.715]
4	0.4531	***0.4420 ***	13.1662	[0.010]
5	0.0331	-0.0299	13.2305	[0.021]
6	0.0861	0.0337	13.6761	[0.033]
7	0.0391	-0.0538	13.7698	[0.055]
8	0.1087	-0.1208	14.5130	[0.069]
9	0.0250	0.0189	14.5532	[0.104]
10	-0.0706	-0.1595	14.8816	[0.136]

IMPORTACIONES TOTALES:



RETARDO	FAC	FACP	Estad-Q.	[valor p]
1	0.9010 ***	0.9010 ***	43.8881	[0.000]
2	0.8045 ***	-0.0388	79.5950	[0.000]
3	0.7178 ***	-0.0015	108.6104	[0.000]
4	0.6291 ***	-0.0599	131.3739	[0.000]
5	0.5399 ***	-0.0552	148.5034	[0.000]
6	0.4563 ***	-0.0288	161.0104	[0.000]
7	0.3874 ***	0.0217	170.2309	[0.000]
8	0.3191 **	-0.0441	176.6330	[0.000]
9	0.2458 *	-0.0742	180.5208	[0.000]
10	0.1907	0.0376	182.9194	[0.000]

EXPORTACIONES TOTALES:



Función de autocorrelación para exp_tot1990

RETARDO	FAC	FACP	Estad-Q.	[valor p]
1	0.8866 ***	0.8866 ***	42.4910	[0.000]
2	0.7893 ***	0.0155	76.8589	[0.000]
3	0.6686 ***	-0.1595	102.0284	[0.000]
4	0.5296 ***	-0.1742	118.1567	[0.000]
5	0.3752 ***	-0.1737	126.4272	[0.000]
6	0.2344 *	-0.0452	129.7277	[0.000]
7	0.1245	0.0744	130.6800	[0.000]
8	-0.0220	-0.2528 *	130.7105	[0.000]
9	-0.1381	-0.0560	131.9378	[0.000]
10	-0.2364 *	-0.0304	135.6212	[0.000]

6.3. AJUSTE DE MODELOS UNIVARIANTES.

Comenzamos con la variable pibconst1990:

Al observar el gráfico de series temporales de la serie original y de la serie diferenciada, junto

con el correlograma, sospechamos que el modelo candidato para esta variable es a lo sumo un

ARIMA(1,1,1).

Hay que considerar que a partir de 1979-1980 se observa un cambio de nivel en esta variable,

por lo que debe incluirse este cambio en el modelo, agregando una variable escalón a partir de

esta fecha. Esto permitirá que las estimaciones sean más ajustadas al modelo real. Esto se hace

automáticamente en el software si se le requiere.

Al hacer la estimación es SPSS por mínimos cuadrados al final resultó con un orden aún

menor. En las siguientes corridas se incluye las pruebas de Ljung-Box de estacionariedad, par

confirmar la elección del modelo seleccionado. Además donde se consideró necesario se

incluyó la existencia de valores atípicos para que el programa introduzca la variable respectiva

y el modelo se ajuste mejor.

Variable: pibconst1990

Modelo ARIMA(1,1,0)

Model Description

Model Type Model ID pibconst1990 Model_1 ARIMA(1,1,0)

Model Fit

Percentile 5 10 50 75 90 Fit Statistic Mean SE Minimum Maximum 25 95 Stationary R-squ .462 .462 .462 .462 .462 .462 .462 .462 .462 .462 R-squared .996 .996 .996 .996 .996 .996 .996 .996 .996 .996

109

Model Statistics

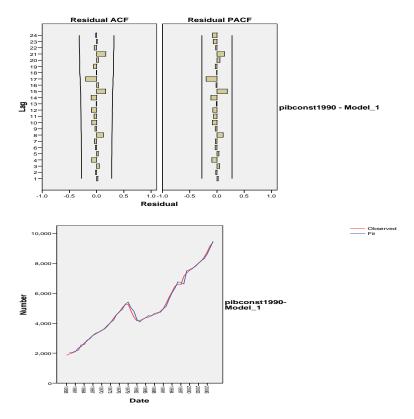
		Model Fit	, .	2)			
	Number of	statistics	Lj	Number of			
Model	Predictors	R-squared	Statistics	DF	Sig.	Outliers	
pibconst1990-Model_1	0	.996	9.056	17	.938	1	

ARIMA Model Parameters

		Estimate	SE	t	Sig.
pibconst1990-Model_ pibconst1990 No Transformatio Constant	157.362	42.887	3.669	.001	
AR	Lag 1	.575	.119	4.836	.000
Difference	e	1			

Outliers

			Estimate	SE	t	Sig.
pibconst1990-Model_1	1980	Level Shift	-320.390	114.867	-2.789	.008



Podemos observar en la corrida de SPSS que la variables que se consideraron en el modelo explican el 99.6% de la variabilidad. Además la prueba de autocorrelación

de Ljung-Box no permite rechazar la hipótesis de incorrelación residual. Asimismo confirmamos que hay un cambio de nivel en 1980, por lo que se incluye en el modelo esta situación. Finalmente podemos observar que lo errores asociados al modelo no se salen de las bandas de confianza, lo cual permite afirmar que se tiene un modelo aceptable.

El resto de las estimaciones de los modelos univariantes se hizo de forma análoga

Variable:invpriv_1990

Modelo:ARIMA(0,1,0)

Model Description

			Model Type
Model ID	inv priv1990	Model_1	ARIMA(0,1,0)

Model Fit

					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.290		.290	.290	.290	.290	.290	.290	.290	.290	.290
R-squared	.954		.954	.954	.954	.954	.954	.954	.954	.954	.954

Model Statistics

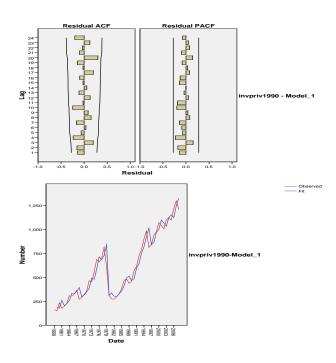
	Number of	Model Fit statistics	Ljı	Ljung-Box Q(18)			
Model	Predictors	R-squared	Statistics	DF	Sig.	Number of Outliers	
inv priv1990-Model_1	0	.954	21.738	18	.244	1	

ARIMA Model Parameters

				Estimate	SE	t	Sig.
inv priv1990-Model_1	inv priv1990	No Transformation	Constant	27.347	10.301	2.655	.011
			Difference	1			

Outliers

			Estimate	SE	t	Sig.
inv priv1990-Model_1	1980	Level Shift	-322.756	72.840	-4.431	.000



VARIABLE inv_pub1990

MODELO: ARIMA(1,0,0)

Model Description

			Model Type
Model ID	inv pub1990	Model_1	ARIMA(1,0,0)

Model Fit

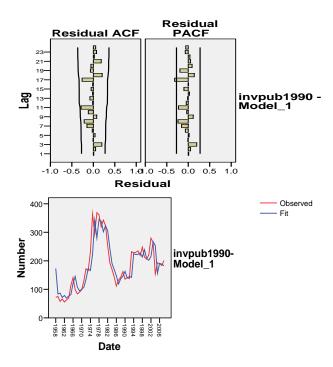
					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.761		.761	.761	.761	.761	.761	.761	.761	.761	.761
R-squared	.761		.761	.761	.761	.761	.761	.761	.761	.761	.761

Model Statistics

		Model Fit				
	Number of	statistics	Ljung-Box Q(18)			Number of
Model	Predictors	R-squared	Statistics	DF	Sig.	Outliers
inv pub1990-Model_1	0	.761	23.172	17	.144	0

ARIMA Model Parameters

			Estimate	SE	t	Sig.
inv pub1990-Mode inv pub199 No Transformati Co	Constant		173.064	42.662	4.057	.000
AF	.R	Lag 1	.882	.063	13.914	.000



VARIABLE: prestamos_1990

Model Description

			Model Type
Model ID	prestamos1990	Model_1	ARIMA(0,1,0)

Model Fit

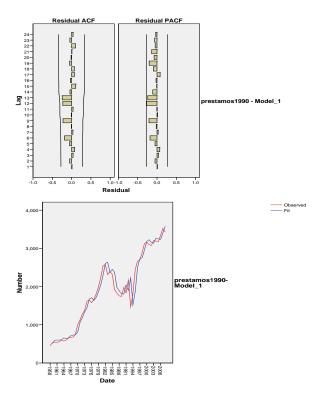
					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-square	2.22E-016		2.22E-016	2.22E-016	2.22E-016	2.22E-016	2.22E-016	2.22E-016	2.22E-016	2.22E-016	2.22E-016
R-squared	.956		.956	.956	.956	.956	.956	.956	.956	.956	.956

Model Statistics

	Number of	Model Fit statistics	Ljı	ung-Box Q(18	3)	Number of
Model	Predictors	R-squared	Statistics	DF	Sig.	Outliers
prestamos1990-Model_1	0	.956	15.646	18	.617	0

ARIMA Model Parameters

	Estimate	SE	t	Sig.
prestamos1990-Model prestamos199(No Transformatic Constant	59.437	27.980	2.124	.039
Difference	1			



VARIABLE: TCE

MODELO

Model Description

			Model Type
Model ID	TCE	Model_1	ARIMA(1,0,0)

Model Fit

					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-square	.501		.501	.501	.501	.501	.501	.501	.501	.501	.501
R-squared	.501		.501	.501	.501	.501	.501	.501	.501	.501	.501
RMSE	2.639		2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639
MAPE	75.498		75.498	75.498	75.498	75.498	75.498	75.498	75.498	75.498	75.498
MaxAPE	828.253		828.253	828.253	828.253	828.253	828.253	828.253	828.253	828.253	828.253
MAE	1.722		1.722	1.722	1.722	1.722	1.722	1.722	1.722	1.722	1.722
MaxAE	10.202		10.202	10.202	10.202	10.202	10.202	10.202	10.202	10.202	10.202
Normalized BIC	2.172		2.172	2.172	2.172	2.172	2.172	2.172	2.172	2.172	2.172

Model Statistics

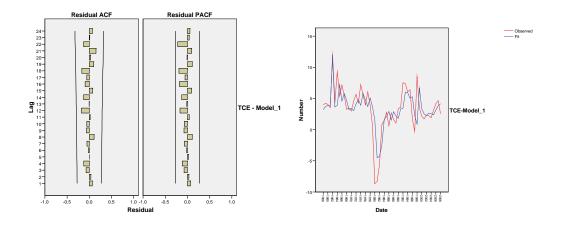
	Number of	Model Fit statistics	Ljı	Number of		
Model	Predictors	R-squared	Statistics	DF	Sig.	Outliers
TCE-Model_1	0	.501	9.965	17	.905	1

ARIMA Model Parameters

					Estimate	SE	t	Sig.
TCE-Model_1	TCE	No Transformation	Constant		3.217	1.021	3.150	.003
			AR	Lag 1	.651	.108	6.014	.000

Outliers

			Estimate	SE	t	Sig.
TCE-Model_1	1962	Additive	8.126	2.213	3.673	.001



VARIABLE interes_real

MODELO: ARIMA(1,0,1)

Model Description

			Model Type
Model ID	interes real	Model_1	ARIMA(1,0,1)

Model Fit

					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.831		.831	.831	.831	.831	.831	.831	.831	.831	.831
R-squared	.831		.831	.831	.831	.831	.831	.831	.831	.831	.831
RMSE	5.598		5.598	5.598	5.598	5.598	5.598	5.598	5.598	5.598	5.598
MAPE	70.391		70.391	70.391	70.391	70.391	70.391	70.391	70.391	70.391	70.391
MaxAPE	504.335		504.335	504.335	504.335	504.335	504.335	504.335	504.335	504.335	504.335
MAE	3.649		3.649	3.649	3.649	3.649	3.649	3.649	3.649	3.649	3.649
MaxAE	18.826		18.826	18.826	18.826	18.826	18.826	18.826	18.826	18.826	18.826
Normalized BIC	3.753		3.753	3.753	3.753	3.753	3.753	3.753	3.753	3.753	3.753

Model Statistics

	Number of	Model Fit statistics	Ljı	ung-Box Q(18	3)	Number of
Model	Predictors	R-squared	Statistics	DF	Sig.	Outliers
interes real-Model_1	0	.831	20.481	16	.199	2

116

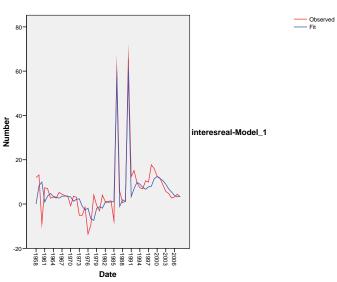
ARIMA Model Parameters

			Estimate	SE	t	Sig.
interes real-Mode interes No Transformati	AR	Lag 1	.919	.068	13.479	.000
real	MA	Lag 1	.496	.171	2.905	.006

Outliers

			Estimate	SE	t	Sig.
interes real-Model_1	1986	Additive	59.392	5.006	11.865	.000
	1990	Additive	58.582	4.923	11.900	.000





VARIABLE: inflacion

MODELO ARIMA(0,1,1)

Model Description

			Model Type
Model ID	inflacion	Model_1	ARIMA(0,1,1)

Model Fit

					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-square	.839		.839	.839	.839	.839	.839	.839	.839	.839	.839
R-squared	.656		.656	.656	.656	.656	.656	.656	.656	.656	.656

Model Statistics

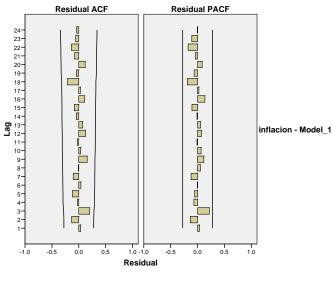
	Number of	Model Fit statistics				
Model	Predictors	R-squared	Statistics	DF	Sig.	Outliers
inflacion-Model_1	0	.656	13.380	17	.710	2

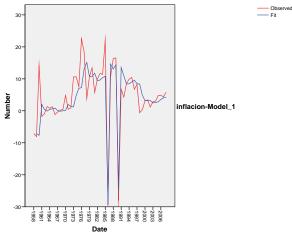
ARIMA Model Parameters

			Estimate	SE	t	Sig.
inflacion-Model inflacion No Transformat	1					
	MA	Lag 1	.617	.125	4.951	.000

Outliers

			Estimate	SE	t	Sig.
inflacion-Model_1	1986	Additive	-43.096	5.094	-8.460	.000
	1990	Additive	-38.937	5.084	-7.659	.000





VARIABLE: explot._1990 MODELO: ARIMA(0,1,0)

Model Description

			Model Type
Model ID	exp.tot1990	Model_1	ARIMA(0,1,0)

Model Fit

					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.549		.549	.549	.549	.549	.549	.549	.549	.549	.549
R-squared	.943		.943	.943	.943	.943	.943	.943	.943	.943	.943

Model Statistics

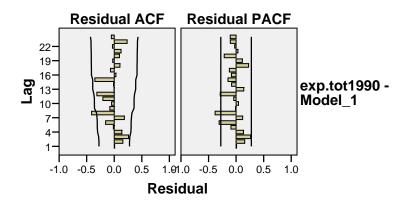
	Number of	Model Fit statistics	Ljı	Number of		
Model	Predictors	R-squared	Statistics	DF	Sig.	Outliers
exp.tot1990-Model_1	0	.943	40.685	18	.002	3

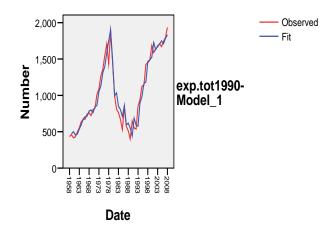
ARIMA Model Parameters

				Estimate	SE	t	Sig.
exp.tot1990-Model_1	exp.tot1990	No Transformation	Constant	39.897	16.739	2.383	.021
			Difference	1			

Outliers

			Estimate	SE	t	Sig.
exp.tot1990-Model_1	1979	Additive	429.108	82.855	5.179	.000
	1981	Level Shift	-491.679	118.365	-4.154	.000
	1986	Additive	286.967	82.855	3.463	.001





VARIABLE imp_tot1990

MODELO:ARIMA(0,1,0)

Model Description

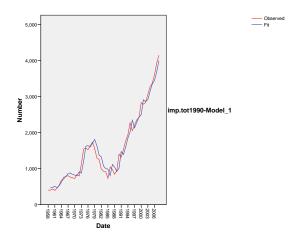
			Model Type
Model ID	imp.tot1990	Model_1	ARIMA(0,1,0)

Model Statistics

	Number of	Model Fit statistics	Lj	ung-Box Q(18	3)	Number of
Model	Predictors	R-squared	Statistics	DF	Sig.	Outliers
imp.tot1990-Model_1	0	.970	12.420	18	.825	0

ARIMA Model Parameters

				Estimate	SE	t	Sig.
imp.tot1990-Model_1	imp.tot1990	No Transformation	Constant	74.976	24.415	3.071	.003
			Difference	1			



VARIABLE deuda_ext1990 MODELO ARIMA(0,1,0)

Model Description

			Model Type
Model ID	deuda ext1990	Model_1	ARIMA(0,1,0)

Model Fit

					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-square	.33E-016		3.33E-016	3.33E-016	3.33E-016	3.33E-016	3.33E-016	3.33E-016	3.33E-016	3.33E-016	3.33E-016
R-squared	.952		.952	.952	.952	.952	.952	.952	.952	.952	.952

En resumen, tenemos los siguientes modelos:

	VARIABLE	MODELO AJUSTADO	TIPO DE VALOR ATIPICO
1	pibconst1990	ARIMA(1,1,0)	Cambio de nivel en 1979
2	inv_priv1990	ARIMA(0,1,0)	Cambio de nivel en 1980
3	inv_pub2009	ARIMA(1,0,0)	-
4	prestamos_1990	ARIMA(0,1,0)	-
5	TCE	ARIMA(1,0,0)	Aditivo en 1962
6	interes_real	ARIMA(1,0,1)	Aditivo, en 1986 y 1990
7	inflacion	ARIMA(0,1,1)	Aditivo en 1986 y 1990
8	exptot_1990	ARIMA(0,1,0)	Aditivo en 1979 y 1986; cambio de nivel en 1981
9	imp_tot1990	ARIMA (0,1,0)	-
10	deuda_ext1990	ARIMA(0,1,0)	-

6.4 . Identificación del modelo multivariante.

El método que usaremos para la identificación del modelo es el método de las correlaciones cruzadas.. Este método consiste en identificar separadamente la función impulso respuesta y el modelo del ruido, utilizando para ello la función de autocorrelación cruzada. Las estimaciones de la función de covarianza cruzada originan las denominadas funciones de covarianza cruzada muestral y de correlación cruzada muestral. Luego se hará un análisis del ruido para verificar que el modelo estimado este sea estable.

Recordemos brevemente como se definen estas funciones de correlación, que serán la base de la identificación y estimación del modelo.

6.4.1. Correlaciones cruzadas.

A continuación hacemos una breve descripción sobre la interpretación de estas correlaciones cruzadas.

Teóricamente la función de covarianzas cruzadas es una medida de dependencia lineal entre variables que corresponden a procesos estacionarios. Se define como:

$$\gamma_{xy}(k) = \gamma_{xy}(t, t+k) = E\left[\left(x_t - \mu_x\right)\left(y_t - \mu_y\right)\right]$$

Esta función depende del orden en que se tomen las variables y de los instantes en que se considera cada una de ellas $\gamma_{xy}(t,t+k)$ mide la relación lineal entre las dos variables

$$X_t y y_{t+k}$$

. El valor de k puede ser negativo o positivo. Se dice que dos procesos estocásticos estacionarios x_t y y_t son conjuntamente estacionarios si cada uno de ellos estacionario y las covarianzas cruzadas sólo dependen del retardo entre las variables, k , y no del instante inicial considerado. Esta función de covarianzas cruzadas tiene varias propiedades importantes, que serán tratadas en el planteamiento teórico. Por ejemplo la función de covarianzas cruzadas no es simétrica respecto al retardo k y se tiene que:

- **1-** Para k>0 los coeficientes $\gamma_{xy}(k)$ representan como los valores de x_t influyen en los valores futuros de y_{t+k} , lo que se interpreta diciendo que la parte positiva de esta función representa la relación "causal" de x_t hacia y_{t+k} .
- **2- Para k<0 los coeficientes** $\mathcal{Y}_{xy}(k)$ representan cómo los valores de y_t influyen sobre los valores futuros x_{t+k} , lo que interpretamos diciendo que la parte negativa de esta función representa la relación causal de y_t a x_{t+k} . De acuerdo a esto podría usarse la función de covarianzas cruzadas para identificar si la relación es en un sentido o bidireccional y también obtener el número de retardos distintos de cero en la relación

entre dos variables. Esto siempre y cuando estemos en presencia de procesos estacionarios.

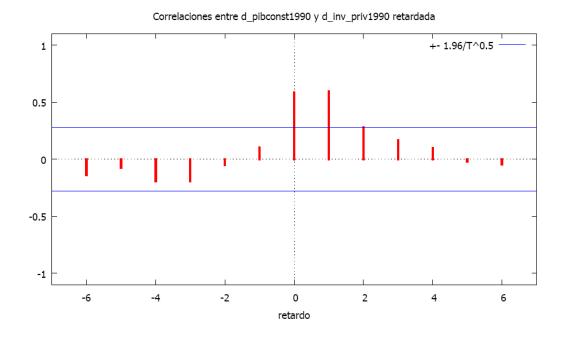
3- En vez de usar la función de covarianzas cruzadas puede definirse otra función que cumple los mismos fines, esta es la función de autocorrelaciones cruzadas, la cual no es más que la estandarización de la función de covarianzas cruzadas. Su definición es :

$$\rho_{xy} = \frac{\gamma_{xy}(k)}{\sigma_x \sigma_y} \quad , k \in \mathbb{Z}$$

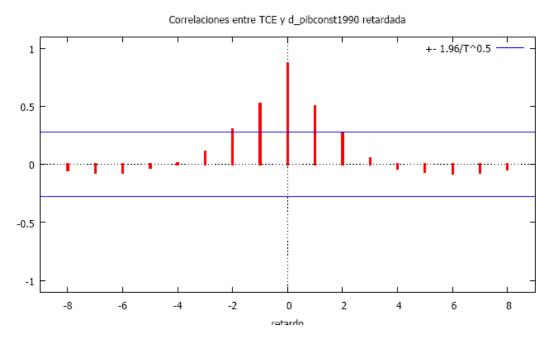
La cual tiene interpretaciones completamente análogas a la función de covarianzas cruzadas.

Es necesario aclarar que cuando se tiene una muestra, las conclusiones que se obtengan de los gráficos de correlaciones cruzadas, corresponden a una observación burda, un procedimiento meramente descriptivo. Por ello las conclusiones podrían variar con lo que realmente ocurre. Sobre todo si los datos corresponden a periodos largos como en nuestro caso anuales. Sin embargo pueden servir para plantear una primera aproximación al modelo inicial.

Por supuesto que se espera una discrepancia con la realidad no muy grande, por ello puede establecerse un margen para establecer el número de retardos, por ejemplo, en el modelo a estimar. Por ejemplo si aparecen 0 ò 1 retardo podría incluirse 2 retardos, ya que si no debería haberse incluido en el modelo, de todas formas será rechazado a través de medios más formales como pruebas de hipótesis, etc.



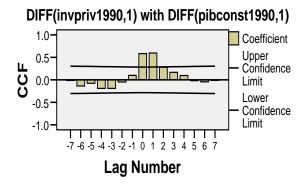
Podríamos conjeturar que se podrían incluir en el modelo que incluya al pibconst1990 como variable explicativa hasta dos retardos a los sumo. Además podemos afirmar que la variable pibconst1990 tiene influencia sobre la variable invpib1990 en esa dirección. Por supuesto que esto es a niel de conjetura.



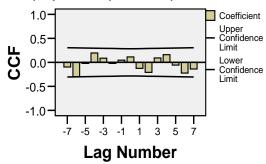
El SPSS permite obtener las correlaciones cruzadas de una sola vez.

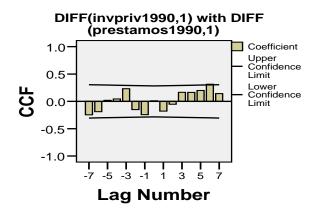
6.4.1.1. CORRELACIONES CRUZADAS ENTRE INVPRIV_1990 Y EL RESTO DE VARIABLES EXPLICATIVAS.

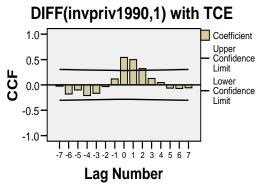
Estas correlaciones cruzadas son muy importantes porque si aparecen variables explicativas que no estén correlacionadas con la variable inversión privada, no serán incluidas en el modelo, aunque aquí se harán algunas consideraciones posteriores.

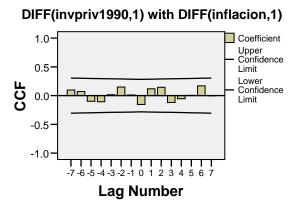


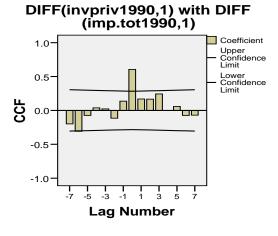
DIFF(invpriv1990,1) with DIFF(deudaext199...



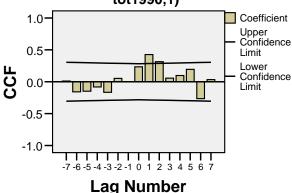




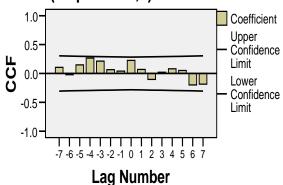




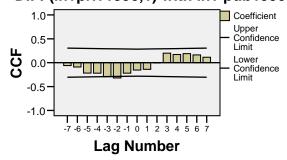
DIFF(invpriv1990,1) with DIFF(exp. tot1990,1)



DIFF(invpriv1990,1) with interes real



DIFF(invpriv1990,1) with inv pub1990



De aquí podemos estimar el número de retardos que pueden ser incluidos en el modelo d cada una de las variables que guardan correlación con la variable dependiente.

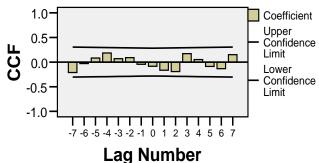
6.4.1.2. Correlaciones cruzadas entre las variables explicativas.

De estas correlaciones cruzadas se va a determinar los distintos modelos alternativos que pueden ajustarse a la inversión privada. Esto es, si resultan dos

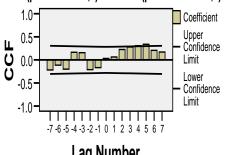
variables explicativas correlacionadas, ambas no pueden incluirse en el modelo, porque estaríamos introduciendo un parámetro de más. Esto originaria el planteamiento de dos modelos alternativos.

Los gráficos de las correlaciones cruzadas para estas variables se muestran a continuación:

DIFF(pibconst1990,1) with DIFF(deudaext1990,1)

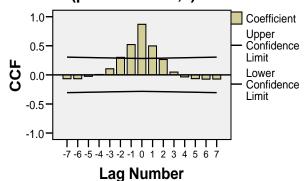


DIFF(pibconst1990,1) with DIFF(prestamos1990,1)

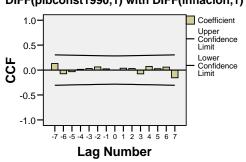


Lag Number

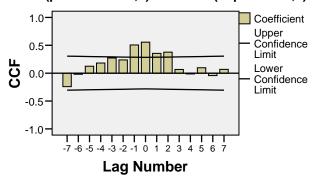
DIFF(pibconst1990,1) with TCE



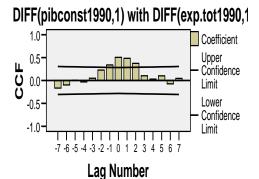
DIFF(pibconst1990,1) with DIFF(inflacion,1)

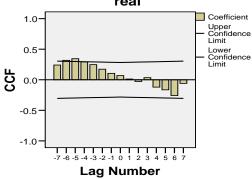


DIFF(pibconst1990,1) with DIFF(imp.tot1990,1)

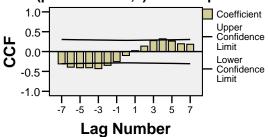


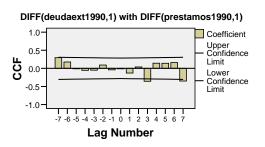
DIFF(pibconst1990,1) with interes real

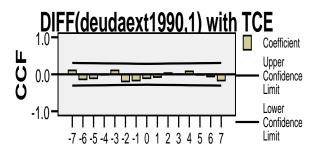


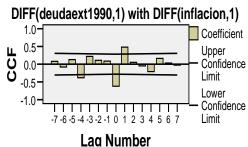


DIFF(pibconst1990,1) with inv pub1990

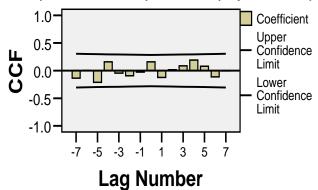




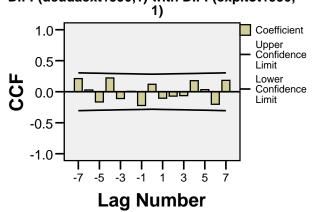


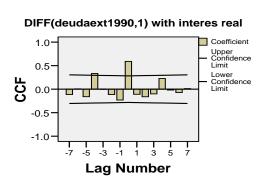


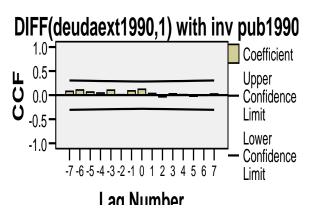
DIFF(deudaext1990,1) with DIFF(imp.tot1990,1)



DIFF(deudaext1990,1) with DIFF(exp.tot1990,



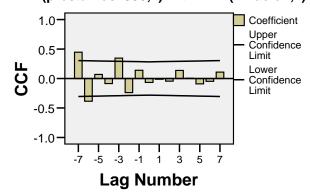




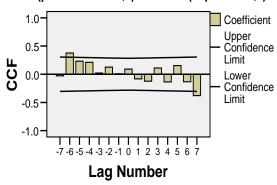
DIFF(prestamos1990,1) with TCE



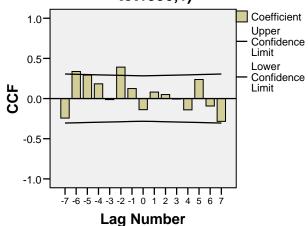
DIFF(prestamos1990,1) with DIFF(inflacion,1)

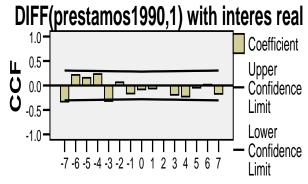


DIFF(prestamos1990,1) with DIFF(imp.tot1990,1)



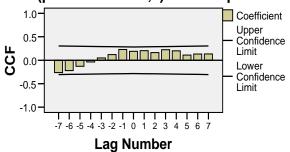
DIFF(prestamos1990,1) with DIFF(exp. tot1990,1)

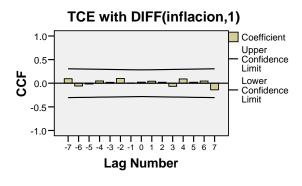


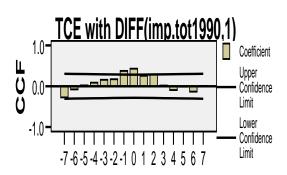


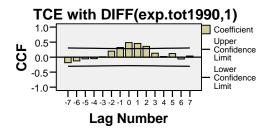
I an Niimhar

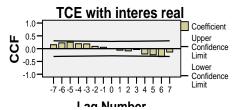
DIFF(prestamos1990,1) with inv pub1990

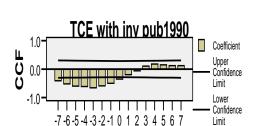


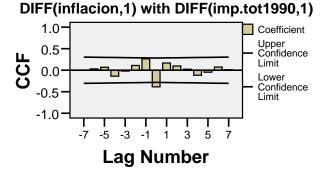


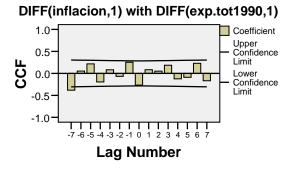


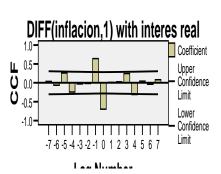


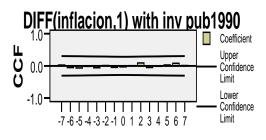


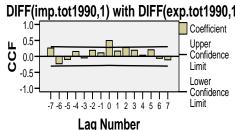


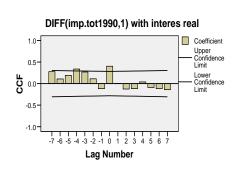


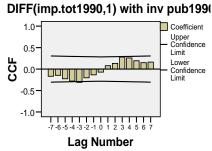


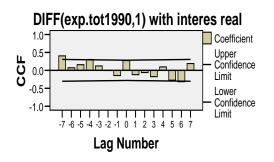


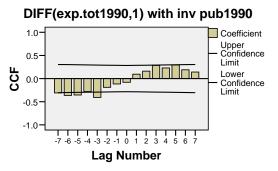


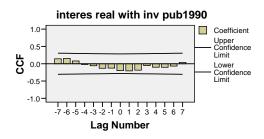












6.4.1.3. Correlaciones entre las variables.

De los gráficos de las correlaciones cruzadas se puede conjeturar las diferentes correlaciones encontradas, haciendo notar que en nuestro caso interesan las correlaciones para retardos positivos

a) Variable Dependiente vrs. Variables explicativas

Existe correlación entre la variable invpriv1990 con las variables pib (fuerte correlación), TCE(fuerte correlación), imptot 1990, exptot 1990 e invpub 1990.

b) Variables Explicativas

Existe correlación entre pib y las variables TCE (fuerte correlación), exp_tot1990, imp tot1990, inv pub1990.

La deuda externa se correlaciona con las variables interes real e inflación.

La tasa de crecimiento económico resultó correlacionada, TCE resultó correlacionada con imp tot1990, exp tot 1990 e inv pub1990.

La inflación se correlaciona con imp_tot1990 e interes_real.

Por último la variable imp tot 1990 se correlaciona con exptot 1990 e interes real.

Se ha aclarado los casos en que se ha encontrado alta correlación. Donde no se indique es porque la relación es entre débil a moderada.

A partir de estas relaciones podemos proponer diferentes modelos, entre los cuales se analizarán sus respectivos residuos para ver cual o cuales modelos explican mejor la inversión privada.

6.5. Determinación de causalidad en el sentido granger.

Para evitar la obtención de un modelo carente de significado del que podamos sacar conclusiones sin sentido es necesario verificar si efectivamente las variables que decidimos que participarían en el modelo causan en el sentido Granger a la variable inversión privada. Como indicamos en 3.2.7 se hace la regresión con cada una de las variables de interés y se concluye con las pruebas de hipótesis respectivas.

A continuación presentamos la regresión relativa a determinar si el PIB causa en el sentido Granger a la inversión privada.

INVERSION PRIVADA Vrs. PIB.

Evaluaciones de la función: 26

Evaluaciones del gradiente: 6

Modelo 8: ARMAX, usando las observaciones 1961-2008 (T = 48)

Estimado usando el filtro de Kalman (MV exacta)

Variable dependiente: (1-L) inv priv1990

Desviaciones típicas basadas en el Hessiano

Coeficiente	Desv. Típica	Estadístico t	Valor p
-------------	--------------	---------------	---------

phi_2	-0.415317	0.135177	-3.072	0.0021	***
d_pibconst1990	0.335838	0.0460436	7.294	3.01e-013	3 ***
d_pibconst1_2	-0.182369	0.0479717	-3.802	0.0001	***

Media de la vble. dep. 20.30003 D.T. de la vble. dep. 85.87909 media innovaciones -6.318369 D.T. innovaciones 59.34045 Log-verosimilitud -264.2964 Criterio de Akaike 536.5927 Criterio de Schwarz 544.0775 Crit. de Hannan-Quinn 539.4212

Real Imaginaria Módulo Frecuencia

AR
Raíz 1 0.0000 -1.5517 1.5517 -0.2500
Raíz 2 0.0000 1.5517 1.5517 0.2500

Podemos afirmar por contraste de hipótesis anterior que la variable PIB causa la variable inversión privada en el sentido granger.

INVERSIÓN PRIVADA VRS. INVERSION PÚBLICA

Evaluaciones de la función: 58 Evaluaciones del gradiente: 25

Modelo 14: ARMAX, usando las observaciones 1960-2008 (T = 49)

Estimado usando el filtro de Kalman (MV exacta)

Variable dependiente: (1-L) inv priv1990

Desviaciones típicas basadas en el Hessiano

	Coeficiente	Desv. Típica	Estadístico	t Valor p
const	77.7025	21.3432	3.641	0.0003 ***
phi_2	-0.254166	0.141666	-1.794	0.0728 *
inv_pub1990_2	-0.302848	0.105414	-2.873	0.0041 ***

Media de la vble. dep. 21.58171 D.T. de la vble. dep. 85.45210 media innovaciones -0.434843 D.T. innovaciones 77.14900 Log-verosimilitud -282.5360 Criterio de Akaike 573.0719 Criterio de Schwarz 580.6392 Crit. de Hannan-Quinn 575.9429

Real Imaginaria Módulo Frecuencia

AR

Raíz 1 0.0000 -1.9835 1.9835 -0.2500 Raíz 2 0.0000 1.9835 1.9835 0.2500

Vemos que también la inversión pública causa en el sentido Granger a la inversión privada.

IMPORTACIONES TOTALES VRS. INVERSION PRIVADA

Evaluaciones de la función: 1

Evaluaciones del gradiente: 1

Modelo 17: ARMAX, usando las observaciones 1959-2008 (T = 50)

Estimado usando el filtro de Kalman (MV exacta)

Variable dependiente: (1-L) inv_priv1990

Desviaciones típicas basadas en el Hessiano

Coeficiente Desv. Típica Estadístico t Valor p

Media de la vble. dep. 20.89215 D.T. de la vble. dep. 84.71608

media innovaciones 7.312426 D.T. innovaciones 65.81756

Log-verosimilitud -280.2913 Criterio de Akaike 566.5825

Criterio de Schwarz 572.3186 Crit. de Hannan-Quinn 568.7669

Observamos que las importaciones totales causan la inversión privada en el sentido Granger.

6.6. Determinación del modelo de regresión dinámica.

Según los resultados de las correlaciones anteriores, se plantean a continuación los siguientes modelos alternativos.

a)invpriv_1990 = f(pib, exp_tot1990, imp_tot1990, inv_pub1990)

b) invpriv 1990= f(TCE, exp tot1990, imp tot1990, inv pub1990)

c)invpriv_1990=f(pib, imp_tot1990, inv_pub1990)

d)invpriv 1990= f(pib, exp tot1990, inflacion, inv pub1990)

e)invpriv_1990= f(pib, exp_tot1990, interes_real, inv_pub1990)

f)invpriv 1990= f(pib, exp tot1990, inv pub1990)

Las justificaciones del porque se plantean estos modelos se esbozan en el siguiente párrafo:

Los primeros dos modelos se justifican porque no pueden incluir a la TCE y al pib juntos, ya que se correlacionan fuertemente. En el literal c)la variable exp_tot1990 se relaciona débilmente con la invpriv_1990. En d) y e) porque inflación se correlaciona con imp_tot1990 e interes_real. En f) porque imp_tot1990 se correlaciona con exp_tot1990. Finalmente, observemos que aunque el pib y TCE se relacionan con otras explicativas, estas no fueron sustituidas en los modelos, porque sus correlaciones con la variable invpriv_1990 son muy altas, mientras que las otras se relacionan con invpriv_1990 con menor intensidad. Hasta aquí hemos identificado los modelos de interés para nuestro estudio.

De los correlogramas cruzados determinamos que variables son las que van a participar en la definición del modelo y además podemos estimar el número de retardos que debemos incluir para cada una de las variables explicativas.

Observamos que en el análisis de correlación cruzada se ha tomado unas variables con una diferencia regular. Esto se hizo a la luz de los correlogramas, sin embargo es necesario efectuar pruebas formales para estar más seguros.

Entonces efectuamos un contraste de raíces unitarias para determinar si amerita tomar una diferencia regular para hacer la serie estacionaria y así confirmar las sospechas que resultaron de los correlogramas.

6.8. Contrastes de raíces unitarias y relaciones de cointegración.

Etapa 1: contrastando la existencia de una raíz unitaria en pibconst1990

Contraste aumentado de Dickey-Fuller para pibconst1990

incluyendo un retardo de (1-L)pibconst1990

tamaño muestral 49

hipótesis nula de raíz unitaria: a = 1

contraste con constante

modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e

Coef. de autocorrelación de primer orden de e: 0.043

valor estimado de (a - 1): 0.00386746

Estadístico de contraste: $tau_c(1) = 0.339973$

valor p asintótico 0.9804

Etapa 2: contrastando la existencia de una raíz unitaria en inv pub1990

Contraste aumentado de Dickey-Fuller para inv pub1990

incluyendo un retardo de (1-L)inv pub1990

tamaño muestral 49

hipótesis nula de raíz unitaria: a = 1

contraste con constante

modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e

Coef. de autocorrelación de primer orden de e: -0.007

valor estimado de (a - 1): -0.135884

Estadístico de contraste: tau c(1) = -1.93724

valor p asintótico 0.3153

Etapa 3: contrastando la existencia de una raíz unitaria en imp tot 1990

Contraste aumentado de Dickey-Fuller para imp tot1990

incluyendo un retardo de (1-L)imp tot1990

tamaño muestral 49

hipótesis nula de raíz unitaria: a = 1

contraste con constante

modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e

Coef. de autocorrelación de primer orden de e: -0.000

valor estimado de (a - 1): 0.044051

Estadístico de contraste: tau c(1) = 1.51072

valor p asintótico 0.9994

Etapa 4: regresión cointegrante

Regresión cointegrante -

MCO, usando las observaciones 1958-2008 (T = 51)

Variable dependiente: pibconst1990

Coeficiente Desv. Típica Estadístico t Valor p

const 1732.13 163.629 10.59 3.80e-014 ***
inv_pub1990 1.64925 0.869913 1.896 0.0640 *
imp_tot1990 1.91770 0.0754911 25.40 1.74e-029 ***

Media de la vble. dep. 5014.365 D.T. de la vble. dep. 2032.276

Suma de cuad. residuos 10793004 D.T. de la regresión 474.1880

R-cuadrado 0.947735 R-cuadrado corregido 0.945558

Log-verosimilitud -385.0617 Criterio de Akaike 776.1235

Criterio de Schwarz 781.9189 Crit. de Hannan-Quinn 778.3381

rho 0.806745 Durbin-Watson 0.354186

Etapa 5: contrastando la existencia de una raíz unitaria en uhat

Contraste aumentado de Dickey-Fuller para uhat incluyendo un retardo de (1-L)uhat tamaño muestral 49

hipótesis nula de raíz unitaria: a = 1

modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e

Coef. de autocorrelación de primer orden de e: -0.012

valor estimado de (a - 1): -0.187103

Estadístico de contraste: $tau_c(3) = -2.09538$

valor p asintótico 0.6908

De estos resultados obtenidos en el paquete GRETL concluimos que no se puede rechazar la existencia de raíces unitaria para todas las variables individuales y para los residuos. Por lo que se justifica el hecho de tomar diferencias regulares. En el caso de la inversión pública se hace una excepción, ya que vemos en la gráfica de serie temporal que a través de los años ha tendido a estabilizarse y probablemente por los datos de las primeras décadas es que ha resultado la existencia de raíz unitaria. Por esta razón se tomará la variable original para la construcción del modelo, a pesar de los resultados de las pruebas.

NOTA: Hay evidencia de una relación cointegrante si:

- (a) La hipótesis de existencia de raíz unitaria no se rechaza para las variables individuales.
- (b) La hipótesis de existencia de raíz unitaria se rechaza para los residuos de la regresión cointegrante.

6.9. Estimación de los modelos de regresión dinámica.

De acuerdo a los resultados obtenidos en las correlaciones cruzadas, podemos afirmar que las variables y los retardos que que se van a incluir en el modelo son los siguientes:

VARIABLE	NUMERO DE REARDOS A INCLUIR
d_pibconst1990	HASTA 2 RETARDOS
d_exp_tot1990	HASTA 2 RETARDOS
d_imp_tot1990	HASTA 1 RETARDO
inv_pub1990	HASTA 2 RETARDOS

El resultado obtenido en el paquete GRETL, el cual usa estimación por máxima verosimilitud es el siguiente: (El modelo estimado es un modelo de función de transferencia, como los descritos en la teoría).

MODELO1: invpriv_1990 = f(pib, exp_tot1990, imp_tot1990, inv_pub1990)

Modelo 1A: ARMAX, usando las observaciones 1961-2008 (T = 48)

Variable dependiente: (1-L) inv priv1990

Desviaciones típicas basadas en la matriz de productos externos

Coeficiente	Desv. Típica	Estadístico z	Valor p	
13.5317	22.7475	0.5949	0.55193	
0.254544	0.0643346	3.9566	0.00008	***
-0.139791	0.066342	-2.1071	0.03511	**
-0.145844	0.0690704	-2.1115	0.03473	**
0.112261	0.188342	0.5960	0.55114	
0.401809	0.234934	1.7103	0.08721	*
-0.576135	0.182124	-3.1634	0.00156	***
-0.0428624	0.0602401	-0.7115	0.47676	
-0.0134727	0.0683	-0.1973	0.84363	
-0.00809166	0.0582486	-0.1389	0.88952	
0.258421	0.0519589	4.9736	< 0.00001	***
0.0219649	0.0525171	0.4182	0.67577	
	13.5317 0.254544 -0.139791 -0.145844 0.112261 0.401809 -0.576135 -0.0428624 -0.0134727 -0.00809166 0.258421	13.5317 22.7475 0.254544 0.0643346 -0.139791 0.066342 -0.145844 0.0690704 0.112261 0.188342 0.401809 0.234934 -0.576135 0.182124 -0.0428624 0.0602401 -0.0134727 0.0683 -0.00809166 0.0582486 0.258421 0.0519589	13.5317 22.7475 0.5949 0.254544 0.0643346 3.9566 -0.139791 0.066342 -2.1071 -0.145844 0.0690704 -2.1115 0.112261 0.188342 0.5960 0.401809 0.234934 1.7103 -0.576135 0.182124 -3.1634 -0.0428624 0.0602401 -0.7115 -0.0134727 0.0683 -0.1973 -0.00809166 0.0582486 -0.1389 0.258421 0.0519589 4.9736	13.5317 22.7475 0.5949 0.55193 0.254544 0.0643346 3.9566 0.00008 -0.139791 0.066342 -2.1071 0.03511 -0.145844 0.0690704 -2.1115 0.03473 0.112261 0.188342 0.5960 0.55114 0.401809 0.234934 1.7103 0.08721 -0.576135 0.182124 -3.1634 0.00156 -0.0428624 0.0602401 -0.7115 0.47676 -0.0134727 0.0683 -0.1973 0.84363 -0.00809166 0.0582486 -0.1389 0.88952 0.258421 0.0519589 4.9736 <0.00001

Media de la vble. dep.	20.30003	D.T. de la vble. dep.	85.87909
media innovaciones	1.02e-07	D.T. innovaciones	46.64178
Log-verosimilitud	-252.5489	Criterio de Akaike	531.0978
Criterio de Schwarz	555.4234	Crit. de Hannan-Quinn	540.2905

Podemos observar que hay varios coeficientes que no resultaron significativos, incluyendo la constante. Se va a proceder a ir eliminando las variables que no resulten significativas una a una. Esto se hará en orden de significancia, primero se eliminará las menos significativas. Hay que prestar especial atención a los estadísticos de selección de modelos. Recordemos que los que dan los menores valores son los que corresponden a los modelos óptimos.

A continuación se presenta la secuencia de corridas en el paquete GRETL.

Modelo 1B2: ARMAX, usando las observaciones 1961-2008 (T = 48)

Desviaciones típicas basadas en la matriz de productos externos

	Coefic	riente	Desv. Tij	pica	Estadístico z	Valor	p	
d_pibconst1990	0.271	195	0.058139	95	4.6646	< 0.000	001	***
d_pibconst1_1	-0.130	226	0.064600	05	-2.0159	0.0438	31	**
d_pibconst1_2	-0.133	082	0.065895	59	-2.0196	0.0434	13	**
inv_pub1990	0.1326	582	0.185868	3	0.7138	0.4753	32	
inv_pub1990_1	0.4014	1 1	0.235798	3	1.7024	0.0886	59	*
inv_pub1990_2	-0.553	451	0.178742	2	-3.0964	0.0019	96	***
d_exp_tot1990	-0.054	2877	0.057306	63	-0.9473	0.3434	1 7	
d_exp_tot19_1	-0.028	3501	0.063790	01	-0.4444	0.6567	73	
d_exp_tot19_2	-0.019	8489	0.054994	45	-0.3609	0.7181	16	
d_imp_tot1990	0.2567	723	0.05207	13	4.9302	< 0.000	001	***
d_imp_tot19_1	0.017	7329	0.052224	44	0.3396	0.7341	19	
Media de la vble. de	ep.	20.300	03	D.T.	de la vble. de	9 .	85.879	09
media innovaciones	S	1.1852	05	D.T.	innovaciones		46.813	39
Log-verosimilitud		-252.72	52	Crite	erio de Akaike		529.45	03
Criterio de Schwarz	Z	551.90	48	Crit.	de Hannan-Qu	uinn	537.93	59

Modelo 1C: ARMAX, usando las observaciones 1961-2008 (T = 48)

Variable dependiente: (1-L) inv_priv1990

Desviaciones típicas basadas en la matriz de productos externos

	Coeficiente	Desv. Típica	Estadístico z	Valor p	
d_pibconst1990	0.276922	0.0557056	4.9712	< 0.00001	***
d_pibconst1_1	-0.125182	0.0629447	-1.9888	0.04673	**
d_pibconst1_2	-0.132865	0.0659718	-2.0140	0.04401	**
inv_pub1990	0.138765	0.185225	0.7492	0.45376	

inv_pub1990_1	0.393513	0.234929	1.6750	0.0939	93	*
inv_pub1990_2	-0.55227	0.178923	-3.0866	0.0020)2	***
d_exp_tot1990	-0.055392	0.0572826	-0.9670	0.333	55	
d_exp_tot19_1	-0.0246916	0.0629491	-0.3922	0.6948	38	
d_exp_tot19_2	-0.020325	0.0550426	-0.3693	0.7119	93	
d_imp_tot1990	0.25375	0.0513917	4.9376	< 0.00	001	***
Media de la vble.	dep. 20.30	003 D.	Γ. de la vble.	dep.	85.879	09
media innovacione	es 1.092	367 D.	Τ. innovacion	ies	46.869	57
Log-verosimilitud	-252.7	827 Cr	iterio de Akai	ike	527.56	55
Criterio de Schwar	z 548.1	487 Cri	it. de Hannan	-Quinn	535.34	39

Modelo 1D: ARMAX, usando las observaciones 1961-2008 (T = 48)

Desviaciones típicas basadas en la matriz de productos externos

	Coefic	ciente	Desv. Ti	pica	Estadístico z	Valor	p	
d_pibconst1990	0.274	533	0.05540	71	4.9548	< 0.00	001	***
d_pibconst1_1	-0.127	7452	0.062732	27	-2.0317	0.042	19	**
d_pibconst1_2	-0.145	5565	0.05637	75	-2.5820	0.009	82	***
inv_pub1990	0.130	408	0.18409	8	0.7084	0.478	72	
inv_pub1990_1	0.386	218	0.23443		1.6475	0.099	46	*
inv_pub1990_2	-0.530)276	0.16895	6	-3.1385	0.001	70	***
d_exp_tot1990	-0.050)2236	0.05562	52	-0.9029	0.366	58	
d_exp_tot19_1	-0.013	33362	0.05500	43	-0.2425	0.808	43	
d_imp_tot1990	0.255	318	0.05128	88	4.9780	< 0.00	001	***
Media de la vble. d	ep.	20.300	03	D.T.	de la vble. de	p.	85.879	09
media innovacione	S	1.3565	50	D.T.	innovaciones		46.936	10
Log-verosimilitud		-252.85	808	Crite	erio de Akaike		525.70	17
Criterio de Schwarz	Z	544.41	37	Crit.	de Hannan-Q	uinn	532.77	30

Modelo1E: ARMAX, usando las observaciones 1961-2008 (T = 48)

Desviaciones típicas basadas en la matriz de productos externos

	Coefic	ciente	Desv. Ti	pica	Estadístico z	Valor	p	
d_pibconst1990	0.272	822	0.054989	94	4.9614	< 0.00	001	***
d_pibconst1_1	-0.131	1998	0.05990	17	-2.2036	0.027	55	**
d_pibconst1_2	-0.149	9918	0.05347	42	-2.8036	0.0050)5	***
inv_pub1990	0.123	063	0.1817		0.6773	0.4982	22	
inv_pub1990_1	0.4002	201	0.22736	4	1.7602	0.0783	38	*
inv_pub1990_2	-0.532	247	0.16881	7	-3.1541	0.001	51	***
d_exp_tot1990	-0.044	14209	0.05024	41	-0.8841	0.376	54	
d_imp_tot1990	0.256	144	0.05120	67	5.0022	< 0.00	001	***
Media de la vble. d	ep.	20.300	03	D.T.	de la vble. de	p.	85.879	09
media innovacione	S	1.4947	73	D.T.	innovaciones		46.964	83
Log-verosimilitud		-252.88	302	Crite	erio de Akaike		523.76	04

Modelo 1F: ARMAX, usando las observaciones 1961-2008 (T = 48)

540.6012

Variable dependiente: (1-L) inv_priv1990

Criterio de Schwarz

Desviaciones típicas basadas en la matriz de productos externos

	Coeficiente	Desv. Típica	Estadístico z	Valor p	
d_pibconst1990	0.276194	0.0537629	5.1373	< 0.00001	***
d_pibconst1_1	-0.141487	0.0598651	-2.3634	0.01811	**
d_pibconst1_2	-0.144616	0.0526466	-2.7469	0.00602	***
inv_pub1990_1	0.509779	0.175947	2.8973	0.00376	***
inv_pub1990_2	-0.518566	0.170258	-3.0458	0.00232	***
d_imp_tot1990	0.238555	0.0496421	4.8055	< 0.00001	***

Media de la vble. dep.

20.30003

D.T. de la vble. dep.

Crit. de Hannan-Quinn

85.87909

530.1246

media innovaciones	1.916749	D.T. innovaciones	47.66425
Log-verosimilitud	-253.5898	Criterio de Akaike	521.1795
Criterio de Schwarz	534.2779	Crit. de Hannan-Quinn	526.1294
SCR=109,050			

Observamos que hemos obtenido un modelo con todos los coeficientes significativos.

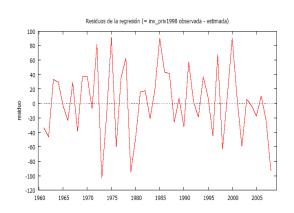
Observamos también que este modelo tiene los menores valores de los estadísticos asociados a los criterios de selección de modelos, acorde a la teoría que ya tratamos.

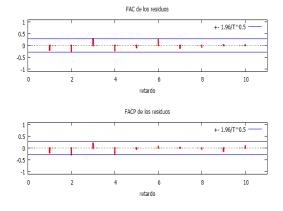
Finalmente el modelo obtenido es:

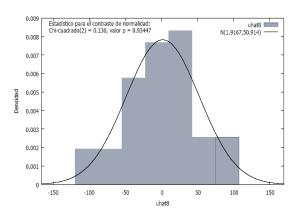
$$(1-L) \ \, inv_priv1990 = 0.276194 * (1-L)pibcons1990_{t} - 0.141487*(1-L)pibconst1990_{t-1} \\ - 0.144616*pibconst1990_{t-2} + 0.509779* \ \, inv_pub1990_{t-1} - 0.518566 \\ \ \, inv \ \, pub1990_{t-2} + 0.238555 \ \, (1-L) \ \, imp \ \, tot1990.$$

6.10. Contrastes sobre los residuos.

Para ver una primera aproximación a la bondad del ajuste, puede hacerse un estudio de los residuos. Se presenta a continuación algunas gráficas para darnos cuenta del comportamiento de los residuos.







Podemos observar que los residuos tienen un comportamiento que tiende a la normalidad. Para estar más seguros efectuamos una prueba de normalidad de los residuos y obtuvimos los siguientes resultados:

Contraste de normalidad de los residuos -

Hipótesis nula: el error se distribuye normalmente

Estadístico de contraste: Chi-cuadrado(2) = 0.135541

con valor p = 0.934475

Con lo que vemos que no se puede rechazar la hipótesis nula de de normalidad de los residuos.

En general se obtuvo los siguientes estadísticos para la estimación:

Media de la vble. dep.	20.30003	D.T. de la vble. dep.	85.87909
media innovaciones	1.916749	D.T. innovaciones	47.66425
Log-verosimilitud	-253.5898	Criterio de Akaike	521.1795
Criterio de Schwarz	534.2779	Crit. de Hannan-Quinn	526.1294

Sobre estos modelos podemos comentar lo siguiente:

En algunos contextos los económetras deben elegir entre varios modelos . Por ejemplo uno podría elegir un modelo más general sobre uno más restringido si tal restricción puede ser planteada como una hipótesis nula y esta resultare rechazada con una prueba apropiada. También en otro contexto el económetra quiere tener un criterio a su disposición para medir el

balance entre bondad de ajuste o verosimilitud por un lado ó parsimonia por otro. El balance es necesario porque la introducción de variables al modelo puede reducir el grado de ajuste o verosimilitud al modelo. Pero sin embargo podría preferirse un modelo más parsimonioso aunque se sacrifique un poco la bondad del ajuste.

El criterio de selección para modelos lineales usando mínimos cuadrados ordinarios es el estadístico R² ajustado, el cual se define como

$$\overline{R^2} = 1 - \frac{SSR/(s-k)}{TSS(n-1)}$$

Donde SSR denota la suma de cuadrados de los residuos y TSS la suma total de los cuadrados para la variable dependiente. El cálculo "ajustado" penaliza la inclusión de parámetros adicionales.

Existen otros criterios más generales conocidos como criterios de información y que ya hemos tratadoa antes . Uno de éstos es el criterio de información AIC , (Akaike's (1974) "Information Criterion" (AIC)). La formulación original para esta medida es

$$AIC = -2\ell(\hat{\theta}) + 2k$$

Donde $l(\hat{\theta})$ denota la máxima bondad de ajuste logarítmica como una función del vector de parámetro estimado θ y k es el numero de parámetros independientes ajustados con el modelo El AIC se relaciona directamente con la bondad de ajuste e inversamente al número de parámetros El investigador elige el mínimo AIC.

Estimaciones de los otros modelos según el análisis de correlación cruzada: (sólo se agregan los modelos óptimos)

MODELO 2: invpriv 1990= f(TCE, exp tot1990, imp tot1990, inv pub1990)

ARMAX, usando las observaciones 1960-2008 (T = 49)

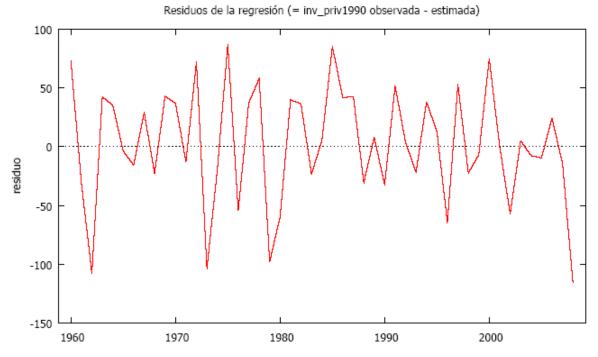
Variable dependiente: (1-L) inv_priv1990

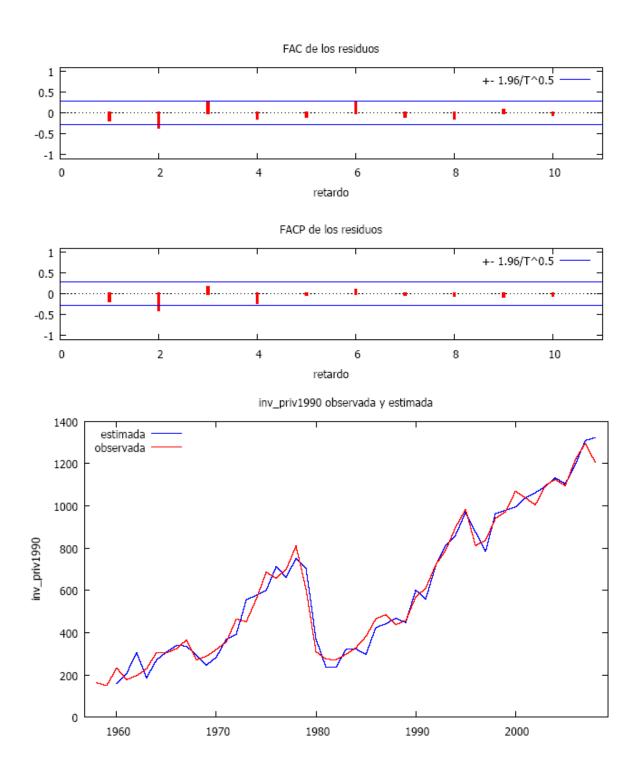
Desviaciones típicas basadas en el Hessiano

	Coeficiente	Desv. Típica	Estadístico z	Valor p	
TCE	13.2173	2.52548	5.2336	< 0.00001	***
TCE_1	-4.60583	2.77504	-1.6597	0.09697	*
TCE_2	-8.08447	2.47386	-3.2680	0.00108	***

d_imp_tot1990	0.237126	0.0464819	5.1015	< 0.00001	***
inv_pub1990_1	0.507879	0.185807	2.7334	0.00627	***
inv pub1990 2	-0.51445	0.179778	-2.8616	0.00422	***

Media de la vble. dep.	21.58171	D.T. de la vble. dep.	85.45210
media innovaciones	2.056167	D.T. innovaciones	49.94519
Log-verosimilitud	-261.1634	Criterio de Akaike	536.3267
Criterio de Schwarz	549.5695	Crit. de Hannan-Quinn	541.3510
SCR =122232			





MODELO 3

Modelo 3: ARMAX, usando las observaciones 1961-2008 (T = 48)

Desviaciones típicas basadas en el Hessiano

	Coeficiente	Desv. Típica	Estadístico z	Valor p	
d_pibconst1990	0.287082	0.0540693	5.3095	< 0.00001	***
d_pibconst1_1	-0.127336	0.0605841	-2.1018	0.03557	**
d_pibconst1_2	-0.135857	0.0526461	-2.5806	0.00986	***
imp_tot1990	0.244896	0.0493996	4.9574	< 0.00001	***
imp_tot1990_1	-0.256237	0.0517093	-4.9553	< 0.00001	***
inv_pub1990_1	0.504752	0.17391	2.9024	0.00370	***
inv_pub1990_2	-0.447686	0.180574	-2.4792	0.01317	**
Media de la vble. d	lep. 20.30	0003 D.T	. de la vble. de	p. 85.8	7909
media innovacione	s 1.677	7030 D.T	. innovaciones	47.0	9540
Log-verosimilitud	-253.0	0135 Cri	terio de Akaike	522.	0269

Crit. de Hannan-Quinn

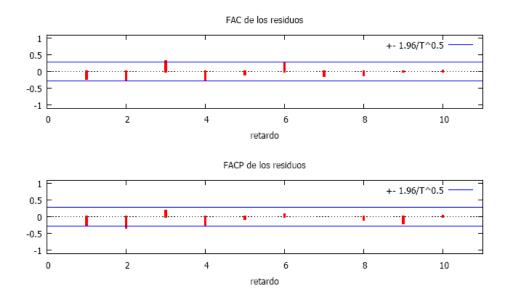
527.6840

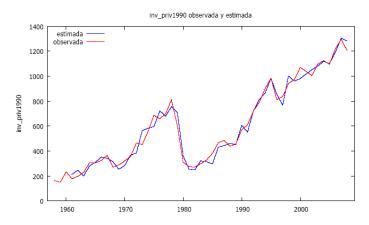
536.9965

SCR=106463

Criterio de Schwarz

SCR =106463





Observamos que se ha obtenido un modelo muy similar al primero que se estimó.

Ahora,para los modelos Invpriv_1990=f(pib, imp_tot1990, inv_pub1990), invpriv_1990=f(pib, exp_tot1990, inflacion, inv_pub1990), invpriv_1990=f(pib, exp_tot1990, interes_real, inv_pub1990) y invpriv_1990= f(pib, exp_tot1990, inv_pub1990) se obtiene el mismo resultado. Esto indica que sólo el pib y la inversión pública resultaron significativas en estos otros modelos.

Modelo 4: ARMAX, usando las observaciones 1960-2008 (T = 49)

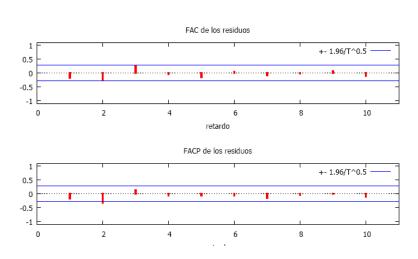
Variable dependiente: (1-L) inv_priv1990

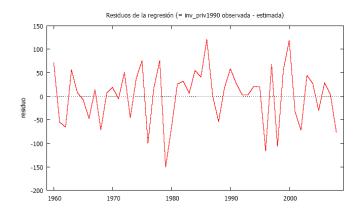
Desviaciones típicas basadas en el Hessiano

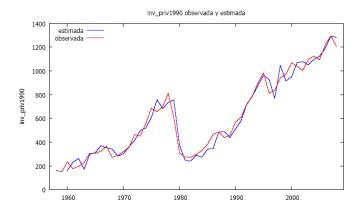
inv pub1990 1	Coeficiente	Desv. Típica	Estadístico z	Valor p	
inv pub1990 1	0.482569	0.216812	2.2257	0.02603	**

inv_pub1990_2	-0.532175	0.210869	-2.5237	0.01161	**
d_pibconst1990	0.402938	0.0583459	6.9060	< 0.00001	***
d_pibconst1_1	-0.228122	0.0619906	-3.6799	0.00023	***

Media de la vble. dep.	21.58171	D.T. de la vble. dep.	85.45210
media innovaciones	2.204292	D.T. innovaciones	59.10934
Log-verosimilitud	-269.4180	Criterio de Akaike	548.8361
Criterio de Schwarz	558.2952	Crit. de Hannan-Quinn	552.4249
SCR=171202			







6.11. Modelo VAR.

Aunque se sale de los objetivos de este trabajo, vamos a presentar a continuación la estimación de un modelo VAR asociado a las variables que resultaron involucradas y que se considera que deben participar en la formulación del modelo. Estas variables son el PIB, la inversión pública y las importaciones totales.

Primero comenzamos estimando el orden del modelo VAR. Al efectuar el procedimiento en el programa GRETL obtenemos los resultados:

Sistema VAR, máximo orden de retardos 2

Los asteriscos de abajo indican los mejores (es decir, los mínimos) valores de cada criterio de información, AIC = criterio de Akaike, BIC = criterio bayesiano de Schwartz y HQC = criterio de Hannan-Quinn.

retardos	log.veros	p(RV)	AIC	BIC	HQC
1	-817.16386		33.843423	34.306726*	34.019199
2	-804.27588	0.00222	33.684730*	34.495510	33.992339*

Podemos ver que los criterios de selección arrojan valores muy similares para efectos de decidir si se trata de un VAR(2) o un VAR(1). Si se toma un orden dos puede correrse el riesgo de sobre diferenciación. Por ello se va a estimar un VAR de orden 1.

Procedemos en GRETL y obtenemos los modelos:

Log-vero similitud = -832.72745

Determinante de la matriz de covarianzas = 5.8685982e+010

AIC = 33.7891

BIC = 34.2480

HQC = 33.9638

Contraste Portmanteau: LB(12) = 117.823, gl = 99 [0.0955]

Ecuación 1: pibconst1990

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	279.168	69.3093	4.028	0.0002 ***
pibconst1990_1	0.906772	0.0357809	25.34	1.14e-028 ***
inv_pub1990_1	-0.924931	0.261701	-3.534	0.0009 ***
inv_priv1990_1	0.851590	0.209509	4.065	0.0002 ***

Media de la vble. dep. 5077.385 D.T. de la vble. dep. 2001.938 Suma de cuad. residuos 864771.5 D.T. de la regresión 137.1108 R-cuadrado 0.995596 R-cuadrado corregido 0.995309 F(3, 46) 3466.697 Valor p (de F) 3.52e-54 rho 0.277526 Durbin-Watson 1.425841

Ecuación 2: inv pub1990

	Coeficiente	Desv. Típica	Estadístic	o t Valor p
const	40.1306	20.0795	1.999	0.0516 *
pibconst1990_1	-0.0147939	0.0103660	-1.427	0.1603
inv_pub1990_1	0.849212	0.0758172	11.20	9.79e-015 ***

Media de la vble. dep. 186.0614 D.T. de la vble. dep. 85.79734 Suma de cuad. residuos 72581.56 D.T. de la regresión 39.72229 R-cuadrado 0.798775 R-cuadrado corregido 0.785651 F(3, 46) 60.86651 Valor p (de F) 4.77e-16 rho -0.090310 Durbin-Watson 2.177043

Ecuación 3: inv priv1990

Coeficiente Desv. Típica Estadístico t Valor p

11.9734 42.3239 0.2829 0.7785 const pibconst1990 1 0.0308522 0.0218497 1.412 0.1647 inv pub1990 1 -0.269047 0.159808 -1.684 0.0990 * inv priv1990 1 6.571 4.02e-08 *** 0.840666 0.127937

Media de la vble. dep. 608.9975 D.T. de la vble. dep. 331.2164 Suma de cuad. residuos 322470.7 D.T. de la regresión 83.72713 R-cuadrado 0.940011 R-cuadrado corregido 0.936099

F(3, 46) 240.2698 Valor p (de F) 4.20e-28 rho 0.161264 Durbin-Watson 1.639146

Los contrastes de autocorrelación para cada una de las ecuaciones del modelo VAR(1)

Ecuación 1:

Ljung-Box Q' = 3.94528 con valor p = P(Chi-cuadrado(1) > 3.94528) = 0.047

Ecuación 2:

Ljung-Box Q' = 0.432731 con valor p = P(Chi-cuadrado(1) > 0.432731) = 0.511

Ecuación 3:

Afirmamos que el modelo que da la primera ecuación es el que se resultó significativo. Esto al observar los criterios de selección de los modelos estimados. (menores valores de los estadísticos)

Este modelo podría servir para establecer relaciones entre las variables involucradas; sin embargo en este caso sólo nos interesa como afectan a la variable inversión privada las restantes variables PIB, inversión pública e importaciones totales. Los cuales los estimamos al inicio. Vale mencionar que si en el modelo VAR que acabamos de plantear hubiésemos involucrado todas las variables iniciales, el resultado que se obtiene es una serie de modelos que carecen de significancia, por lo que el análisis hecho inicialmente con las correlaciones cruzadas resultó muy útil. Esto sólo lo mencionamos sin mayor argumentación.

6.12. Fase de predicción.

En esta etapa hay una serie de limitaciones, en los softwares no hay incorporados mecanismos para hacer predicciones directamente, lo que se puede hacer es calcular los valores estimados para confrontarlos con los valores reales. Tal como se mostró en las gráficas anteriores.

Una alternativa es usar un algoritmo recursivo de predicción. Esta es una técnica de uso algo reciente, aunque hay algunos mecanismos que son de uso muy común, sobre todo por su facilidad en la implementación computacional. Entre estos algoritmos es muy conocido el llamada filtro de Kalman del cual hacemos una breve descripción a continuación:

El filtro de Kalman es un algoritmo recursivo de predicción, el cual funciona básicamente en tres pasos:

La primera etapa es la estimación del estado futuro a partir de una estimación del estado actual. En el segundo paso calculamos el modelo con los datos iniciales y la porción agregada. Después si llega una nueva observación al sistema, se revisa la estimación del estado en este instante a la vista de la nueva información. Esto a efecto de verificar la certeza de la estimación que se ha realizado.

Puede revisarse un caso particular del filtro de Kalman en el caso del cálculo de la función de verosimilitud de un modelo ARIMA. Estas técnicas de predicción pueden aplicarse en diferentes contextos. En nuestro caso nos interesa para poder efectuar algunas predicciones en el modelo de transferencia que se estimó, relativo a la inversión privada. No profundizamos

mucho en la formalización de estas ideas, más lo incluimos para que sirva de motivación para continuar desarrollando estas ideas.

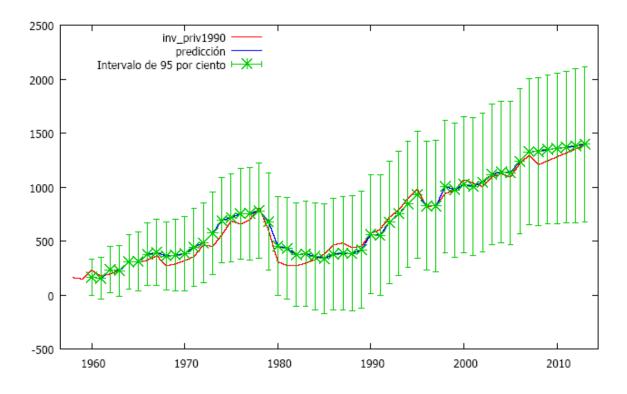
El procedimiento que se empleó fue el siguiente. Luego de haber estimado los modelos para las series individuales y haberles hecho la diagnosis respectiva, se efectúa una fase de predicción de carácter individual sobre cada una de las series, luego agregamos estos datos a los datos originales y volvemos a replantear el modelo con los datos agregados.

A continuación se presenta el modelo, en el cual como era de esperarse los criterios de selección se incrementaron considerablemente. Es necesario hacer el análisis residual, para ver la estabilidad del modelo.

Modelo 5: ARMAX, usando las observaciones 1960-2013 (T = 54)
Variable dependiente: (1-L) inv_priv1990
Desviaciones típicas basadas en el Hessiano

	Desviaciones i	ipicas basadas	cii ci i i cssiano		
	Coeficiente	Desv. Típica	Estadístico z	Valor p	
pibconst1990	0.28984	0.0562485	5.1528	< 0.00001	***
pibconst199_1	-0.510836	0.0959101	-5.3262	< 0.00001	***
pibconst199_2	0.233113	0.0538066	4.3324	0.00001	***
inv_pub1990_1	0.433065	0.180081	2.4048	0.01618	**
inv pub1990 2	-0.56718	0.194318	-2.9188	0.00351	***
imp_tot1990	0.183817	0.0501132	3.6680	0.00024	***
imp_tot1990_1	-0.207549	0.0501969	-4.1347	0.00004	***
				0.4	
Media de la vble. de	ep. 22.9	6553 D.T.	de la vble. dep.	. 81.	43898
media innovaciones	- 0.11	4231 D.T.	innovaciones	48.	92359
Log-verosimilitud	-286.	6967 Crite	rio de Akaike	589	9.3934
Criterio de Schwarz	z 605.	.3053 Crit.	de Hannan-Qui	inn 595	5.5300

INTERVALOS DE CONFIANZA. (95%)



- Al utilizar las predicciones para las variables involucradas en el modelo se obtienen las siguientes predicciones a 5 años:
 - 2009 1225.946
 - 2010 1253.272
 - 2011 1291.564
 - 2012 1329.404
 - 2013 1367.131

7. Conclusiones.

- En base a los datos que se dispusieron los factores determinantes de la inversión privada resultaron ser el PIB, la inversión pública y las importaciones totales.
- El gobierno debe apuntar a invertir en estos rubros para incentivar a la inversión privada.

- El modelo podría mejorarse si se dispusiera de una base de datos con un periodo menor a un año.
- Las proyecciones de la inversión privada pueden hacerse más confiables si se disminuye el periodo de tiempo de la toma de datos.
- Existe una deficiencia en el flujo de la información a nivel de las instituciones gubernamentales, referidas a las variables de carácter económico.
- No puede descartarse la participación de las otras variables económicas que no quedaron involucradas en el modelo, a menos que se mejore la base de datos económicos de cuentas nacionales y los mecanismos de obtención de datos en las instituciones encargadas de su manejo. También puede haber otro tipo de variables exógenas que afecten a la inversión privada.

8. Referencias bibliográficas.

- 1- Lütkepohl H., (2005), New Introduction to Multiple Time Series Analysis. Primera edición. Springer-Verlag. Berlin, Alemania.
- 2- Espasa A.; Canceló J. R. (1993), "METODOS CUANTITATIVOS PARA EL ANALISIS DE LA CUYUNTURA ECONOMICA". Primera edición, Alianza Editorial, Madrid.
- 3- Peña, Daniel. (2005), "Análisis de Series Temporales". Primera Edición. Alianza Editorial, Madrid.
- 4- Parkin, M.; Esquivel, G. (2001), "INTRODUCCION A LA ECONOMIA, UN ENFOQUE LATINOAMERICANO". Quinta edición. Addison Wesley Editores. México D.F.
- 5- Segovia, A.; Acevedo C. y Otros. 1999, "AJUSTE HACIA LA PAZ". Primera edición. Plaza y Valdés Editores, México, D.F.
- 6- Coremberg, A. ;Marotte, B.;Rubini, H.;Tisocco, D. (2006), "LA INVERSION PRIVADA EN ARGENTINA (1950-2000)" Centro de Estudios Avanzados .Universidad Argentina de la Empresa. Bs. Aires.
- 7- Mauricio J. A. (2007). Análisis de Series Temporales. Universidad Complutense de Madrid.

ANEXO I

DEFINICION DE LAS VARIABLES

- PRODUCTO INTERNO BRUTO: Es una medida del flujo total de bienes y servicios producidos por la economía de un país, durante determinado período, generalmente un año. Se obtiene al valuar la producción de bienes y servicios a precios de mercado, excluyendo los bienes intermedios utilizados en el proceso de producción.
- INVERSION PRIVADA (PUBLICA)
 Los datos de la inversión privada (pública) corresponden a los datos de la
 formación bruta de capital fijo del sector privado (público), divulgados en el sistema
 de cuentas nacionales del BCR
- FORMACIÓN BRUTA DE CAPITAL FIJO: Son todos los gastos realizados por los agentes económicos (hogares, empresas y gobierno) en la compra o elaboración por cuenta propia de bienes nuevos duraderos como parte de su activo fijo, con el propósito de expandir su actividad productiva.
- IMPORTACIONES Y EXPORTACIONES TOTALES. Comprende todo lo que el país compra a otros países y vende hacia otros países.
- TASA DE INTERES REAL Es la tasa de interés nominal T_{IN} ajustada por la tasa de inflación T_{I} :

$$T_{IR} = \frac{T_{IN} - T_I}{1 + \frac{T_I}{100}}$$

TASA DE INFLACION
 Como medida de la inflación se usó el deflactor del PIB (ver Parkin 2001), el cual se define de la siguiente manera:

$$deflactor del PIB = \frac{PIB_{(precios corrientes)}}{PIB_{(precios cons tantes)}} \times 100$$

• TASA DE CRECIMIENTO ECONOMICO (TCE).

Es una medida de la variación del crecimiento económico, se define de la siguiente manera:

$$TCE = \frac{PIB_{\textit{real de este a\~{n}o}} - PIB_{\textit{real a\~{n}o pasado}}}{PIB_{\textit{real a\~{n}o pasado}}} \times 100$$

• PRESTAMOS.

Comprende los préstamos que las instituciones financieras públicas y privadas conceden a personas o entidades públicas y privadas.

• TIPO DE CAMBIO

Es el valor de la moneda nacional en dólares de los EEUU.

• DEUDA EXTERNA.

Comprende la deuda que el país ha contraído con instituciones financieras, bancos y países del exterior.

ANEXO II.

SERIES TEMPORALES DE CUENTAS NACIONALES (1958-2008). (BASE 1990). DATOS EN MILLONES DE DOLARES DE LOS ESTADOS UNIDOS DE AMERICA.

DATOS EN MILLONES DE DOLARES DE LOS ESTADOS UNIDOS DE AMERICA.

(Estos datos fueron obtenidos directamente de las revistas trimestrales del BCR y transformados al año base 1990 y llevados a dólares de los Estados Unidos de América, por lo que no pueden considerarse datos oficiales)

AÑO	prestamos1990	exp.tot1990	imp.tot1990	deuda ext1990	pibconst1990	inv priv1990	inv pub1990
1958	452.9	433.3	403.4	93.1	1863.4	162.9	71.8
1959	534.0	460.4	404.2	95.0	1942.1	150.0	75.0
1960	539.2	415.5	435.5	84.0	2020.8	233.1	57.8
1961	539.8	431.3	393.7	92.4	2092.0	177.1	66.0
1962	554.1	498.2	456.1	103.1	2342.5	197.3	55.8
1963	598.6	554.8	547.3	131.9	2443.0	228.7	63.5
1964	575.2	637.0	683.6	159.7	2670.8	306.6	69.3
1965	602.0	666.5	708.3	207.1	2814.2	304.6	114.2
1966	652.8	675.1	786.2	261.2	3015.8	324.1	141.2
1967	669.8	743.5	803.3	295.3	3179.7	365.8	98.8
1968	678.6	758.1	764.5	306.9	3282.5	271.2	84.2
1969	750.9	721.8	745.2	320.8	3397.0	288.6	90.1
1970	1004.2	803.3	726.4	317.6	3498.2	320.7	98.4
1971	1129.0	823.0	837.5	328.8	3659.8	356.9	129.6
1972	1280.1	1012.1	798.6	370.5	3866.9	464.3	172.0
1973	1380.1	1088.4	1125.1	393.1	4032.2	451.9	165.1
1974	1614.2	1267.6	1545.0	478.9	4323.6	557.4	230.3
1975	1649.5	1354.2	1564.6	721.7	4563.9	686.6	363.9
1976	1580.0	1545.3	1527.5	582.9	4745.2	658.1	294.4
1977	1654.8	1707.1	1631.1	595.3	5033.1	699.1	368.7
1978	1803.7	1434.8	1737.9	674.2	5231.0	810.2	360.8
1979	1985.5	1870.0	1561.7	730.2	5263.7	605.2	319.3
1980	2242.9	1447.0	1296.2	640.3	4807.2	309.8	342.6
1981	2545.9	995.2	1255.1	832.2	4408.9	274.9	323.2
1982	2580.1	811.7	994.2	946.7	4161.9	271.5	252.8
1983	2313.5	764.2	926.4	1033.7	4195.0	297.5	192.9
1984	2390.1	669.1	911.7	1012.7	4257.1	328.6	169.9
1985	2319.9	530.6	733.7	908.5	4375.0	381.8	144.3
1986	1925.0	840.9	1041.3	1397.2	4402.7	465.8	111.9
1987	1829.4	577.3	971.1	1281.6	4521.0	484.7	132.3
1988	1756.8	511.0	845.3	1153.5	4594.5	437.7	142.4
1989	1742.2	401.4	936.9	1097.9	4643.1	456.6	162.0
1990	1982.0	646.0	1400.7	1736.8	4800.9	569.9	135.8
1991	1839.4	550.5	1316.4	1640.8	4972.6	610.1	141.1
1992	2164.7	537.2	1527.2	1643.8	5347.6	721.2	137.5
1993	1466.4	854.2	1775.0	1575.3	5741.9	789.2	232.2
1994	1812.7	943.0	1942.9	1548.2	6089.3	899.1	228.1
1995	2451.4	1126.6	2270.2	1478.7	6478.7	983.2	229.3
1996	2666.4	1142.3	2057.9	1608.0	6589.1	811.7	234.7
1997	2695.9	1425.3	2205.9	1580.8	6568.9	837.4	218.6
1998	2897.8	1448.7	2355.0	1622.7	7126.6	940.3	247.7
1999	3125.2		2421.8	1649.5	7372.3	971.7	212.7
2000	3167.1	1686.5	2836.8	1365.4	7531.0	1069.3	206.0
2001	3096.4	1588.8	2787.9	1745.5	7659.7	1037.8	220.7
2002	3077.3	1641.0	2840.6	2184.6	7839.0	1005.1	279.5
2003	3206.5	1666.1	3064.9	2512.5	8014.3	1096.7	264.2
2004	3188.3	1708.5	3272.1	2470.2	8167.8	1124.6	154.4
2005	3176.6		3371.0	2454.4	8419.8	1094.9	193.2
2006	3345.2	1743.0	3603.4	2677.0	8772.0	1218.6	190.5
2007	3519.3	1795.2	3925.5	2453.2	9179.9	1295.4	183.7
2008	3424.7	1936.4	4152.2	2484.8	9413.6	1207.5	200.7
2000	3424.7	1930.4	4102.2	2404.0	3413.0	1207.3	200

AÑO	deflactor	t camb	interes	inflacion	interes real	TCE
1958	0.3	2.5	4.0	-7.1	11.9	4.0
1959	0.2	2.5	4.0	-8.1	13.1	4.2
1960	0.3	2.5	5.5	14.2	-8.9	4.1
1961	0.3	2.5	6.0	-1.8	7.4	3.5
1962	0.3	2.5	4.0	-0.9	7.0	12.0
1963	0.3	2.5	4.0	1.3	2.6	4.3
1964	0.3	2.5	4.0	0.8	3.2	9.3
1965	0.3	2.5	4.0	1.3	2.7	5.4
1966	0.3	2.5	4.0	-1.2	5.2	7.2
1967	0.3	2.5	4.0	-0.4	4.4	5.4
1968	0.3	2.5	4.0	0.2	3.8	3.2
1969	0.3	2.5	4.0	0.4	3.5	3.5
1970	0.3	2.5	4.0	4.8	-0.8	3.0
1971	0.3	2.5	4.0	0.5	3.5	4.6
1972	0.3	2.5	5.0	0.9	3.1	5.7
1973	0.3	2.5	5.0	10.6	-5.1	4.3
1974	0.4	2.5	6.0	10.6	-5.1	7.2
1975	0.4	2.5	6.0	7.6	-1.5	5.6
1976	0.5	2.5	7.0	22.6	-13.5	4.0
1977	0.6	2.5	8.0	18.4	-9.6	6.1
1978	0.6	2.5	10.0	3.8	4.1	3.9
1979	0.7	2.5	10.0	10.6	-0.6	0.6
1980	0.7	2.5	10.0	13.4	-3.0	-8.7
1981	0.7	2.5	11.0	5.7	4.0	-8.3
1982	0.0	2.5	13.0	9.9	1.0	-5.6
1983	1.0	2.5	13.0	11.7	1.2	0.8
1984	1.1	2.5	13.0	11.7	1.4	1.5
1985	1.3	2.5	13.0	22.2	-7.5	2.8
1986	0.9	4.9	17.0	-29.4	60.0	0.6
1987	1.0	5.0	17.0	10.6	5.8	2.7
1988	1.2	5.0	18.0	16.4	0.5	1.6
1989	1.4	5.0	19.0	16.5	1.2	1.1
1990	1.0	6.9	20.0	-28.0	65.2	3.4
1991	1.1	8.0	20.0	6.8	12.4	3.6
1992	1.1	8.4	19.0	4.3	15.1	7.5
1992	1.2	8.7	18.0	8.5	9.7	7.4
1993	1.3	8.7	18.0	9.9	7.4	6.1
1994	1.5	8.8	18.0	10.4	6.8	6.4
1995	1.6	8.8	19.0	6.8	10.5	1.7
1996	1.7	8.8	17.0	8.3	9.9	-0.3
1998	1.7	8.8	16.3	-0.6	17.7	8.5
1999	1.7					
2000	1.7	8.8 8.8	16.1 15.5	0.3 3.1	15.9 12.6	3.4 2.2
2000		8.8		3.4	11.7	1.7
2001	1.8	8.8	10.0 8.7	1.2	8.7	2.3
2002	1.8	8.8	8.0	2.9	5.7	2.3
2003	1.9	8.8	7.7	3.0	4.8	1.9
2004	2.0	8.8	8.2	4.8	2.8	3.1
2005	2.0	8.8	9.0	4.8	3.2	4.2
2006	2.1	8.8	9.0	4.9	4.4	4.2
2008	2.3	8.8	9.9	5.9	3.3	2.5