UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE POSGRADO

CURVAS DE CAPACIDAD Y FRAGILIDAD ESTRUCTURAL DE TIPOLOGIAS COMUNMENTE USADAS EN EL SALVADOR

PRESENTADO POR: JORGE ADALBERTO OLIVA ESCOBAR

PARA OPTAR AL TÍTULO DE: MAESTRO EN INGENIERÍA ESTRUCTURAL

CIUDAD UNIVERSITARIA, AGOSTO DE 2017

UNIVERSIDAD DE EL SALVADOR

RECTOR:

MSc. ROGER ARMANDO ARIAS ALVARADO

SECRETARIO GENERAL:

MSc. CRISTOBAL HERNAN RÍOS BENÍTEZ

FACULTAD DE INGENIERÍA Y ARQUTECTURA

DECANO:

ING. FRANCISCO ANTONIO ALARCÓN SANDOVAL

SECRETARIO:

ING. JULIO ALBERTO PORTILLO

ESCUELA DE POSGRADO

DIRECTORA:

MSc. PATRICIA HAYDÉE ESTRADA DE LÓPEZ

UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE POSGRADO

Trabajo de graduación previo a la opción al grado de:

MAESTRO EN INGENIERÍA ESTRUCTURAL

Título:

CURVAS DE CAPACIDAD Y FRAGILIDAD ESTRUCTURAL DE TIPOLOGIAS COMUNMENTE USADAS EN EL SALVADOR

Presentado por:

JORGE ADALBERTO OLIVA ESCOBAR

Trabajo de Graduación aprobado por:

Docente Asesor:

PHD. ING. MANUEL ALFREDO LÓPEZ MENJIVAR

SAN SALVADOR, AGOSTO DE 2017

Trabajo de Graduación aprobado por:

Docente Asesor:

PHD. ING. MANUEL ALFREDO LÓPEZ MENJIVAR

AGRADECIMIENTOS

A **DIOS**, por las bendiciones recibidas al haber iluminado mi camino para el logro de las metas a lo largo de mi vida; a la Universidad de El Salvador por haberme formado y dado la oportunidad de crecer intelectualmente.

A los diferentes profesionales, que con su valiosa colaboración enriquecieron este trabajo brindándome su ayuda para la elaboración de este trabajo de graduación, especialmente a:

PHD. ING. MANUEL ALFREDO LÓPEZ MENJIVAR

Por el tiempo, apoyo y orientación brindada a lo largo de este trabajo de graduación, siendo el impulsor de esta investigación. Gracias por haberme guiado por el camino correcto para poder finalizar con bien este trabajo.

AL ING. CARLOS BIENVENIDO RAMÍREZ MORALES

Por sus valiosos conocimientos y aporte que han llevado a la culminación con éxito de este trabajo de graduación, por su paciencia hacia mi persona y brindándome su apoyo en todo momento, muchas gracias.

JORGE OLIVA

DEDICATORIA

A DIOS: Por todo lo que ha hecho por mí hasta este momento y lo que falta por vivir.

A MIS PADRES: Rafael Y María Gloria (Q.D.D.G) por su apoyo, su sacrificio, su amor y especialmente a mi madre por estar ahí en los momentos más difíciles de mi formación académica y darme ánimos para continuar. Gracias por todo, con mucho cariño y respeto.

A MI HIJO: Gracias por ser parte de mi vida, eres la razón de mi esfuerzo y lo más importante porque luchar, con amor a Marcus Alejandro Oliva Duran.

A MIS AMIGOS: A los que de una u otra forma me ayudaron en la culminación de mi carrera. Por todos los momentos que me apoyaron y han creído en mí.

JORGE OLIVA.

INDICE GENERAL

Pág.

CAPITUL	.01	1
GENE	RALIDADES	1
1.1	Introducción	1
1.2	Objetivos	2
1.2	2.1 Objetivo general	2
1.2	2.2 Objetivos específicos	2
1.3	Antecedentes	3
1.4	Planteamiento del problema	4
1.5	Alcances	6
1.6	Justificación	6
CAPITUL	.0	8
ΜΕΤΟΙ	DOLOGIA DE LA EVALUACION DE DAÑO	8
2.1	Criterios de evaluacion	8
2.2	Factores involucrados en el cálculo de la fragilidad	11
2.2	2.1 Movimiento sísmico de diseño	11
2.2	2.2. Acelerogramas de analisis	12
2.3	Estados de daños	18
2.3	3.1 Objetivos de desempeño	18
2.3	3.2 Estados límites	21
2.4	Metodologias analiticas para calcular las curvas de fragilidad	22
2.4	I.1 Análisis dinámico no lineal (NLD)	23

2	2.4.2 Análisis estático no-lineal (NLS)	.24
2	2.4.3 Análisis no-lineal estático basado en modelos de mecanismo simplifica	ado
	(SMM - NLS)	.27
2.5	Puntos de control de las curvas de capacidad	.27
2	2.5.1 Derivación de las curvas de capacidad	.27
	2.5.1. A. Representación del análisis pushover	.27
	2.5.1. B Derivación de sdof equivalente - basado en curvas de capacidad.	. 30
	2.5.1. C Representación idealizada del ajuste de la capacidad	. 33
	2.5.1. D Forma perfectamente multilineal elasto – plástico	. 36
	2.5.1. E Forma perfectamente bilineal elasto – plástico	. 37
2.6	definición de variables en la metodología	.42
CAPITU	ULO III	.45
VULN	NERABILIDAD SISMICA	.45
VULN 3.1	NERABILIDAD SISMICA Normas y especificaciones aplicables	.45 .45
VULN 3.1 3.2	NERABILIDAD SISMICA Normas y especificaciones aplicables 2 Descripcion del sistemas estructural	. 45 .45 .45
VULN 3.1 3.2 3.3	NERABILIDAD SISMICA Normas y especificaciones aplicables 2 Descripcion del sistemas estructural 3 Estimación conceptual de la respuesta sísmica probabilística	.45 .45 .45 .47
VULN 3.1 3.2 3.3 3.4	NERABILIDAD SISMICA Normas y especificaciones aplicables 2 Descripcion del sistemas estructural 3 Estimación conceptual de la respuesta sísmica probabilística 4 Aplicabilidad de las curvas de fragilidad en la evaluación de daños y nive	.45 .45 .45 .47
VULN 3.1 3.2 3.3 3.4	 NERABILIDAD SISMICA Normas y especificaciones aplicables Descripcion del sistemas estructural Estimación conceptual de la respuesta sísmica probabilística Aplicabilidad de las curvas de fragilidad en la evaluación de daños y nive de riesgo sísmico 	.45 .45 .47 eles .50
VULN 3.1 3.2 3.3 3.4	 NERABILIDAD SISMICA. Normas y especificaciones aplicables Descripcion del sistemas estructural Estimación conceptual de la respuesta sísmica probabilística. Aplicabilidad de las curvas de fragilidad en la evaluación de daños y nive de riesgo sísmico 3.4.1 Parametros de informacion utilizada en analisis. 	.45 .45 .45 .47 eles .50 .52
VULN 3.1 3.2 3.3 3.4	 NERABILIDAD SISMICA Normas y especificaciones aplicables Descripcion del sistemas estructural Estimación conceptual de la respuesta sísmica probabilística Aplicabilidad de las curvas de fragilidad en la evaluación de daños y nive de riesgo sísmico 3.4.1 Parametros de informacion utilizada en analisis 3.4.2 Aleatoridad de las variables utilizadas 	.45 .45 .47 eles .50 .52
VULN 3.1 3.2 3.3 3.4	 NERABILIDAD SISMICA. Normas y especificaciones aplicables Descripcion del sistemas estructural Estimación conceptual de la respuesta sísmica probabilística. Aplicabilidad de las curvas de fragilidad en la evaluación de daños y nive de riesgo sísmico 3.4.1 Parametros de informacion utilizada en analisis. 3.4.2 Aleatoridad de las variables utilizadas. 3.4.2.1 Calculo α_{ds}. 	.45 .45 .47 eles .50 .52 .59 .60
VULN 3.1 3.2 3.3 3.4	 NERABILIDAD SISMICA Normas y especificaciones aplicables	.45 .45 .47 eles .50 .52 .59 .60
VULN 3.1 3.2 3.3 3.4	 NerABILIDAD SISMICA	.45 .45 .47 eles .50 .52 .59 .60 .60

3.5	Obtención de las curvas de fragilidad	67
CAPITUL	0 IV	72
RESUL	TADOS Y ANALISIS DE DATOS	72
4.1	Resultados y análisis de datos	72
CAPITUL	0 V	77
CONCL		
CONCE	USIONES T RECOMENDACIONES	
5.1	Conclusiones	
5.1 5.2	Conclusiones	
5.1 5.2 BIBLIOGI	Conclusiones Recomendaciones	77

INDICE DE FIGURAS

CAPÌTULO II: METODOLOGIA DE LA EVALUACION DE DAÑO

Espectros de registros IGN, 2 componentes	15
Espectros de registros CIG, 2 componentes	16
Espectros de registros IVU, 2 componentes	16
Espectros de registros CIG, Santa Tecla 2 componentes	17
Espectros de registros UCA, Hospital San Rafael	
2 componentes	17
Grafica de la curva de Pushover y evaluación de	
diferentes umbrales de daño	28
Ejemplo de transformación de MDoF-basado en una	
curva Pushover SDoF equivalentes	
Elasto plástica "Multilineal"	
Perfectamente Elasto plástica "Bilineal" nuestro	
caso de Análisis.	34
Idealización de la curva de capacidad usando forma	
multilineal elesto-plastico	
Idealización de la curva de capacidad usando la forma	
bilineal elesto-plastica perfecta	38
Ejemplo ilustrado en los pasos para la evaluación del punto de	
desempeño para un registro de terremoto dado	40
	Espectros de registros IGN, 2 componentes Espectros de registros CIG, 2 componentes Espectros de registros IVU, 2 componentes Espectros de registros UCA, Hospital San Rafael 2 componentes Grafica de la curva de Pushover y evaluación de diferentes umbrales de daño Ejemplo de transformación de MDoF-basado en una curva Pushover SDoF equivalentes Elasto plástica "Multilineal" Perfectamente Elasto plástica "Bilineal" nuestro caso de Análisis. Idealización de la curva de capacidad usando forma multilineal elesto-plastico Idealización de la curva de capacidad usando la forma bilineal elesto-plastica perfecta Ejemplo ilustrado en los pasos para la evaluación del punto de desempeño para un registro de terremoto dado

CAPÌTULO III: VULNERABILIDAD SISMICA.

Fig. 3.3.1.	Ejemplo de cálculo de la demanda media y la dispersión de			
	daños completa (CD) utilizando regresión de mínimos			
	cuadrados	49		
Fig. 3.4.1.1.	Planta propuesta inicial del Modelo 11	<u></u> 53		
Fig. 3.4.1.2.	Elevación propuesta inicial del Modelo 11	54		
Fig. 3.4.1.3.	Detalles estructurales generales utilizados en los modelos	54		
Fig. 3.4.1.4.	Representación de modelo 2 en Seismostruct	55		
Fig. 3.4.1.5.	Representación de modelo 11 en Seismostruct	56		
Fig. 3.4.1.6.	Definición de nodos en elementos link.	57		
Fig. 3.4.1.7.	Curva de capacidad del modelo 2	58		
Fig. 3.4.1.8.	Curva de capacidad del modelo 11	59		
Fig. 3.4.2.3.1.	Determinación de las derivas de entrepiso a partir de los			
	desplazamientos laterales de un edificio	<u>63</u>		
Fig. 3.4.2.4.1.	Periodo de esquina Tc para terremoto 1986-10-10 (IGN-270°)	64		
Fig. 3.4.2.4.2.	Periodo de esquina Tc para terremoto 1986-10-10 (CIG-90°)	65		
Fig. 3.4.2.4.3.	Periodo de esquina Tc para terremoto 1986-10-10 (IVU-180°)	65		
Fig. 3.4.2.4.4.	Periodo de esquina Tc para terremoto CIG - 2001-01-13			
	(Santa Tecla, 7153a_a)	66		
Fig. 3.4.2.4.5.	Periodo de esquina Tc para terremoto UCA - 2001-01-13			
	(Santa Tecla, 180°)	66		
Fig. 3.5.1.	Ejemplo típico de funciones de fragilidad			
	(adaptada de FEMA (2003)).	<u>.</u> 67		
Fig. 3.5.2.	Nube de puntos de los modelos de un piso.	<u>68</u>		

Fig. 3.5.3.	Puntos de análisis para el estado de daño leve	69
Fig. 3.5.4.	Puntos de análisis para el estado de daño moderado.	
Fig. 3.5.5.	Puntos de análisis para el estado de daño extenso	70
Fig. 3.5.6.	Puntos de análisis para el estado de daño colapso	70

CAPITULO IV: RESULTADOS Y ANALISIS DE DATOS

Fig. 4.1.1.	Curva de fragilidad Total, modelos de un piso	76
Fig. 4.1.2.	Curva de fragilidad Total, modelos de dos pisos	76

INDICE DE TABLAS

CAPÌTULO II: METODOLOGIA DE LA EVALUACION DE DAÑO

Tabla 2.2.2.1	Espectros de análisis	.15
Tabla 2.3.1.1.	Niveles de Rendimiento en Edificios	20
Tabla 2.6.1.	Propiedades mecánicas de los elementos estructurales	43
Tabla 2.6.2.	Calculo de las propiedades mecánicas de los elementos	
	estructurales	44

CAPÌTULO III: VULNERABILIDAD SISMICA.

Tabla 3.4.1.1.	Levantamiento en físico de estructuras del área		
	de Santa Tecla	<u>53</u>	
Tabla 3.4.2.2.1.	Determinación de las variables de la Mediana y Desviación		
	Estándar	61	
Tabla 3.4.2.3.1.	Tabla de daños por derivas de entrepiso	62	
Tabla 3.5.1.	Tabla resumen de variables α y β	71	

CAPITULO IV: RESULTADOS Y ANALISIS DE DATOS

Tabla 4.1.1.	Evaluación de rango de probabilidades aceptable	72
Tabla 4.1.2.	Datos para la obtención de las curvas de fragilidad de los	
	modelos de un piso	73
Tabla 4.1.3.	Datos para la obtención de las curvas de fragilidad de los	
	modelos de dos pisos	75

RESUMEN

Este trabajo de investigación contiene la descripción general y los criterios utilizados para el análisis de estructuras de marcos de concreto; por medio del estudio de su capacidad, relacionada a cargas aplicadas lateralmente y su respectivo desplazamiento. La respuesta relacionada a los desplazamientos, es determinado como el análisis no lineal (PUSHOVER), que es la curva de capacidad de la estructura; la cual conlleva a un análisis de vulnerabilidad, para lo cual se determina el daño que puede sufrir un tipo de estructura debido a una solicitación sísmica y así poder definir los límites de estado de daño por medio de las curvas de fragilidad; es por ello que el **presente trabajo de graduación se enfoca al estudio de las CURVAS DE CAPACIDAD Y FRAGILIDAD ESTRUCTURAL DE TIPOLOGIAS COMUNMENTE USADAS EN EL SALVADOR.**

Este trabajo de graduación se divide en cinco capítulos, siendo el capítulo I, "GENERALIDADES", que no es más el estudio del anteproyecto, que determina los parámetros iniciales de la importancia que conlleva su realización.

En el capítulo II, conlleva a la METODOLOGIA DE EVALUACION DE DAÑO; donde establecemos los factores que intervienen para la determinación del daño estructural en las edificaciones de estudio. De forma general se realiza un análisis inicial de los estados de daño por medio de procedimiento de análisis estático no lineal, seguidamente se obtienen umbrales de daño por medio de derivas. Dichos umbrales de daño establecen la metodología de la evaluación y que se utilizan en la determinación de las curvas de fragilidad para lo cual es aplicable la distribución log normal, para finalmente calcular la probabilidad de daño de las estructuras en estudio.

Los estados límites de daño de la metodología son aplicables a nuestra norma técnica sísmica, en este capítulo se mencionan los parámetros básicos necesarios de los espectros que se utilizan en la realización de la tesis de graduación, se hace un análisis de la metodología de Pushover que es el que internamente realiza el programa computacional Seismostruct.

El capítulo III, establece la VULNERABILIDAD SISMICA, que es la vulnerabilidad de una edificación que determina una medida de intensidad, que permite cuantificar el tipo de daño estructural, el modo de fallo y la capacidad resistente de una estructura bajo unas condiciones probables de sismo, por lo que es una propiedad intrínseca que es independiente de la peligrosidad de la zona. En otras palabras una estructura puede ser vulnerable, pero no estar en riesgo si no se encuentra en un lugar con un determinado peligro sísmico o amenaza sísmica.

El resultado de los estudios de vulnerabilidad es una evaluación de daño que caracteriza la degradación que sufriría una estructura de una tipología estructural dada, sometida a la acción de un sismo de determinadas características.

El capítulo IV se proporciona los RESULTADOS Y ANALSIS, donde se analiza la determinación y funcionalidad que tendrán las curvas de fragilidad en nuestro medio.

El capítulo V se da las CONCLUSIONES Y RECOMENDACIONES de la tesis en estudio, se determina la valoración de los datos obtenidos, verificando el comportamiento de las edificaciones de marcos de concreto de uno y dos pisos de acuerdo a los estados de daños propuestos relacionando las curvas de fragilidad.

CAPITULO I GENERALIDADES

1.1 INTRODUCCIÓN

El riesgo sísmico de una región está controlado por cuatro factores, a saber, la amenaza sísmica, la vulnerabilidad, la exposición de personas y activos físicos y finalmente el costo; de éstos la vulnerabilidad es la única que puede ser identificada, evaluada y modificada completamente.

Uno de los principales problemas que se tiene, en El Salvador, para hacer un análisis detallado de riesgo sísmico de una zona urbana, o grupo de edificaciones, es que no se cuenta con un banco de curvas de vulnerabilidad (entendiéndose estas como el conjunto de curvas de capacidad y fragilidad) de las diferentes tipologías estructurales existentes. Estas curvas representan que tan resistentes o débiles, son los edificios de un tipo estructural determinado.

Para la clasificación básica de la vulnerabilidad sísmica de una tipología estructural se utilizará como referencia información relacionada con el sistema estructural, el material de construcción y características generales, tales como alturas de entrepisos, tipos de diafragma de piso y techo, geometrías y otros. Todo lo anterior servirá para caracterizar las diferentes tipologías en base a su vulnerabilidad, permitiendo calcular la respuesta de un grupo de edificaciones en base al daño estimado ante las solicitaciones sísmicas.

1.2 OBJETIVOS

1.2.1 OBJETIVO GENERAL

 Definir los parámetros para establecer las curvas de capacidad y fragilidad de tipologías estructurales comúnmente usadas en El Salvador, a partir de la información recolectada en la ciudad de Santa Tecla.

1.2.2 OBJETIVOS ESPECÍFICOS

- Determinar las tipologías estructurales factibles para el desarrollo de sus curvas de vulnerabilidad y fragilidad, en base a la disponibilidad de información fiable y estandarizada de sus características físicas y de características mecánicas de sus materiales constituyentes.
- Definir los valores medios de las variables que se deberán emplear para definir las curvas de vulnerabilidad.
- Establecer los límites de los diferentes estados de desempeño de las tipologías estructurales seleccionadas para el desarrollo de las curvas de fragilidad estructural.

1.3 ANTECEDENTES

Por lo anterior, el interés de desarrollar tanto las curvas de capacidad y vulnerabilidad de las diferentes tipologías en esa área, es para cuantificar los diferentes niveles de daño que pudiesen suceder en el caso de la ocurrencia de un evento.

Para conocer el riesgo sísmico de una región, ciudad o país usualmente se ejecuta una evaluación del riesgo por terremotos utilizando alguna metodología robusta para hacer tal análisis. Este tipo de estudio puede tener amplias aplicaciones prácticas tales como: definir las zonas más propensas de una región a sufrir daños, prever donde se pueden necesitar los equipos de emergencias antes que suceda un sismo, calcular las posibles pérdidas que puedan darse y ejecutar en conjunto con las municipalidades y los ministerios de la rama económica los posibles planes de contingencia para cubrir tales pérdidas.

Hasta el presente, en el salvador, solo han sido dos los proyectos de análisis de riesgo sísmico que se han ejecutado de manera integral; uno de los principales problemas encontrados es el poco desarrollo de curvas que representen la vulnerabilidad de las tipologías locales de forma confiable, en parte por la poca información de pruebas estandarizadas de características de materiales y sistemas constructivos.

Por lo anterior, es de gran interés desarrollar las funciones que representen la vulnerabilidad de las tipologías comunes en el país (comprendiendo las curvas de

capacidad y fragilidad) para tener un banco de tales funciones que puedan ser utilizadas de manera confiable en evaluaciones del riesgo con sismo en otras regiones.

1.4 PLANTEAMIENTO DEL PROBLEMA

Primeramente, antes de pasar al planteamiento del problema, se deben definir claramente algunos conceptos básicos:

- Vulnerabilidad de una edificación: es un conjunto de parámetros que describe la capacidad resistente de una estructura ante alguna excitación externa.
- Función de vulnerabilidad: es una relación matemática que expresa de forma continua el daño que puede sufrir un tipo de estructura específico, cuando se somete a una solicitación sísmica de determinado nivel. Para el presente estudio se considerará que las curvas de capacidad y las curvas de fragilidad definen la vulnerabilidad.
- Curvas de capacidad: representan la capacidad estructural de las edificaciones regulares y poder realizar la evaluación de la respuesta estructural.
- Fragilidad: es la probabilidad de alcanzar un estado límite f, dado un nivel de amenaza o peligro, por lo que es una medida de la vulnerabilidad estructural.
- Tipología estructural: son los grupos estructurales en los que se pueden agrupar las edificaciones en base a sus sistemas constructivos.

Como se dijo anteriormente el riesgo no sólo depende de la posibilidad que se presenten eventos o fenómenos naturales intensos, sino también de las condiciones de vulnerabilidad en las edificaciones que favorecen que se produzcan pérdidas y daños cuando se presentan dichos fenómenos.

Generalmente, la vulnerabilidad se representa mediante el uso de curvas de capacidad y las curvas de fragilidad sísmica, las cuales nos permiten expresar la probabilidad de excedencia de un estado límite de daño (estado de daño) como una función de un parámetro representativo de la severidad del movimiento sísmico (aceleración máxima, intensidad sísmica, tales como msk y mmi, etc.) O de la respuesta estructural (deriva, desplazamiento, etc.). Estas funciones pueden ser observadas o calculadas basándose en información existente de registros de daño debidos a sismos, otra clase de función de vulnerabilidad son de tipo simuladas, debido a que la información necesaria está incompleta, por lo que se simulan son las características de las edificaciones para evaluar el daño. Sin embargo, hasta ahora, no hay una manera de representar la vulnerabilidad de los sistemas estructurales presentes en el salvador, por lo anterior no se puede hacer una evaluación de manera confiable, de los posibles daños que puedan producir un evento en un área urbana.

Por lo anterior, se hace necesario plantear una metodología a seguir para definir el proceso por el cual se obtengan las curvas de capacidad y fragilidad de las tipologías estructurales comunes en el país.

1.5 ALCANCES

- Se seleccionarán las tipologías estructurales más comunes, obtenidas en base al proyecto de investigación conjunta en las zonas propensas a desastres naturales en el área de metropolitana de Santa Tecla, Departamento de la Libertad.
- Para definir los parámetros que se emplearan en la construcción de las curvas de capacidad y fragilidad, se analizarán diversas metodologías prácticas.
- Las características físicas de los materiales que constituyen las diversas tipologías de estudio, trataran de obtenerse de pruebas de laboratorio estandarizadas, en la medida de lo posible; sin embargo en algunos casos, debido a lo limitado de tales datos en nuestro medio se utilizaran inferencias estadísticas.

1.6 JUSTIFICACIÓN

El objetivo básico para efectuar una evaluación de riesgo sísmico en una zona o región, es el de determinar los niveles de daño y/o las perdidas en diversas áreas de la región de estudio antes de que un evento sísmico la afecte de tal forma que las autoridades correspondientes tomen las acciones preventivas apropiadas. Para tener un resultado confiable se necesita evaluar la amenaza de manera precisa, representar la distribución espacial de los activos y personas y estimar adecuadamente la vulnerabilidad de las estructuras expuestas. En el caso de El Salvador, este último aspecto es donde poca o nula información se ha ejecutado al respecto, lo cual evidencia la urgente necesidad de comenzar un programa para calcular de manera

confiable y rápida, la vulnerabilidad de las diversas tipologías usadas en el medio, definido sus capacidades y fragilidades.

CAPITULO II

METODOLOGIA DE LA EVALUACION DE DAÑO

2.1 CRITERIOS DE EVALUACION.

Las curvas de fragilidad representan la probabilidad de que una estructura exceda un determinado estado de daño en función de un parámetro que define la intensidad sísmica. Estas curvas sirven para estimar el riesgo sísmico de grupos de edificios con características estructurales similares o de una estructura esencial (puente, planta nuclear, aeropuerto, líneas vitales).

Para determinar el daño de una edificación se determinan los Niveles de desempeño, los cuales cuantifican en términos de la cantidad de daño sufrido por un edificio afectado en movimiento sísmico y el impacto que tienen estos daños en las actividades posteriores al evento sísmico. Este concepto no es sólo aplicable a edificios, sino que puede ser extendido a todo tipo de estructuras e incluso a sus componentes no estructurales.¹

El nivel de desempeño describe un estado límite de daño, el cual representa una condición límite o tolerable establecida en función de los posibles daños físicos sobre la edificación, la amenaza sobre la seguridad de los ocupantes de la edificación inducidos por estos daños, y la funcionalidad de la edificación posterior al terremoto

¹ / ____Salvador Safina Melone../ Vulnerabilidad Sísmica de Edificaciones Esenciales. Memoria de la Tesis Doctoral. cap. 6. Universidad Politécnica de Cataluña. Barcelona, Dic/2002.

[SSCS, 1996]. Es una expresión de la máxima extensión del daño, donde se considera tanto la condición de los elementos estructurales como de los elementos no estructurales, lo cual es relacionado con la función de la edificación.

En la clasificaciones del nivel de desempeño se abarcan aquellas metodologías según las cuales, los criterios estructurales se expresan en términos de determinados niveles de desempeño esperados. Entre las principales propuestas que impulsan el desarrollo de estos conceptos destacan las recomendaciones de FEMA-356 y las propuestas del ATC-40 y ASCE 41-13. Aunque estas propuestas difieren en detalles, se fundamentan en los mismos conceptos.

Para el análisis de este trabajo de investigación se considera, a mi criterio la evaluación propuesta por <u>Guidelines for Analytical Vulnerability Assessment of</u> <u>Low/Mid—Rise Buildings 2015-08</u>, en referencia al análisis de la deriva de entrepiso para marcos de concreto y elementos verticales y de acuerdo a Fema 356, para definir los estados de daño estructurales.

Como información general, las curvas de fragilidad se pueden generar mediante el análisis de diferentes autores y diferentes metodologías de evaluación de daños, de las cuales podemos mencionar la clasificación de acuerdo a Dolceet al. (1994).

 Métodos Estadísticos; Con base en un análisis estadístico de las construcciones, caracterizadas por los datos de entrada, la evaluación de la distribución del daño se obtiene de la observación y cuantificación estadística de los daños ocasionados por sismos pasados (Vulnerabilidad observada).

- Métodos mecánicos o analíticos; En los que se utilizan modelos mecánicos para predecir el daño de la estructura por medio de algún parámetro que represente el comportamiento de la edificación frente a un sismo, como puede ser la deriva máxima entrepiso, la ductilidad, o un índice de daño (Vulnerabilidad calculada).
- Métodos basados en Juicios de Expertos; Que se evalúan cualitativa y/o cuantitativamente los factores que gobiernan la respuesta sísmica de las edificaciones, de tal forma que pueda determinar el grado de exposición al que se encuentra sometido un grupo de estructuras.

De acuerdo a la clasificación anterior nuestro análisis representa un método analítico y se enfoca por medio del análisis del Pushover; el cual debe de capturar adecuadamente los patrones de daño de los elementos y componentes de la estructura, representar apropiadamente el cortante basal esperado y las características de respuestas del edificio de análisis. Para el uso en el desarrollo de las funciones fragilidad, se deben determinar varios modelos de análisis de Pushover que son necesarios para la estimación de pérdidas o daños estructurales.

Para los edificios de análisis en este trabajo de investigación, cada estructura puede obtener diferente capacidad y participación de respuesta (fragilidad estructural). La capacidad estructural y la respuesta de la edificación ante un sismo dado, se han obtenido por medio del programa Seismostruct. El tipo de criterios a considerar claramente dependerá de los objetivos del profesional que esté realizando el estudio. Sin embargo, en el contexto de un enfoque de modelado a base de fibras, las deformaciones de materiales por lo general constituyen el mejor parámetro de identificación del estado de funcionamiento de una estructura dada.²

2.2 FACTORES INVOLUCRADOS EN EL CÁLCULO DE LA FRAGILIDAD

2.2.1 MOVIMIENTO SÍSMICO DE DISEÑO

La amenaza sísmica incluye efectos directos tales como: ruptura en la fuente y vibración del terreno, licuefacción del suelo, desprendimientos de tierra, asentamientos diferenciales y efectos indirectos como maremotos, incendios y deslizamientos entre otros. Cada uno de estos efectos puede producir daños que afectan el nivel de desempeño deseado para una estructura. El alcance, para el cual estas amenazas pueden afectar el desempeño o rendimiento de la estructura, depende de la magnitud del sismo, la distancia a la fuente, la dirección de propagación de la ruptura de falla, y las características geológicas de la región y locales.

Es necesario seleccionar una serie de eventos sísmicos discretos que pueden ocurrir y que representan el rango de severidad sísmica para un rendimiento particular de la estructura deseado.

²/____ Manual del Usuario./ Seismostruct, Versión 7.0, p. (204)

2.2.2. ACELEROGRAMAS DE ANALISIS

Un acelerograma: es una representación temporal de la aceleración que experimenta el suelo en un determinado punto durante un terremoto.

Se pueden determinar 3 tipos de acelerogramas:

- Acelerogramas artificiales: generados a partir de los espectros.
- Acelerogramas sintéticos: generados a partir de los modelos de rotura de falla
- Acelerogramas reales: generados a partir de los registros de los terremotos.

Los valores de la aceleración real se obtienen mediante unos instrumentos llamados acelerógrafos, que registran la aceleración del suelo según tres direcciones perpendiculares; dos horizontales y una vertical. Debido a que la variación de la aceleración es muy irregular en el tiempo, es necesario que la toma de datos se realice en intervalos muy pequeños de tiempo, utilizándose generalmente valores de 0.01 o 0.02 s.

Los acelerogramas se caracterizan por ser altamente irregulares y oscilatorios, con pequeñas amplitudes iniciales que crecen rápidamente hasta alcanzar los valores máximos y decrecer igualmente rápido hasta que se detiene el movimiento.

Un <u>espectro de respuesta</u> asociado a un acelerograma es una curva que representa la aceleración máxima que experimentaría un oscilador de 1 grado de libertad y de periodo Ti si se sometiera al citado acelerograma. Un oscilador de periodo

T1 experimentaría una aceleración a1; otro de T2 tendría a2 y así sucesivamente. La representación de todas estas parejas de valores [T, a] constituye un espectro de respuesta.

Aspectos importantes a considerar:

- 1. Una aceleración máxima del suelo mayor no equivale a una respuesta mayor.
- Las mayores respuestas se obtienen para los periodos (frecuencias) predominantes en el acelerograma.
- La respuesta aumenta con el número de ciclos de repetición de los periodos dominantes.
- 4. Otra característica importante de los acelerogramas que se aprecia al transformarlos en desplazamientos son las deformaciones permanentes del suelo que se producen durante el terremoto.

Acelerogramas Considerados en el Análisis

La aceleración pico del suelo (PGA) es igual a la aceleración máxima del terreno que se produjo durante el terremoto en una ubicación. La PGA es igual a la amplitud de la aceleración absoluta más grande grabadas en una acelerograma, en un sitio durante un terremoto particular. La agitación de un terremoto se produce generalmente en las tres direcciones. Por lo tanto, PGA a menudo se divide en las componentes horizontal y vertical. PGAs horizontales son generalmente más grandes que los de la dirección vertical, pero esto no siempre es cierto, sobre todo cerca de los grandes terremotos. PGA es un parámetro importante y conocido como una medida de intensidad (IM) para la ingeniería sísmica.

La aceleración horizontal máxima (PHA) es el tipo más común de aceleración del suelo en aplicaciones de ingeniería. A menudo se utiliza en ingeniería sísmica (incluidos los códigos de construcción sísmica) y se representa comúnmente en los mapas sísmicos de riesgo.

En un terremoto, los daños a los edificios y la infraestructura podrían estar relacionados con el movimiento del suelo, de las cuales la PGA es una medida, en lugar de la magnitud del propio terremoto. Para sismos moderados, PGA podría ser una medida razonable para determinar el daño de las estructuras; en los terremotos severos, el daño es más a menudo correlacionado con la velocidad máxima del terreno.

La selección de los acelerogramas para nuestro análisis, se ha realizado bajo el concepto de tomar el que tiene la máxima aceleración de cada uno de las 2 componentes; según la tabla siguiente.

Espectros	Acelerograma seleccionado	
Espectros de registros IGN.	1986-10-10 (IGN-180°)	
2 componentes	1986-10-10 (IGN-270°)	\checkmark
Espectros de registros CIG,	1986-10-10 (CIG-180°)	
2 componentes	1986-10-10 (CIG-90°)	✓
Espectros de registros IVU,	1986-10-10 (IVU-180°)	
2 componentes	1986-10-10 (IVU-90°)	✓
Espectros de registros CIG,	CIG - 2001-01-13 (Santa Tecla, 7153a_a)	\checkmark
2 componentes	CIG - 2001-01-13 (Santa Tecla, 7153b_a)	
Espectros de registros UCA,	UCA - 2001-01-13 (Santa Tecla, 180°)	~
2 componentes	UCA - 2001-01-13 (Santa Tecla, 90°)	

Tabla 2.2.2.1 Espectros de análisis

Fig. 2.2.2.1

Fig. 2.2.2.1: Espectros de registros IGN, 2 componentes

Fig. 2.2.2.2: Espectros de registros CIG, 2 componentes

Fig. 2.2.2.3: Espectros de registros IVU, 2 componentes

Fig. 2.2.2.4: Espectros de registros CIG, Santa Tecla 2 componentes

Fig. 2.2.2.5: Espectros de registros UCA, Hospital San Rafael 2 componentes

Para los edificios de un nivel se han considerado incrementos de 0.10, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70, 3.80, 3.90, 4.00 por cada espectro de los registros seleccionados, los cuales son aplicables, para la obtención de puntos de dispersión en la aplicación del método de mínimos cuadrados y así obtener las curvas de fragilidad para las edificaciones de un nivel.

Para los edificios de dos niveles se han considerado incrementos de 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50 por cada espectro de los registros seleccionados, los cuales son aplicables, para la obtención de puntos de dispersión en la aplicación del método de mínimos cuadrados y así obtener las curvas de fragilidad para las edificaciones de dos niveles.

2.3 ESTADOS DE DAÑOS

2.3.1 OBJETIVOS DE DESEMPEÑO

Para describir el nivel de daño es necesario definir diferentes estados o grados de daño en la edificación. Para ello, se emplean términos o definiciones específicas que sirven como indicadores del grado de daño global de la edificación.

Los estados de daño constituyen una medida discreta del nivel de deterioro que puede sufrir la edificación. Existen una diversidad de escalas de estados de daño utilizados por diferentes autores (Singhal y Kiremidjian. 1995) que intentan describir de la mejor manera posible la naturaleza y extensión del daño sufrido por los componentes estructurales; sin embargo, la metodología utilizada en este trabajo la determina generalmente la normativa ASCE 41-13, la cual especifica las disposiciones aplicables para la evaluación sísmica.

Un análisis de la metodología según ASCE 41-13 determina dos criterios básicos, para edificios existentes, los cuales son:

- BSE-1E: Seguridad Básica para terremoto 1, es el nivel de rendimiento de construcción de seguridad de vida; que es la combinación de la seguridad estructural y no estructural.
- BSE-2E: Seguridad Básica para terremoto 2, que determina el nivel de rendimiento de prevención de colapso, que pertenece sólo al desempeño estructural, y que es el terremoto que ocurre con menos frecuencia.

Estos dos criterios suelen ser tomados como el 20% de probabilidad de excedencia en 50 años para BSE-1E y 5% de probabilidad de excedencia en 50 años para BSE-2E, salvo en las regiones cerca de fallas importantes activas. En estas regiones BSE-1E y BSE-2E puede estar definido basándose en cálculos deterministas de los terremotos sobre estas fallas.

La evaluación analítica de los objetivos de desempeño de una edificación es de acuerdo a la seguridad básica y se determina según la tabla siguiente:

		Niveles de Rendimiento de Edificaciones			
		Rendimiento Operacional Nivel (1-A)	Rendimiento de Ocupación Inmediata Nivel (1-B)	Rendimiento de seguridad de vida Nivel (3-C)	Rendimiento de prevención de colapso Nivel (5-D)
vel de Riesgo Sísmico	50%/50 años	а	b	С	d
	BSE-1E 20%/50 años	e	f	g	h
	BSE-2E 5%/50 años	i	j	k	-
N	BSE-2N (ASCE 7 MCE _R)	m	n	0	р

Tabla 2.3.1.1. Niveles de Rendimiento en Edificios	Tabla 2.3.1.1.	Niveles	de F	Rendimiento	en	Edificios	3
--	----------------	---------	------	-------------	----	-----------	---

NOTA:

- 1. Cada celda en la matriz de la tabla anterior representa un objetivo de desempeño discreto.
- Los objetivos de desempeño en la matriz pueden ser usados para representar tres objetivos de desempeño específicos para edificios comunes considerando la categoría de terremoto I y II:

Objetivo de desempeño básico para edificios existentes **g** y **l** (BPOE, por sus siglas en inglés)

Objetivos aumentados g y i, j m, n, o, p

I, y e, f g y I y a, b k, m, n; o solitario Objetivos limitados g solitario I solitario c, d, e, f

³ /. ASCE 41-13, Tabla C2-2 p.32
2.3.2 ESTADOS LÍMITES

De acuerdo a la tabla anterior para nuestro análisis se determinan los estados límites de acuerdo al daño completo y se subdividen de la siguiente forma:

- 1. Estado Limite de Daño Colapso
- 2. Estado Limite de Daño Extenso
- 3. Estado Limite de Daño Moderado
- 4. Estado Limite de Daño Leve

Estos niveles de rendimientos de control de daño se pueden relacionar con la tabla C2-3 del ASCE 41-13, y en la tabla C1-2 del ASCE 41-06, los cuales serán utilizados para la realización de los modelos de marcos de concreto, considerando las disposiciones de FEMA 365.

Requisito de seguridad y criterios de verificación: Los tres principales niveles de rendimiento estructural, ocupación inmediata (IO), que corresponde a estado límite de daño leve, nivel (1-B), la seguridad de la vida (LS), que corresponde a estado límite de daño moderado, nivel (3-C), y prevención de colapso (CP), correspondiente a estado límite de daño severo, nivel (5-E), no han cambiado desde ASCE 41-06.

2.4 METODOLOGIAS ANALITICAS PARA CALCULAR LAS CURVAS DE FRAGILIDAD.

Una serie de procedimientos son utilizados para calcular los parámetros de daño (EDP, por sus siglas en ingles), que son los umbrales del estado de daño.

Existen diferentes tipos de análisis estructural, y los procedimientos para sus cálculos se resumen de la siguiente forma:

- Análisis Dinámico No-Lineal (NLD): Análisis dinámico incremental IDA, utiliza un gran número de simulaciones no-lineales de time history, para determinar el modo de respuesta, lo cual permite una cuantificación exacta de las incertidumbres asociadas con la variabilidad de registros, pero la precisión de la respuesta es una función del nivel apropiado de la complejidad del modelo.
- Procedimientos Estáticos No-Lineales (NLS): Se basa en el uso de la curva de capacidad obtenida del análisis PUSHOVER, este procedimiento proporciona una precisión razonable y suficiente para la estimación de las funciones de fragilidad y vulnerabilidad de muchas estructuras.
- 3. Procedimientos Estáticos No-Lineales Basado en Modelos de Mecanismos Simplificados (SMM-NLS): La veracidad de este procedimiento depende la identificación exhaustiva de los mecanismos de falla realistas y el cálculo de las curvas de capacidad asociadas

En relación a las tipologías estructurales utilizadas en nuestro medio se recomienda utilizar los procedimientos NLD y NLS, que incluyen estructuras de hormigón armado de concreto reforzado, marcos de acero, muros de corte de concreto reforzado y mampostería reforzada y confinada, mientras que los procedimientos SMM-LN son los más adecuados para la mampostería no reforzada y construcciones de adobe.

2.4.1 ANÁLISIS DINÁMICO NO LINEAL (NLD)

El análisis dinámico incremental (IDA) es la dinámica equivalente a un análisis paso a paso, y ha sido recomendado en el ATC - 63 [FEMA P - 695, 2008] y el ATC - 58 [FEMA P - 58, 2012]. Este procedimiento se puede implementar a cualquier tipología de construcción para estimar su capacidad media. El analista debe tomar en cuenta que la aplicación del análisis dinámico incremental; requiere definir un comportamiento de histéresis completa de los materiales y la repetición del análisis de un gran número de tiempo historia de aceleración. Dependiendo del nivel de complejidad, el tipo de material de la construcción, de la longitud de tiempo requerido para realizar un proceso de cálculo, lo cual podría ser significativo.

Con respecto al tipo de modelo a emplear, el analista debe asegurarse de que es compatible con el tipo de análisis, es decir, que se retiene suficiente complejidad del modelo. Para este fin, es necesario definir las curvas de histéresis para elementos estructurales y elementos no estructurales, utilizando los valores medios de las características estructurales y los parámetros relacionados, para simular todos los modos posibles de daños en los elementos.

2.4.2 ANÁLISIS ESTÁTICO NO-LINEAL (NLS)

El procedimiento se basa en el uso de curvas de capacidad que resultan del análisis de la curva del Pushover.

El análisis de la curva de capacidad resultante es realizado bajo el procedimiento de bilinealidad elesto-plastico o una curva idealizada de comportamiento multilineal elesto-plastico con esfuerzo residual, que para nuestro estudio <u>utilizaremos el análisis de la bilinealidad elesto-plastico.</u>

De forma alternativa el analista podría utilizar curvas de capacidad por defecto disponible en la literatura, como lo es las curvas de capacidad HAZUS (FEMA 2003), esto debido generalmente a la falta de información de datos y recursos, pero es necesario recordar que las consideraciones de sitio deben de ser iguales, esto debido a las técnicas de construcción y detallado. Es por esto que se recomienda que las curvas de capacidad puedan derivarse del análisis basado en los datos adquiridos de las condiciones del sitio y así poder utilizar análisis no lineales.

En referencia a las tipologías de análisis que existen en nuestro medio, para nuestro trabajo de graduación emplearemos el *Procedimientos Estáticos No-*

Lineales (NLS) pues cumple con los estándares aceptables para determinar las curvas de fragilidad.

El Análisis No Lineal (Pushover), aplicado a los modelos de marcos de concreto tiene como consideración, datos obtenidos de las condiciones del sitio y el dimensionamiento estructural, aplicando los criterios establecidos en la normativa de diseño por sismo (NTDS). Estos resultados implican la verificación de las secciones de vigas y columnas del edificio y la determinación de cuantías de refuerzo de la secciones de vigas y columnas.

Con estos datos de estrada se procede a la determinación de las propiedades de los elementos del marco seleccionado para llevar a cabo un análisis no lineal (PUSHOVER) y la posterior determinación de la curva de capacidad de dicho marco.

La curva de capacidad se define como la relación que existe entre la resistencia a la carga lateral de una estructura y su desplazamiento lateral característico.

El análisis Pushover se puede llevar a cabo aplicando un patrón de cargas laterales a la estructura, que representen las fuerzas sísmicas, patrón que se va incrementando monotónicamente hasta alcanzar la capacidad última de la estructura o el colapso. El objetivo de este procedimiento es cuantificar la capacidad de la estructura para absorber una acción lateral como, en este caso, la de un sismo. Durante el análisis, el cortante en la base va incrementando progresivamente manteniendo constante el patrón de fuerzas sísmicas distribuido en la altura del edificio. Para conseguir una representación realista de esfuerzos sísmicos, se emplea una distribución de las fuerzas sísmicas laterales, similar a las de las fuerzas sísmicas estáticas equivalentes, las cuales siguen la forma del modo fundamental de vibración o una distribución más sencilla, como puede ser triangular invertida, parabólica o uniforme.

Este procedimiento usa una serie de análisis elásticos secuenciales, que se superponen para aproximarse a un diagrama conocido con el nombre de curva de capacidad. Este curva relaciona las fuerzas en la base (cortante basal, V) y los desplazamientos (D) en el nivel superior de la estructura.

La curva de capacidad se construye generalmente para representar la respuesta del primer modo de la estructura, basado en la hipótesis según la cual el modo fundamental de vibración se corresponde con la respuesta predominante. Esto es generalmente válido para estructuras con períodos propios menores que 1s. Para estructuras más flexibles, el análisis debe considerar la influencia de los modos más altos vibración.

2.4.3 ANÁLISIS NO-LINEAL ESTÁTICO BASADO EN MODELOS DE MECANISMO SIMPLIFICADO (SMM - NLS)

El procedimiento no lineal estático dado en esta sección, permite el cálculo de los umbrales EDP a la mayor parte de las tipologías de construcción de albañilería (albañilería sin refuerzo y estructuras de adobe). El cálculo de los umbrales EDP puede hacerse usando sólo el espectro de respuesta elástico suavizado. Por lo tanto, el analista debe tener en cuenta que cuando se utiliza este método, la incertidumbre asociada a registrar la variabilidad del registro no se considera apropiada para calcular el valor de la capacidad media estimada. El espectro de respuesta elástico suavizado no puede reflejar la variabilidad del registro, ya que generalmente representa el sobre o el promedio de los espectros de respuesta.

2.5 PUNTOS DE CONTROL DE LAS CURVAS DE CAPACIDAD

2.5.1 DERIVACIÓN DE LAS CURVAS DE CAPACIDAD

2.5.1. A. REPRESENTACIÓN DEL ANÁLISIS PUSHOVER⁴

Como se menciona anteriormente, el análisis Pushover de una estructura es un análisis estático no lineal, bajo cargas verticales permanente y un aumento gradual de las cargas laterales (las cargas incrementales) llevando la estructura a la falla. La carga

⁴ /____ D'Ayala, D., Meslem, A., Vamvatsikos, D., Porter, K., Rossetto, T. (2015) Guidelines for Analytical Vulnerability Assessment of Low/Mid--Rise Buildings. Recuperado de htt:// www.globalquakemodel.org

lateral estática equivalente representa un terremoto aproximado, inducido por las fuerzas laterales. Un gráfico del cortante basal versus el desplazamiento superior en una estructura es obtenida para este análisis, permitiendo la determinación de la carga de colapso y capacidad de ductilidad (Ver figura 2.5.1.1).

Fig. 2.5.1.1 Grafica de la curva de Pushover y evaluación de diferentes umbrales de daño. Ref. GEM Technical Report 2015-08 v1.0.0

De acuerdo **Ref. GEM Technical Report 2015-08 v1.0.0,** la Implementación de un análisis Pushover se tendrá que desarrollar un modelo matemático adecuado y definir los siguientes parámetros:

 Definir el modelo estructural: 3D o un modelo 2D simplificado, identificar sus elementos primarios y secundarios o componentes, definir los elementos no estructurales, flexibilidad de la fundación, efectos P-Delta.

- Definición de cargas.
 - Gravedad: Esta carga es permanente, es decir, acciones de gravedad de la carga muerta, carga viva.
 - Patrón de carga lateral (distribución vertical): las cargas incrementales consisten de las fuerzas horizontales en cada planta.
- Selección del control del incremento: diferentes estrategias pueden ser empleadas tales como: el control de carga (control de la fuerza), control de respuestas.

Pasos a realizar para el análisis del Pushover para múltiples grados de libertad (MDoF) Ref. GEM Technical Report 2015-08 v1.0.0

- Paso 1: Desarrollar un modelo matemático adecuado del edificio para el análisis estático no lineal.
- Paso 2: Seleccionar y determinar el patrón de fuerza horizontal a aplicarse para cada centro de masa, por planta.
- **Paso 3**: Selección el nodo de control: el cual será un nodo de techo
- Pasó 4: Selección el nivel de deformación (desplazamiento de destino): Como ATC-40 (ATC 1996) exige, la curva de capacidad se determinará hasta el 4% del total de la altura del edificio; el EUROCODE-8 (CEN 2005), la curva de capacidad se determinará hasta el 150% de los desplazamientos del nodo de control que corresponde al estado límite de interés.
- **Paso 5**: Se aplica la carga de gravedad (sin cargas laterales).

- Paso 6: La carga vertical es constante, aumente gradualmente uno el parámetro de carga lateral, hasta la consecución del desplazamiento de destino.
- Paso 7: Asegurarse de que el análisis se extienda a una deformación tal que ocurra el colapso.

El resultado de este análisis es la curva de capacidad (fuerza - desplazamiento) del sistema MDoF que se relaciona con la estimación de los estados de daños.

2.5.1. B DERIVACIÓN DE SDOF EQUIVALENTE - BASADO EN CURVAS DE CAPACIDAD

Para algunos procedimientos fundamentados en el análisis estático no lineal, el analista debe, en primer lugar, derivar en un sistema equivalente SDoF, basado en curvas de capacidad de MDoF, establecido de la curva obtenida del análisis Pushover, La transformación de la fuerza-Desplazamiento (Cortante Basal-Desplazamiento superior) se transforma a la curva ADRS (Acceleration-Displacement-Response-Spectra) o como curva AD (aceleración-desplazamiento).

Esta curva relaciona la aceleración espectral con el desplazamiento espectral, esto se realiza mediante la participación modal de factores y la relación efectiva modal del peso de la estructura, determinado desde el modo fundamental de la estructura, por lo que los pasos para el cálculo del sistema equivalente SDoF basado en la curva de capacidad se determinan como siguen:

Pasos a realizar para el sistema equivalente de un solo grado de libertad (SDoF) Ref. GEM Technical Report 2015-08 v1.0.0

- Paso 1: Ejecutar análisis de Eigenvalores y extraer el modo fundamental, del sistema de MDoF.
- Paso 2: Obtener el cortante basal desplazamiento superior (curva de capacidad), como consecuencia del análisis estático no lineal (Pushover) del sistemas de MDoF.
- Paso 3: Derivar el sistema equivalente de SDoF, basado en la curva de capacidad, dividiendo el cortante basal y el desplazamiento del sistema de MDoF basado en la curva de capacidad con un factor de transformación.

La masa de un sistema equivalente de un grado de libertad (SDoF), m* es determinada como:

$$m^* = \sum m_i * \phi_i$$
 i = 1,2,....n

La transformación de un modelo equivalente de SDoF, se realiza dividiendo la base de cortante F_b con el desplazamiento superior d_n , con el factor de transformación " τ " del modelo de múltiples grados de libertad (MDoF).

$$F^* = \frac{F_b}{\tau}, \quad d^* = \frac{d_b}{\tau}$$

Dónde:

 F^* = La fuerza cortante en la base del SDoF

d* = Desplazamiento en la base del SDoF

El factor de trasformación se obtiene de la siguiente forma:

$$\tau = \frac{\phi^{\tau} * M * 1}{\phi^{\tau} * M * \phi} = \frac{m^*}{\sum m_i * \phi_i^2}$$

Se considera que para el cálculo de la equivalencia de la masa m^* y la constante " τ ", el desplazamiento asume la forma de φ normaliza, el valor en la parte superior es igual a 1, generalmente se asume una forma triangular para el primer modo, sin embargo, cualquier forma razonable también puede ser utilizada para φ .

Para la transformación del sistema MDoF a SDoF, tanto a la fuerza y el desplazamiento debe ser dividido por la misma constante " τ ", de manera que la rigidez inicial del sistema SDoF equivalente sigue siendo el mismo que el definido por la cortante en la base - desplazamiento de la gráfica del sistema de MDoF según la figura siguiente.

2.5.1. C REPRESENTACIÓN IDEALIZADA DEL AJUSTE DE LA CAPACIDAD.

La ejecución de algunos procedimientos estáticos no lineales requiere la determinación de formar una aproximación idealizada, aproximada para la curva de capacidad derivada del sistema equivalente SDoF.

Para obtener el grafico de la capacidad idealizada del sistema SDoF se utiliza el principio de energía equivalente, por lo cual la curva idealizada está determinada por la imposición de que las áreas bajo la curva real del SDoF y la curva idealizada son iguales.

a) Fig. 2.5.1.3: Elasto plástica "Multilineal" Ref. GEM Technical Report 2015-08 v1.0.0

 b) Fig. 2.5.1.4: Perfectamente
Elasto plástica "Bilineal" nuestro caso de análisis. Ref. GEM
Technical Report 2015-08 v1.0.0

- a) Figura 2.5.1.3. Elasto plástica "Multilineal": se pueden utilizar; por ejemplo, en el caso de la curva de capacidad derivada de estructuras de marcos de forma completa, su uso exige lo siguiente:
 - A partir de la ordenada del punto 1: definido como el segmento elástico, en el punto 1 se define como el punto de fluencia.
 - Desde el punto 1 al Punto 2: el segmento se denomina endurecimiento, en el punto 2 se define como el punto de fuerza pico inicial o punto de degradación.
 - Desde el punto 2 al Punto 3: el segmento de denominado ablandamiento, donde 3 representa el punto de inicio de la respuesta de resistencia residual (por ejemplo una falla completa del relleno para marcos).

- Desde el punto 3 al Punto 4: representa la fuerza residual de la meseta, donde el punto 4 representa la máxima deformación de colapso.
- b) Figura 2.5.1.4. Perfectamente elasto plástica "Bilineal simple": se pueden utilizar, por ejemplo, en el caso de la curva de capacidad derivada de estructura de marcos, edificios de mampostería. El uso de bilineal de forma elasto plástica exige lo siguiente:
 - A partir de la ordenada del punto 1: definido como el segmento elástico, en el punto 1 se define como el punto de fluencia.
 - Desde el punto 1 al Punto 2: es la meseta del endurecimiento y ablandamiento hasta el punto de resistencia residual, donde 2 representa la máxima deformación de colapso.

De manera objetiva se presenta a continuación algunos ejemplos para el cálculo de estos diferentes segmentos y puntos, que caracterizan una curva de capacidad idealizada. Estos ejemplos son una posibilidad, y el analista puede realizar cualquier otro procedimiento para definir con precisión los diferentes segmentos y puntos.

Ciertamente, en el nivel de punto de fluencia, escoger el desplazamiento de fluencia (D_y) y la fuerza de fluencia (F_y), puede tener una influencia significativa, por lo que el periodo del sistema equivalente idealizado del SDoF (T^*), es determinado por:

$$T^* = 2\pi \cdot \sqrt{\frac{m^* \cdot D_y}{F_y}}$$

2.5.1. D FORMA PERFECTAMENTE MULTILINEAL ELASTO – PLÁSTICO.

Los marcos rellenados de mampostería se caracterizan por la degradación de la fuerza sustancial después de la falla de relleno de la mampostería. Para tener en cuenta esta característica, la curva de capacidad tiene que ser idealizada como una relación multi-lineal de fuerza - desplazamiento en lugar de un simple bilineal elasto - plástico. La idealización de la curva de Pushover se puede realizar de la siguiente manera (ver Figura 2.5.1.5):

- Definición de punto (D_{max}, F_{max}) correspondiente a la fuerza máxima de la estructura.
- Definición de punto (D_{max}, F_{min}) correspondiente a la resistencia mínima de la estructura; este punto está relacionado con la falla completa del relleno en uno o más pisos. Después de eso, sólo el marco resiste la carga horizontal.
- Una vez definidos los puntos característicos anteriores de la curva de momento máxima idealizada, el punto de fluencia (D_y*, F_y*) se determina suponiendo que la fuerza de fluencia (rendimiento) F_y* del sistema idealizado debe ser igual a la fuerza máxima de la estructura F*_{max}; el desplazamiento de fluencia (rendimiento) D_y* se determina aplicando la regla de igual energía (es decir, el área bajo la curva de Pushover y la curva idealizada son iguales) para el intervalo de 0 a D*_{Fmax}.
- Determinación del desplazamiento en el inicio de la degradación D*s mediante la aplicación de la regla de igual energía igual para el intervalo de D*_{Fmax} a D*_{Fmín}.

$$D_{y} = 2\left(D_{max} - \frac{E_{Dmax}}{F_{max}}\right)$$
$$D_{s} = \frac{2}{F_{max}^{*} - F_{min}^{*}} \left(E_{D_{Fmin}}^{*} - \left((D_{min}^{*} - D_{max}^{*}), F_{max}^{*}\right) + \left(\frac{1}{2}(F_{max}^{*} - F_{min}^{*}), D_{min}^{*}\right)\right)$$

Dónde:

 E_{Dmax} = Es el área bajo la curva de pushover entre los intervalos de 0 a D_{max} . E_{Du} = Es el área bajo la curva de pushover entre los intervalos de 0 a D_u .

Fig. 2.5.1.5. Idealización de la curva de capacidad usando forma multilineal elesto-plastico Ref. GEM Technical Report 2015-08 v1.0.0

2.5.1. E FORMA PERFECTAMENTE BILINEAL ELASTO – PLÁSTICO.

Para la forma perfectamente bilineal elasto - plástico, la idealización de la curva de capacidad se puede realizar de la siguiente manera (Figura 2.5.1.6):

- Definir la fuerza de fluencia (rendimiento) del sistema de un grado de libertad (SDoF) idealizada F_y, por lo que coincidirá con la máxima capacidad de carga del sistema de un grado de libertad equivalente SDoF.
- Definir el desplazamiento máximo (ultimo) del sistema de un grado de libertad (SDoF) idealizada D_u, que coinciden con el mecanismo de formación plástica o de colapso para el nivel global del sistema de un grado de libertad equivalente (SDoF).
- El desplazamiento de fluencia del sistema idealizado D_y, al calcularse a partir de la conocida F_y y D_u, utilizando la siguiente relación:

$$D_y = 2\left(D_u - \frac{E_{Area}}{F_y}\right)$$

Donde E_{Area} es la deformación real de la energía hasta la formación del mecanismo plástico (i.e. es el área bajo la curva de Pushover en el intervalo de 0 a D_u).

Fig. 2.5.1.6. Idealización de la curva de capacidad usando la forma bilineal elesto-plastica perfecta Ref. GEM Technical Report 2015-08 v1.0.0

Aceleración - Desplazamiento Espectros de Respuesta (ADR) Formato

La relación Fuerza-Desplazamiento se puede transformar en Aceleración-Desplazamiento, los Espectros de Respuesta (ADR) simplemente se dividen las fuerzas en el diagrama de la masa equivalente m *:

$$S_a = \frac{F}{m^*}$$

Forma de Análisis Bilineal elesto-plastica

Obtención de la curva de capacidad.

Método N2

El procedimiento es específicamente aplicable para estructuras que se caracterizan por una curva de capacidad de bilinealidad elesto-plastica perfecta, el proceso consiste en la obtención de la respuesta inelástica apropiada, por ejemplo; el punto de desempeño (definido como el punto de intersección del sistema idealizado de SDoF con la curva de capacidad del espectro de demanda inelástica) para un registro de terremoto dado.

Gráficamente, el punto de demanda/desempeño sísmico se define por la intersección de la curva de capacidad idealizada y el espectro de demanda inelástica para un valor de ductilidad relevante. (Véase fig. 5.5.1.7).

a) para rangos de periodos medio y largo plazo: T *≥ Tc

b) para rangos de periodos corto: T *< Tc, y $S_{ay} < S_{ae}(T^*)$

c) para rangos de periodos corto: T *< Tc, y $S_{ay} \ge S_{ae} (T^*)$

Fig. 5.5.1.7. Ejemplo ilustrado en los pasos para la evaluación del punto de desempeño para un registro de terremoto dado. Ref. GEM Technical Report 2015-08 v1.0.0

Cálculo de la demanda sísmica usando el procedimiento N2

- Paso 1. Desarrollar un modelo matemático adecuado del edificio para análisis estático no lineal. Identificar sus elementos o componentes primarios y secundarios, definir sus elementos no estructurales, la flexibilidad de la fundación, cargas de gravedad, y efectos P-Delta. También se puede referir a la ASCE / SEI 41-13 [ASCE 2007].
- Paso 2. Ejecutar un análisis estático paso a paso; y asegurarse de que el análisis se extiende a una forma tal que el colapso se produzca. Construir una relación de fuerza - desplazamiento del sistema MDoF teniendo en cuenta los diferentes umbrales de estados de daño.
- Paso 3. Transformar el sistema MDoF a un sistema de un grado de libertad equivalente SDoF (Estimar el grado de libertad de masas y el período equivalente), derivar el grado de libertad equivalente basada en la curva de capacidad.
- Paso 4. Ajustar el SDoF basado en la curva de capacidad a través de un modelo de idealización elasto plástica multilineal. Estimar el rendimiento del cortante en la base, el desplazamiento en el límite elástico y el desplazamiento en el inicio de la degradación de las paredes.
- **Paso 5**. Seleccione, la escala del registro del movimiento de tierra.
- Paso 6. La demanda de ductilidad se calcula a partir del factor de reducción conocido.
- Paso 7. Derivar el espectro de respuesta elástica por medio de la relación R-μ-T.

- Paso 8. Calcular el desplazamiento inelástico que corresponde al punto de comportamiento sísmico S*_d. tomar en cuenta que, S*_d Se puede obtener gráficamente como la intersección de la capacidad idealizada en la gráfica y el espectro de demanda inelástica.
- Paso 9. Una vez que se calcula el desplazamiento (inelástico) de la demanda de un terremoto dado (con un valor específico de PGA), la aceleración correspondiente (elástico) puede también ser calculado usando la siguiente expresión:

$$S_a(T_1) = S_{ae}(T^*) = \frac{4\pi^2}{T^{*2}} S_{de}(T^*)$$

El analista debe repetir el proceso (Paso 5 - Paso 9) para todos los registros seleccionados del terremoto y escalarlos, derivar el espectro de respuesta inelástica, y recalcular el punto de rendimiento hasta que se alcancen todos los estados límites. Por último, las nubes de puntos estructurales de respuesta (IM - EDP) se recogen del análisis.

2.6 DEFINICIÓN DE VARIABLES EN LA METODOLOGÍA

Los parámetros relacionados con las características estructurales investigadas en este trabajo son las asociados a propiedades mecánicas, configuración geométrica y detalles estructurales; en general se ven afectados por la calidad o el comportamiento estructural; la resistencia a la compresión del hormigón, la resistencia a la deformación del refuerzo, altura de la pisos y espaciamiento del refuerzo transversal. La elección de la gama de valores esperados para cada parámetro se basa en los resultados de la evaluación de las características estructurales de los marcos de concreto en estudio.

PROPIEDADES DE LAS VARIABLES MECANICAS									
Elemento	Fluencia de Acero ξy	esfuerzo máximo de Fluencia Ultima del acero ξyu	esfuerzo de Compresión ultima del concreto ξcu	esfuerzo de Compresión máximo del concreto ξcc	curvatura ultima	Corte Ton	Corte KN		
Columna C40X40	0.00210	0.06000	0.01549	0.00680	0.00189	23.50211	230.55575		
Columna C30x30	0.00210	0.06000	0.02066	0.00870	0.00269	16.97375	166.51248		
Columna C25x25	0.00210	0.06000	0.01697	0.00690	0.00308	14.36240	140.89518		
Viga40x40	0.00210	0.06000	0.01442	0.00570	0.00186	23.50211	230.55575		
Viga V25x25	0.00210	0.06000	0.02513	0.01030	0.00341	14.36240	140.89518		

Tabla 2.6.1. Propiedades mecánicas de los elementos estructurales

Las alturas de piso de los modelos varían en promedio entre los valores de 3 a 4 metros y espaciamientos entre marcos varían de 2.0, 3.0, 3.50, 4.0, 4.50, 5.0, 6.0 metros, el concreto característico utilizado es f'c=210 kg/cm², el acero correspondiente es fý=4200 kg/cm².

Ejemplificación de cálculo.

	Propie	dades mecanicas	de los materiales	colocado	s en seismo	ostruc			
Estructuras de Concreto	Reforzado					[Datos generales		
Marcas da 2 Nivelas	Nivol 2							Modulo de elasticidad del	
Walcos de 2 Niveles,					Es:	200000	kg/cm2	acero	
								Modulo de elasticidad del	
	Alto (cm) Y	Ancho (cm)X	Φestribo	Area estribo	Ec:	218819.7889	kg/cm2	concreto	
Seccion deV25X25	25	25	0.95	0.71	fy:	4200.00	kg/cm2		
F`c (kg/cm2)	210.00				<u>Estri@(s):</u>	12.50	cm	separacion de los estribos	
					recubrimiento	3.00	cm		
Ke (coeficiente efectivo de									
confinamiento)	0.75	rectangulares			hx	19.00	cm		
					hy	19.00	cm		
						0.01200		Relacion Volumetrica del	
					μγ	0.01200		Relacion Volumetrica del	
		05	0 02301		0.4	0.01101		acero de confinamiento en v	
		- ps	0.02501		f'1v/f'c	0.01101			
					f'1v/f'c	0.10010			
					Figura 3 6 (K)	1.83		Valor de grafica	
					rigula 5.0 (K)	1.05		Esfuerzo del nucleo de	
					f'cc	384.30	kg/cm2	concreto	
Pro									
Fluencia de Acero Şy	esfuerzo maximo de Fluencia Ultima del acero ξyu	esfuerzo de Compresion ultima del concreto ξcu	esfuerzo de Compresion maximo del concreto ξcc	curvatura ultima	Corte Ton	Corte KN			
0.00210	0.06000	0.02513	0.0103	0.00341	14.3624	140.895			

Tabla 2.6.2. Calculo de las propiedades mecánicas de los elementos estructurales

CAPITULO III

VULNERABILIDAD SISMICA

3.1 NORMAS Y ESPECIFICACIONES APLICABLES

En relación con las características estructurales de los marcos de concreto estudiados en esta investigación, los cuales se introducen en términos de propiedades mecánicas, detalles estructurales, configuración geométrica y dimensiones, se ha correlacionado con los códigos existentes (por ejemplo, ATC 1996, FEMA 1999, ASCE 41-13, FEMA P-58, FEMA 365). Estas características pueden implementarse en programas estructurales, como lo son: Seismostruct, ETABS, SAP200, etc., los cuales son asignados para representar los parámetros asociados, como valores por defecto de la resistencia del hormigón, o la resistencia del acero, o una estimación del espaciamiento del refuerzo transversal... etc. (Por ejemplo Inel y Ozmen 2006, Salvador et al., 2008, Khan & Naqvi 2012).

3.2 DESCRIPCION DEL SISTEMAS ESTRUCTURAL

SISTEMA SISMO – RESISTENTE:

El sistema sismo – resistente de los edificios, es un sistema de marcos dúctiles de concreto reforzado con detallado ordinario en donde las cargas que se generan en

el sistema; verticales como laterales son resistidas por las vigas y columnas; en ambas direcciones de análisis.

SISTEMA DE ENTREPISO:

La losa de entrepiso modelada es losa tipo densa, el cual se conforma utilizando vigas de concreto y una losa densa de concreto reforzado (espesor = 15 cm), apoyados sobre las vigas; dicho elemento (losa) fue estructurado considerando las cargas de ocupación a las que la losa será sometida durante su vida útil. Por lo tanto, la losa se espera tenga un comportamiento de diafragma rígido capaz de transferir las fuerzas a los elementos resistentes, esta consideración es equivalente a los link propuestos en el modelaje y configuración de los marcos de concreto.

MASA	S DE MARCO CONS	SIDERAC	DAS PAR	ATODOS	S LOS MC	DELOS		
	CM (entrepiso) = CM (Techo) = CV (entrepiso) = CV (Techo) =	205.0 55.0 170.0 20.0	(kg/m2) (kg/m2) (kg/m2) (kg/m2)					
F	actor de carga viva =	0.20	(segun /	ATC 72-1)				
	W losa entrepiso = W losa Techo = W viga entrepiso = W viga Techo =	360.0 0.0 384.0 150.0	(kg/m2) (kg/m2) (kg/m) (kg/m)	15 cm de	espesor			
	CT (entrepiso) = CT (Techo) =	599.0 59.0	(kg/m2) (kg/m2)					
	Claro de viga = Area de tablero =	5.00 25.0	(m) (m2) Va	alores a in	sertar en	seismostruc		
P (columr P (columna	na lateral entrepiso) = a central entrepiso) =	7,913.8 9,407.5	(kg) (kg)	\rightarrow \rightarrow	7.91 9.41	(tonne) (tonne)	7.91375 9.4075	р1 р2
P (colu P (colur	mna lateral Techo) = mna central Techo) =	1,118.8 1,487.5	(kg) (kg)	\rightarrow \rightarrow	1.12 1.49	(tonne) (tonne)	1.11875 1.4875	р3 р4
	W (viga entrepiso) = W (viga Techo) =	1,497.5 147.5	(kg/m) (kg/m)	\rightarrow \rightarrow	1.4975 0.15	(tonne/m) (tonne/m)	1.4975 0.1475	w1 w2

3.3 ESTIMACIÓN CONCEPTUAL DE LA RESPUESTA SÍSMICA PROBABILÍSTICA

Formulación de mínimos cuadrados.

$$\varphi\left[\frac{\ln IM - \ln\alpha}{\beta}\right]$$

Donde, Φ representa la función de distribución acumulativa normal estándar, β es la desviación estándar normal de la demanda media.

Para un umbral de daño probabilístico asumido, se eligen Medidas de Intensidad; IMs (Intensity Measure, por siglas en ingles), de manera que aproximadamente la mitad de los puntos estén por debajo de ese umbral de daño y la mitad arriba, determinando un intervalo de valores de IMs, que se suponen con una distribución log normal dentro de cada intervalo.

Se realiza una regresión por partes sobre estos diferentes intervalos IM, los parámetros se calculan por fragilidad utilizando la relación correspondiente:

$$ln(\overline{EDP}) = aln(IM) + ln(b)$$

Para los estados de daños propuestos tenemos la Mediana y la Desviación Estándar, la demanda mediana de α_{dsi} y la dispersión β_{dsi} para cada umbral asumido, d_{si} , respectivamente se pueden reescribir como d_{si} :

 $\alpha_{ds_i} = exp\left(ln\left(\frac{ds_i}{b}\right)/a\right)$ Mediana $\beta_{ds_i} = \frac{STDEV(lnIM_i)}{a}$ Desviación estándar Estas variables se representan por medio de la figura siguiente.

Fig. 3.3.1 Ejemplo de cálculo de la demanda media y la dispersión de daños completa (CD) utilizando regresión de mínimos cuadrados. Ref. GEM Technical Report 2015-08 v1.0.0

La formulación para determinar la probabilidad es:

$$P(DS \ge ds_i \mid S_d) = \Phi\left(\frac{1}{\beta} ln\left(\frac{S_a(T)}{S_{a,dsi}(T_1)}\right)\right)$$

Una distribución log normal se ajusta entonces a los puntos de datos para cada uno de los estados de daño. Esto se logra utilizando los parámetros de distribución de la mediana y la desviación estándar. El valor de la desviación estándar es igual a la incertidumbre combinada de la capacidad y la demanda.

El proceso de diseño empleado para calcular la curva de fragilidad es atreves de la ecuación Log Normal, y esta puede calcularse con la función de Excel *LOGNORM.DIST*, cuya secuencia de datos será:

LOGNORM.DIST(Dato(Sa,g,etc),LN(Media(Sa,g,etc)),Desv.Estandar,TRUE)

3.4 APLICABILIDAD DE LAS CURVAS DE FRAGILIDAD EN LA EVALUACIÓN DE DAÑOS Y NIVELES DE RIESGO SÍSMICO

Como se menciona anteriormente una curva de fragilidad es una función que relaciona la intensidad sísmica con el daño o pérdida esperada en un grupo de estructuras.

Por otra parte se sabe también que el funcionamiento de una estructura de hormigón armado depende de algunos parámetros importantes: tales como: su resistencia, rigidez, ductilidad, etc. Además, su diseño toma en cuenta varios niveles de desempeño, pero se necesita una conexión que relacione los estados límites de la estructura con su probabilidad de daño. Aquí intervienen las curvas de fragilidad, las mismas que representan la probabilidad de que la respuesta de una estructura exceda un determinado estado límite, en función de un parámetro que define la intensidad del suelo. En otras palabras, es una medida de vulnerabilidad sísmica de una estructura en términos probabilistas. (Bonett Díaz, Ricardo León 2003).

Para la realización de estas curvas de fragilidad, es importante tener un entendimiento sobre los mecanismos de respuesta de una estructura para diferentes estados de demanda sísmica, los cuales varían entre movimientos frecuentes de baja intensidad hasta movimientos fuertes poco frecuentes.

Estas curvas son de gran utilidad, debido a que son parte esencial para los siguientes tipos de estudios:

- Evaluación del riesgo sísmico de los sistemas estructurales.
- Análisis, evaluación y mejora del funcionamiento sísmico, tanto de los sistemas estructurales como de los no estructurales.
- Identificación de diseños óptimos y estrategias de rehabilitación.
- Determinación de las probabilidades de los márgenes de seguridad de las estructuras para diferentes movimientos sísmicos, los cuales pueden servir para la toma de decisiones y elaboración de las normativas utilizadas por las entidades responsables de la seguridad de los sistemas y protección de los usuarios.

Para la elaboración de estas curvas existen varios métodos, que difieren entre ellos de acuerdo al tipo de información y técnicas de análisis que utilizan para evaluar el daño en las estructuras debido a movimientos sísmicos de diferente intensidad. Para nuestro caso el método utiliza parámetros de la deriva de piso para representar la intensidad sísmica y el daño de las estructuras. Las curvas de fragilidad se construyen a partir del ajuste de funciones de distribución (generalmente la distribuciones lognormal).

La diversidad de variables involucradas en la evaluación de la vulnerabilidad y del riesgo sísmico de estructuras es altamente aleatoria. La incertidumbre de las características estructurales y de la acción sísmica tiene especial relevancia, pero también la aleatoriedad de la respuesta del sistema, principalmente cuando el comportamiento del sistema es no lineal.

Son aleatorias las variables relacionadas con las características de los materiales, la geometría y la dimensión de las secciones, etc. Para cubrir esta variabilidad, las normas de diseño sismorresistente recomiendan que el cálculo sea determinista, utilizando valores disminuidos para la resistencia de los materiales y valores aumentados para las acciones, mediante coeficientes de seguridad. De esta manera, se reconoce implícitamente la aleatoriedad tanto de las características mecánicas de los materiales como de las propiedades de las acciones.

3.4.1 PARAMETROS DE INFORMACION UTILIZADA EN ANALISIS

La información obtenida para la realización y análisis de las curvas de fragilidad en este trabajo corresponden a tipologías de marco de concreto de 1 y 2 niveles, de acuerdo al levantamiento de estas estructuras realizado en el departamento de la libertad, específicamente Santa Tecla según tabla siguiente.

	MODELOS PROPUESTOS										
Espaciamiento entre marcos en metros			en	Marcos unidos con elementos link	No de Pisos	Altura Nivel 1 NPT	Altura Nivel 2	modelos en sesimostruct			
5.00	5.00	5.00	5.00				2.00	1.00	3.00		1.00
4.50	4.50	4.50	4.50	2.00			2.00	1.00	3.00		2.00
4.00	4.00	4.00	4.00	4.00			2.00	1.00	3.00		3.00
5.00	5.00	5.00	5.00				2.00	1.00	3.50		4.00
4.50	4.50	4.50	4.50	2.00			2.00	1.00	3.50		5.00
4.00	4.00	4.00	4.00	4.00			2.00	1.00	3.50		6.00
5.00	5.00	5.00	5.00				2.00	1.00	4.00		7.00
4.50	4.50	4.50	4.50	2.00			2.00	1.00	4.00		8.00
4.00	4.00	4.00	4.00	4.00			2.00	1.00	4.00		9.00
5.00	5.00	5.00	5.00	5.00			2.00	1.00	3.50		10.00
5.00	5.00	5.00	4.00				3.00	2.00	3.50	3.50	11.00
4.50	4.50	4.50	5.50				3.00	2.00	3.50	3.50	12.00
4.00	4.00	4.00	4.00	3.00			3.00	2.00	3.50	3.50	13.00
5.00	5.00	5.00	5.00	5.00			3.00	2.00	3.50	3.50	14.00
4.00	4.00	4.00	4.00	4.00	5.00		3.00	2.00	4.00	3.50	15.00
5.00	5.00	5.00	5.00	5.00	5.00	5.00	3.00	2.00	4.00	4.00	16.00
5.00	5.00	5.00	5.00	5.00	5.00	5.00	3.00	2.00	3.50	3.50	17.00
4.00	4.00	4.00	4.00	4.00	4.00	4.00	3.00	2.00	4.00	4.00	18.00
5.00	5.00	5.00	5.00	5.00	5.00	6.00	3.00	2.00	4.00	3.50	19.00
4.50	4.50	4.50	4.50	4.50	3.50		3.00	2.00	3.50	3.50	20.00

Tabla 3.4.1.1. Levantamiento en físico de estructuras del área de Santa Tecla

Los modelos utilizados para el análisis, han sido modelados en el programa de AUTOCAD, para posteriormente realizarlos en el programa de Seismostruct, presentando como ejemplo las siguientes figuras del modelaje en CAD.

Fig. 3.4.1.1. Planta propuesta inicial del Modelo 11

Fig. 3.4.1.2. Elevación propuesta inicial del Modelo 11

En el ámbito del modelaje para la caracterización del mejor comportamiento de la estructura, esta se desarrolló con los parámetros similares a las estructuras existentes, considerando algunas secciones de vigas y columnas.

Fig. 3.4.1.3. Detalles estructurales generales utilizados en los modelos

Posteriormente a la determinación de secciones y tipo de estructura a utilizar se desarrollaron los modelos en Seismostruct para determinar la capacidad estructural de cada modelo, implementándose para nuestro caso 20 modelos, de los cuales 10 modelos son de un piso, y 10 modelos son dos pisos.

Fig. 3.4.1.4 Representación de modelo 2 en Seismostruct

Fig. 3.4.1.5. Representación de modelo 11 en Seismostruct

En el desarrollo del modelaje; para poder realizar el cálculo de la curva de capacidad en cada modelo de marcos de concreto, se realizó considerando elementos link, en dichos elementos es necesario definir cuatro nodos. Los dos primeros son los nodos extremos del elemento y deben ser inicialmente coincidentes, ya que todos los elementos link poseen una longitud inicial igual a cero. Esta última condición implica también que un tercer nodo es requerido para definir el eje local (1), observando que la orientación de este eje luego de la deformación es determinada por su orientación
inicial y la rotación global del primer nodo del elemento. El cuarto nodo es utilizado para definir los ejes locales (2) y $(3)^5$, según se presenta en la siguiente figura 3.4.1.6.

Fig. 3.4.1.6. Definición de nodos en elementos link.

En una consideración particular se determinó que la estructura fuera lo sufrientemente rígida dándoles valores de 10000 a los parámetros de curva y sobre el tipo de curva lineal.

En lugar de definir un tercer y cuarto nodos, simplemente utilizar la palabra clave "default", que implica que el eje local 1 corresponde con el eje global X y que el eje local 3 corresponde con el eje global Z.

⁵/____ Manual del Usuario./ Seismostruct, Versión 7.0, p. (174)

Una vez determinada la modelización y configuración estructural sometimos a la estructura a cargas incrementales en cada nodo de los niveles analizados, y determinando un nodo de control se obtiene la curva de capacidad. (Ver figuras siguientes).

Fig. 3.4.1.7. Curva de capacidad del modelo 2

Fig. 3.4.1.8. Curva de capacidad del modelo 11

3.4.2 ALEATORIDAD DE LAS VARIABLES UTILIZADAS.

La obtención de las variables utilizadas, se han derivado mediante las características modificadas para cada modelo, esto debido a que las ecuaciones implementadas lo solicitan, y así determinar para cada caso de estudio su variabilidad.

Las variables deterministas son la Mediana y la Desviación Estándar:

$$\alpha_{ds_i} = exp\left(ln\left(\frac{ds_i}{b}\right)/a\right) \qquad \text{Mediana}$$
$$\beta_{ds_i} = \frac{STDEV(lnIM_i)}{a} \qquad \text{Desviación estándar}$$

La Formulación para la determinar de la probabilidad es:

$$P(DS \ge ds_i \mid S_d) = \Phi\left(\frac{1}{\beta} ln\left(\frac{S_a(T)}{S_{a,dsi}(T_1)}\right)\right)$$

Como se dijo anteriormente una distribución log normal se ajusta entonces a los puntos de datos para cada uno de los estados de daño.

El proceso de diseño empleado para calcular la curva de fragilidad es por medio de la ecuación Log Normal.

LOGNORM.DIST(Dato(Sa,g,etc),LN(Media(Sa,g,etc)),Desv.Estandar,TRUE)

3.4.2.1 CALCULO α_{ds}

El cálculo de esta variable llamada en estadística como mediana; la determina la formula siguiente:

$$\alpha_{ds_i} = \exp\left(\ln\left(\frac{ds_i}{b}\right)/a\right)$$

Dónde:

 α_{dsi} es la mediana correspondiente a los estados de daño (ds) de 0.2%, 1%, 2% y 4%, dependiendo de las variables **"a"**, **"b"**; comparativamente **"b"** representa la constante de la ordenada en el origen y **"a"** es la pendiente de la línea de tendencia, estas dos constantes dependen del tipo de sistema, la representación de la ecuación es **y= ax+b**.

La ecuación y= ax+b, corresponde a:

$$ln(\overline{EDP}) = aln(IM) + ln(b)$$

Dónde:

ax = aln (IM)

b = ln (b)

3.4.2.2 CALCULO β_{ds}

El cálculo de esta variable llamada en estadística como Desviación Estándar; la determina la formula siguiente:

$$\beta_{ds_i} = \frac{STDEV(lnIM_i)}{a}$$

Dónde:

 β_{dsi} , es la desviación estándar de cada umbral de daño asumido, depende de la relación de la desviación estándar de los logaritmos naturales de intensidades macrosísmicas totales y la pendiente de la línea de tendencia.

Ejemplificando las variables podemos mostrar el cuadro correspondiente a los Modelos de 1 piso.

	0.2	1	2	4
	Daño Leve 0.2%	Daño Moderado 1%	Daño Extenso 2%	Daño Colapso 4%
	y = 0.7942x - 0.334	y = 0.8165x - 0.2006	y = 0.7088x + 0.1165	y = 1.2186x + 0.261
	R ² = 0.7497	R ² = 0.7857	R ² = 0.4801	R ² = 0.4829
а	0.7942	0.8165	0.7088	1.2186
Valor de Exp	-0.3340	-0.2006	0.1165	0.2610
b	0.7161	0.8182	1.1236	1.2982
STDEV	0.6188	0.6593	0.3706	0.3630
			_	
	α = MEDIANA	β=DESVIACION ESTANDAR		
DL	0.2007	0.7791		
DM	1.2785	0.8074		
DE	2.2559	0.5229]	
DC	2.5179	0.2979]	

Del cuadro anterior podemos mencionar que para cada estado de daño se determina una relación de mínimos cuadrados, estableciendo de esta forma la línea de tendencia, la cual nos proporciona la ecuación de regresión, por medio de la cual obtenemos los parámetros para la obtención de las variables de la mediana y desviación estándar.

3.4.2.3 CALCULO DE LA DERIVA DE PISO

La implementación para el cálculo de los estados de daño propuesto por ASCE 41-13 y el documento Ref. GEM Technical Report 2015-08 v1.0.0, tabla 6.3, es determinado por las deriva de entrepiso.

Parámetros Fema P-58 V1	Parámetros re	NTS		
Daño Leve	Daño Moderado	Daño Extenso	Daño Colapso	NTS =
0.2%	1%	2%	4%	0.020hxx

Tabla 3.4.2.3.1. Tabla de daños por derivas de entrepiso

Estos parámetros han sido tomados de acuerdo a una investigación minuciosa, las cuales a mi criterio son aplicables a nuestro medio, y de acuerdo a los parámetros establecidos en la documentación de los códigos internacionales, siendo una línea de investigación a futuro.

El colapso es considerado para esta metodología para valores mayores a 4% según estudios realizados por otros investigadores.

Una representación gráfica se puede observar en la figura siguiente, donde se determina la deriva de entrepiso a partir de los desplazamientos laterales de una edificación⁶.

Fig. 3.4.2.3.1. Determinación de las derivas de entrepiso a partir de los desplazamientos laterales de un edificio

⁶ /____ Juan Carlos Vielma, Alex H. Barbat y Sergio Oller, (2008). Umbrales de daño para estados límite de edificios porticados de concreto armado diseñados conforme al aci-318/ibc-2006. *Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil. Vol. 8(2) 119.*

3.4.2.4 CALCULO DEL PERIODO DE ESQUINA TC

El periodo de esquina es el valor del periodo donde el factor de amplificación dinámico máximo inicia el descenso. Este periodo está relacionado con el tipo el periodo predominante del suelo.

El periodo de esquina denominado Tc del espectro de respuesta, representa el límite entre la zona de los valores máximos del espectro para las aceleraciones absolutas y la zona de los valores máximos del espectro para las velocidades relativas (Ref. <u>http://iisee.kenken.go.jp/worldlist/44 Romania/44 Romania Code English.pdf</u>). Tc se indica en segundos y a partir de este punto el espectro de desplazamiento se hace constante. Para la realización del periodo se analizaron los terremotos y se obtuvieron según figuras siguientes:

Fig. 3.4.2.4.1. Periodo de esquina Tc para terremoto 1986-10-10 (IGN-270°)

Fig. 3.4.2.4.2. Periodo de esquina Tc para terremoto 1986-10-10 (CIG-90°)

Fig. 3.4.2.4.3. Periodo de esquina Tc para terremoto 1986-10-10 (IVU-180°)

Fig. 3.4.2.4.4. Periodo de esquina Tc para terremoto CIG - 2001-01-13 (Santa Tecla, 7153a_a)

Fig. 3.4.2.4.5. Periodo de esquina Tc para terremoto UCA - 2001-01-13 (Santa Tecla, 180°)

3.5 OBTENCIÓN DE LAS CURVAS DE FRAGILIDAD

Las curvas de fragilidad; son una medida de vulnerabilidad sísmica que permite determinar la probabilidad de excedencia o falla asociado a un estado de daño permisible en el funcionamiento de una estructura, esto en función de un parámetro representativo de la severidad del movimiento sísmico (aceleración, desplazamiento, entre otros.), con la respuesta estructural (deriva, desplazamiento, entre otros) Como se ejemplifica en la figura siguiente 3.5.1.

Fig. 3.5.1. Ejemplo típico de funciones de fragilidad (adaptada de FEMA (2003)).

Para la determinación de los casos de estudio, se establece de acuerdo a los parámetros y variables encontrados en el análisis, aplicando las formulaciones antes descritas, es así que para cada uno de los veinte modelos se ha determinado por separado cada curva de fragilidad (<u>ver Anexo 1</u>), siendo esta curva encontrada en el análisis de acuerdo a la implementación de nuestra norma técnica, la cual determina

un estado de daño extenso, es así que se presenta la nube de puntos de los modelos de un piso y la demostración grafica de la variables α y β , para la obtención de las curvas de fragilidad del conjunto de estructuras de un piso, según dimensiones, alturas, etc., y según tabla propuesta anteriormente.

NUBE DE PUNTOS DE LOS MODELOS DE UN PISO.

Fig. 3.5.2. Nube de puntos de los modelos de un piso.

La nube de puntos es la representación de 2100 puntos de análisis para la determinación variables α y β .

PRESENTACION DE PUNTOS DE ANALISIS PARA CADA ESTADO DE DAÑO

Fig. 3.5.3. Puntos de análisis para el estado de daño leve

Fig. 3.5.4. Puntos de análisis para el estado de daño moderado.

Fig. 3.5.5. Puntos de análisis para el estado de daño extenso.

Fig. 3.5.6. Puntos de análisis para el estado de daño colapso.

De las figuras 3.5.3, 3.5.4, 3.5.5 y 3.5.6, se obtienen los parámetros necesarios para determinar las variables α y β . Estos valores son obtenidos por la fórmula de regresión lineal presentada en los gráficos.

Se presenta a continuación la tabla de valores resumida, para la obtención de las variables necesarias para la obtención de las curvas de fragilidad.

	0.2	1	2	4
	Daño Leve 0.2%	Daño Moderado 1%	Daño Extenso 2%	Daño Colapso 4%
	y = 0.8353x - 0.2912	y = 0.818x - 0.176	y = 0.7557x + 0.1056	y = 1.1633x + 0.0985
	R ² = 0.8635	R ² = 0.8133	R ² = 0.4821	R ² = 0.7058
а	0.8353	0.8180	0.7557	1.1633
Valor de Exp	-0.2912	-0.1760	0.1056	0.0985
b	0.7474	0.8386	1.1114	1.1035
STDEV	0.7551	0.6567	0.3625	0.3518

	α = MEDIANA	β=DESVIACION ESTANDAR
DL	0.2064	0.9040
DM	1.2401	0.8029
DE	2.1760	0.4796
DC	3.0253	0.3024

Tabla 3.5.1. Tabla resumen de variables α y β .

Con las variables obtenidas de la tabla anterior se procede a la conformación de la tabla final característica para la obtención de las curvas de fragilidad, la cual se representa en el siguiente capítulo.

CAPITULO IV

RESULTADOS Y ANALISIS DE DATOS

4.1 RESULTADOS Y ANÁLISIS DE DATOS

De los datos obtenidos podemos mencionar que la determinación de acuerdo a derivas de piso nos da valores de comparación con otras metodologías; pues se determina que para los modelos de uno y dos pisos los valores de intervalos de variación del parámetro de daño, tales como Daño Leve (DL), Daño Moderado (DM), Daño Extenso (DE) y Daño Severo, llamado también Daño de Colapso (DC), se encuentran según la tabla siguiente.

Estados de Daños	Rango de Probabilidades				
Daño Leve 0.2%	0.2 ≤ DL < 1.0				
Daño Moderado 1%	1.0 ≤ DM < 2.0				
Daño Extenso 2%	2.0 ≤ DE < 4.0				
Daño Colapso 4%	DC ≥ 4				

Tabla 4.1.1. Evaluación de rango de probabilidades aceptable Ref. GEM Technical Report 2015-08 v1.0.0, FEMA P-58 V1

Definidos todos los valores anteriores y en referencia a la obtención de las curvas de fragilidad de cada modelo, estos datos se en su totalidad para la obtención de la curva de fragilidad total de los modelos de un piso y los modelos de dos pisos.

	Daño L	.eve (DL)		Fragility curve (lognormal dist)	Daño	Moderad	o (DM)	Fragility curve (lognormal dist)	jility rve Daño Extenso (DE) st)		Fragility curve (lognormal dist)		(DS)	Fragility curve (lognormal dist)		
Ítems	g	α	β	Promedio	g	α	β	Promedio	g	α	β	Promedio	g	α	β	Promedio
1	0.0100	0.2064	0.9040	0.0004	0.0100	1.2401	0.8029	0.0000	0.0100	2.1760	0.4796	0.0000	0.0100	3.0253	0.3024	0.0000
2	0.5000	0.2064	0.9040	0.8362	0.5000	1.2401	0.8029	0.1290	0.5000	2.1760	0.4796	0.0011	0.5000	3.0253	0.3024	0.0000
3	0.8000	0.2064	0.9040	0.9330	0.8000	1.2401	0.8029	0.2926	0.8000	2.1760	0.4796	0.0185	0.8000	3.0253	0.3024	0.0000
4	1.1000	0.2064	0.9040	0.9679	1.1000	1.2401	0.8029	0.4407	1.1000	2.1760	0.4796	0.0775	1.1000	3.0253	0.3024	0.0004
5	1.4000	0.2064	0.9040	0.9829	1.4000	1.2401	0.8029	0.5601	1.4000	2.1760	0.4796	0.1789	1.4000	3.0253	0.3024	0.0054
6	1.7000	0.2064	0.9040	0.9902	1.7000	1.2401	0.8029	0.6528	1.7000	2.1760	0.4796	0.3034	1.7000	3.0253	0.3024	0.0283
7	2.0000	0.2064	0.9040	0.9940	2.0000	1.2401	0.8029	0.7242	2.0000	2.1760	0.4796	0.4302	2.0000	3.0253	0.3024	0.0856
8	2.3000	0.2064	0.9040	0.9962	2.3000	1.2401	0.8029	0.7792	2.3000	2.1760	0.4796	0.5460	2.3000	3.0253	0.3024	0.1824
9	2.6000	0.2064	0.9040	0.9975	2.6000	1.2401	0.8029	0.8218	2.6000	2.1760	0.4796	0.6447	2.6000	3.0253	0.3024	0.3082
10	2.9000	0.2064	0.9040	0.9983	2.9000	1.2401	0.8029	0.8550	2.9000	2.1760	0.4796	0.7254	2.9000	3.0253	0.3024	0.4444
11	3.2000	0.2064	0.9040	0.9988	3.2000	1.2401	0.8029	0.8812	3.2000	2.1760	0.4796	0.7893	3.2000	3.0253	0.3024	0.5736
12	3.5000	0.2064	0.9040	0.9991	3.5000	1.2401	0.8029	0.9019	3.5000	2.1760	0.4796	0.8391	3.5000	3.0253	0.3024	0.6851
13	3.8000	0.2064	0.9040	0.9994	3.8000	1.2401	0.8029	0.9185	3.8000	2.1760	0.4796	0.8775	3.8000	3.0253	0.3024	0.7745
14	4.1000	0.2064	0.9040	0.9995	4.1000	1.2401	0.8029	0.9318	4.1000	2.1760	0.4796	0.9067	4.1000	3.0253	0.3024	0.8426
15	4.4000	0.2064	0.9040	0.9996	4.4000	1.2401	0.8029	0.9426	4.4000	2.1760	0.4796	0.9290	4.4000	3.0253	0.3024	0.8923
16	4.7000	0.2064	0.9040	0.9997	4.7000	1.2401	0.8029	0.9515	4.7000	2.1760	0.4796	0.9458	4.7000	3.0253	0.3024	0.9274
17	5.0000	0.2064	0.9040	0.9998	5.0000	1.2401	0.8029	0.9588	5.0000	2.1760	0.4796	0.9586	5.0000	3.0253	0.3024	0.9517
18	5.3000	0.2064	0.9040	0.9998	5.3000	1.2401	0.8029	0.9648	5.3000	2.1760	0.4796	0.9683	5.3000	3.0253	0.3024	0.9681
19	5.6000	0.2064	0.9040	0.9999	5.6000	1.2401	0.8029	0.9698	5.6000	2.1760	0.4796	0.9756	5.6000	3.0253	0.3024	0.9791
20	5.9000	0.2064	0.9040	0.9999	5.9000	1.2401	0.8029	0.9740	5.9000	2.1760	0.4796	0.9812	5.9000	3.0253	0.3024	0.9864
21	6.2000	0.2064	0.9040	0.9999	6.2000	1.2401	0.8029	0.9775	6.2000	2.1760	0.4796	0.9855	6.2000	3.0253	0.3024	0.9912
22	6.5000	0.2064	0.9040	0.9999	6.5000	1.2401	0.8029	0.9805	6.5000	2.1760	0.4796	0.9887	6.5000	3.0253	0.3024	0.9943
23	6.8000	0.2064	0.9040	0.9999	6.8000	1.2401	0.8029	0.9830	6.8000	2.1760	0.4796	0.9912	6.8000	3.0253	0.3024	0.9963
24	7.1000	0.2064	0.9040	1.0000	7.1000	1.2401	0.8029	0.9851	7.1000	2.1760	0.4796	0.9932	7.1000	3.0253	0.3024	0.9976
25	7.4000	0.2064	0.9040	1.0000	7.4000	1.2401	0.8029	0.9870	7.4000	2.1760	0.4796	0.9946	7.4000	3.0253	0.3024	0.9984

TABLA DE DATOS FINAL PARA EDIFICIOS DE UN NIVEL

Tabla 4.1.2. Datos para la obtención de las curvas de fragilidad de los modelos de un piso.

TABLA DE DATOS FINAL PARA EDIFICIOS DE DOS NIVELES

Daño	Daño Leve (DL)		Fragility curve (lognormal dist)	Daño Moderado (DM)			Fragility curve (lognormal dist)	Daño Extenso (DE)			Fragility curve (lognormal dist)	Daño Severo (DS)		Fragility curve (lognormal dist)		
Ítems	g	α	β	Promedio	g	α	β	Promedio	g	α	β	Promedio	g	α	β	Promedio
1	0.0100	0.0303	0.5671	0.0252	0.0100	0.1722	0.6561	0.0000	0.0100	0.3232	0.3859	0.0000	0.0100	0.5888	0.4510	0.0000
2	0.0500	0.0303	0.5671	0.8112	0.0500	0.1722	0.6561	0.0297	0.0500	0.3232	0.3859	0.0000	0.0500	0.5888	0.4510	0.0000
3	0.1000	0.0303	0.5671	0.9823	0.1000	0.1722	0.6561	0.2038	0.1000	0.3232	0.3859	0.0012	0.1000	0.5888	0.4510	0.0000
4	0.1500	0.0303	0.5671	0.9976	0.1500	0.1722	0.6561	0.4168	0.1500	0.3232	0.3859	0.0233	0.1500	0.5888	0.4510	0.0012
5	0.2000	0.0303	0.5671	0.9996	0.2000	0.1722	0.6561	0.5904	0.2000	0.3232	0.3859	0.1068	0.2000	0.5888	0.4510	0.0083
6	0.2500	0.0303	0.5671	0.9999	0.2500	0.1722	0.6561	0.7152	0.2500	0.3232	0.3859	0.2528	0.2500	0.5888	0.4510	0.0288
7	0.3000	0.0303	0.5671	1.0000	0.3000	0.1722	0.6561	0.8014	0.3000	0.3232	0.3859	0.4234	0.3000	0.5888	0.4510	0.0675
8	0.3500	0.0303	0.5671	1.0000	0.3500	0.1722	0.6561	0.8602	0.3500	0.3232	0.3859	0.5817	0.3500	0.5888	0.4510	0.1244
9	0.4000	0.0303	0.5671	1.0000	0.4000	0.1722	0.6561	0.9006	0.4000	0.3232	0.3859	0.7096	0.4000	0.5888	0.4510	0.1957
10	0.4500	0.0303	0.5671	1.0000	0.4500	0.1722	0.6561	0.9285	0.4500	0.3232	0.3859	0.8044	0.4500	0.5888	0.4510	0.2756
11	0.5000	0.0303	0.5671	1.0000	0.5000	0.1722	0.6561	0.9479	0.5000	0.3232	0.3859	0.8709	0.5000	0.5888	0.4510	0.3585
12	0.5500	0.0303	0.5671	1.0000	0.5500	0.1722	0.6561	0.9617	0.5500	0.3232	0.3859	0.9158	0.5500	0.5888	0.4510	0.4399
13	0.6000	0.0303	0.5671	1.0000	0.6000	0.1722	0.6561	0.9715	0.6000	0.3232	0.3859	0.9455	0.6000	0.5888	0.4510	0.5167
14	0.6500	0.0303	0.5671	1.0000	0.6500	0.1722	0.6561	0.9786	0.6500	0.3232	0.3859	0.9649	0.6500	0.5888	0.4510	0.5868
15	0.7000	0.0303	0.5671	1.0000	0.7000	0.1722	0.6561	0.9837	0.7000	0.3232	0.3859	0.9774	0.7000	0.5888	0.4510	0.6494
16	0.7500	0.0303	0.5671	1.0000	0.7500	0.1722	0.6561	0.9876	0.7500	0.3232	0.3859	0.9854	0.7500	0.5888	0.4510	0.7042
17	0.8000	0.0303	0.5671	1.0000	0.8000	0.1722	0.6561	0.9904	0.8000	0.3232	0.3859	0.9906	0.8000	0.5888	0.4510	0.7516
18	0.8500	0.0303	0.5671	1.0000	0.8500	0.1722	0.6561	0.9925	0.8500	0.3232	0.3859	0.9939	0.8500	0.5888	0.4510	0.7922
19	0.9000	0.0303	0.5671	1.0000	0.9000	0.1722	0.6561	0.9941	0.9000	0.3232	0.3859	0.9960	0.9000	0.5888	0.4510	0.8266
20	0.9500	0.0303	0.5671	1.0000	0.9500	0.1722	0.6561	0.9954	0.9500	0.3232	0.3859	0.9974	0.9500	0.5888	0.4510	0.8556
21	1.0000	0.0303	0.5671	1.0000	1.0000	0.1722	0.6561	0.9963	1.0000	0.3232	0.3859	0.9983	1.0000	0.5888	0.4510	0.8799
22	1.0500	0.0303	0.5671	1.0000	1.0500	0.1722	0.6561	0.9971	1.0500	0.3232	0.3859	0.9989	1.0500	0.5888	0.4510	0.9002
23	1.1000	0.0303	0.5671	1.0000	1.1000	0.1722	0.6561	0.9976	1.1000	0.3232	0.3859	0.9992	1.1000	0.5888	0.4510	0.9171
24	1.1500	0.0303	0.5671	1.0000	1.1500	0.1722	0.6561	0.9981	1.1500	0.3232	0.3859	0.9995	1.1500	0.5888	0.4510	0.9311
25	1.2000	0.0303	0.5671	1.0000	1.2000	0.1722	0.6561	0.9985	1.2000	0.3232	0.3859	0.9997	1.2000	0.5888	0.4510	0.9428
26	1.2500	0.0303	0.5671	1.0000	1.2500	0.1722	0.6561	0.9987	1.2500	0.3232	0.3859	0.9998	1.2500	0.5888	0.4510	0.9524
27	1.3000	0.0303	0.5671	1.0000	1.3000	0.1722	0.6561	0.9990	1.3000	0.3232	0.3859	0.9998	1.3000	0.5888	0.4510	0.9605
28	1.3500	0.0303	0.5671	1.0000	1.3500	0.1722	0.6561	0.9992	1.3500	0.3232	0.3859	0.9999	1.3500	0.5888	0.4510	0.9671
29	1.4000	0.0303	0.5671	1.0000	1.4000	0.1722	0.6561	0.9993	1.4000	0.3232	0.3859	0.9999	1.4000	0.5888	0.4510	0.9726
30	1.4500	0.0303	0.5671	1.0000	1.4500	0.1722	0.6561	0.9994	1.4500	0.3232	0.3859	0.9999	1.4500	0.5888	0.4510	0.9771

31	1.5000	0.0303	0.5671	1.0000	1.5000	0.1722	0.6561	0.9995	1.5000	0.3232	0.3859	1.0000	1.5000	0.5888	0.4510	0.9809
32	1.5500	0.0303	0.5671	1.0000	1.5500	0.1722	0.6561	0.9996	1.5500	0.3232	0.3859	1.0000	1.5500	0.5888	0.4510	0.9841
33	1.6000	0.0303	0.5671	1.0000	1.6000	0.1722	0.6561	0.9997	1.6000	0.3232	0.3859	1.0000	1.6000	0.5888	0.4510	0.9867
34	1.6500	0.0303	0.5671	1.0000	1.6500	0.1722	0.6561	0.9997	1.6500	0.3232	0.3859	1.0000	1.6500	0.5888	0.4510	0.9888
35	1.7000	0.0303	0.5671	1.0000	1.7000	0.1722	0.6561	0.9998	1.7000	0.3232	0.3859	1.0000	1.7000	0.5888	0.4510	0.9906
36	1.7500	0.0303	0.5671	1.0000	1.7500	0.1722	0.6561	0.9998	1.7500	0.3232	0.3859	1.0000	1.7500	0.5888	0.4510	0.9921
37	1.8000	0.0303	0.5671	1.0000	1.8000	0.1722	0.6561	0.9998	1.8000	0.3232	0.3859	1.0000	1.8000	0.5888	0.4510	0.9934
38	1.8500	0.0303	0.5671	1.0000	1.8500	0.1722	0.6561	0.9999	1.8500	0.3232	0.3859	1.0000	1.8500	0.5888	0.4510	0.9944
39	1.9000	0.0303	0.5671	1.0000	1.9000	0.1722	0.6561	0.9999	1.9000	0.3232	0.3859	1.0000	1.9000	0.5888	0.4510	0.9953
40	1.9500	0.0303	0.5671	1.0000	1.9500	0.1722	0.6561	0.9999	1.9500	0.3232	0.3859	1.0000	1.9500	0.5888	0.4510	0.9960
41	2.0000	0.0303	0.5671	1.0000	2.0000	0.1722	0.6561	0.9999	2.0000	0.3232	0.3859	1.0000	2.0000	0.5888	0.4510	0.9966

Tabla 4.1.3. Datos para la obtención de las curvas de fragilidad de los modelos de dos pisos.

Curvas de fragilidad para los modelos de un piso.

Fig. 4.1.1. Curva de fragilidad Total, modelos de un piso

Curvas de fragilidad para modelos de dos pisos.

Fig. 4.1.2. Curva de fragilidad Total, modelos de dos pisos

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

- En este trabajo de investigación se ha propuesto una metodología de evaluación probabilista de la vulnerabilidad y del riesgo sísmico de estructuras de Marcos de Concreto, utilizando la metodología de Mínimos Cuadrados. Se ha considerado la aleatoriedad de las propiedades mecánicas de los materiales y la aleatoriedad de acción sísmica. Esta última ha sido considerada mediante acelerogramas reales, produciendo espectros de respuesta de los mismos. El daño sísmico esperado se evalúa mediante la probabilidad calculada a partir de las curvas de fragilidad que, a su vez, son funciones que dependen del desplazamiento espectral. Dicho desplazamiento ha sido calculado por medio de métodos simplificados propuestos en el ATC-40.
- Es necesario aclarar que en este trabajo de investigación, se han considerado coeficientes de variación relativamente pequeños para las variables de entrada en relación con las incertidumbres que pueden existir en estructuras que no han sido proyectadas de acuerdo con criterios sismorresistentes. Esto debido a que en la práctica se tienen que considerar todas las variaciones posibles, tanto en el diseño estructural de una edificación, como su ejecución.

- Es importante resaltar que en la evaluación de la vulnerabilidad y del riesgo sísmico, cualquiera que fuese la metodología utilizada, es importante seguir un enfoque que tenga en cuenta el comportamiento no lineal de la estructura, la aleatoriedad de las propiedades mecánicas de los materiales y la enorme incertidumbre asociada a la acción sísmica.
- Se ha aplicado un procedimiento de determinación de estados de daños en el que se consideran criterios objetivos fijados, obtenidos de la curva de fragilidad y los rangos de probabilidades de daño, por las derivas relativas de pisos.
- Se reconoce que la aplicación de los modelos tiene un amplio rango de incertidumbre en todos sus pasos y componentes, se concluye que son fiables cuando se aplican a una gran población de edificios o elementos, pero es de tener cuidado cuando se aplican a edificios individuales. Cuando el análisis se da para una gama de edificaciones, los errores aleatorios tenderán a compensarse, y los resultados se determinan como valores medios.
- Las curvas de fragilidad obtenidas son altamente representativas cuando se aplican a una muestra amplia de edificios y los resultados son interpretados mediante una óptica probabilista. Por consiguiente, los modelos y procedimientos expuestos en este trabajo de investigación proporcionan una amplia gama de herramientas de utilidad y fiabilidad orientadas a la evaluación de los estados de daño en medianas y grandes ciudades.

- De acuerdo al comportamiento obtenido de las curvas de fragilidad presentadas para los dos tipos de Marcos de Concreto estudiados, podemos concluir que los edificios de un nivel presentan un comportamiento aceptable a la vulnerabilidad, sin embargo en los edificios de dos niveles se verifica una alta vulnerabilidad de los edificios de hormigón armado, debido al comportamiento de las curvas, esto podría deberse a las siguientes consideraciones:
 - Tipología estructural inadecuada que no permite un comportamiento sísmico dúctil.
 - En el diseño sismorresistente de los edificios no se aplicaron los requisitos de la normativa en lo referente a los detalles que aseguren la ductilidad estructural.
 - 3. Muchos de los edificios presentan defectos graves de configuración estructural que tienden a incrementar su ya alta vulnerabilidad estructural.

5.2 RECOMENDACIONES

De acuerdo a las conclusiones anteriores, aplicadas a nuestro medio, plantean las siguientes recomendaciones, para próximas investigaciones en esta área:

- Incluir la distribución de la mampostería, para diferentes alturas; la luz libre de entre piso o una porción de ella, para observar las variaciones de la curva de fragilidad.
- Dar continuidad a esta línea de investigación aumentando la cantidad de pisos para observar los cambios de las curvas de fragilidad para edificaciones con mayor altura. Incluir los efectos de torsión de planta y P-delta en los análisis.
- Dar continuidad a esta línea de investigación aumentando la cantidad de pisos para observar los cambios de las curvas de fragilidad para edificaciones con mayor altura.
- Para no sobrevalorar el valor de la ductilidad local de los marcos de concreto se debe realizar una calibración de los modelos de histéresis de acuerdo a curvas experimentales realizadas en laboratorio.
- Ampliar el número de modelos de análisis para la obtención de las variables α y
 β, y así obtener valores más representativos de las áreas de estudio.

BIBLIOGRAFÍA

- American Society of Civil Engineers (ASCE) (2014), Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41-13, American Society of Civil Engineers, Reston, Virginia.
- A.H. Barbat, U. Mena, F. Yépez Evaluación probabilista del riesgo sísmico en zonas urbanas Rev. int. métodos numéricos. cálc. diseño ing., 14 (2) (1998), pp. 247-268.
- ATC-40, Seismic evaluation and retrofit of concrete buildings, Applied Technology Council, Redwood City, California, 1996.
- D'Ayala, D., Meslem, A., Vamvatsikos, D., Porter, K., Rossetto, T. (2015) Guidelines for Analytical Vulnerability Assessment of Low/Mid - Rise Buildings. August 01, 2015, Vol.1.
- Eurocódigo 8, Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for building, 2004.
- European Standard EN 1998-1. (2002). Eurocode 8: Design of structures for earthquakes resistance, Part 1: General rules, seismic actions and rules for buildings.
- Federal Emergency Management Agency, (2012), (FEMA P-58-1) Seismic Performance Assessment of Buildings Volume 1 – Methodology, Washington, D.C

- Federal Emergency Management Agency. (2009). FEMA-P695 Quantification of Building Seismic Performance Factors.
- HAZUS-MH MR1. Multi-Hazard Loss Estimation Methodology: Earthquake Model, Department of Homeland Security, FEMA, Washington, D.C.
- M. Fragiadakis & D. Vamvatsikos Estimation of uncertain parameters using static pushover methods Safety Reliability and Risk of Structures, Infrastructures and Engineering Systems (2010)
- Mander, J., Priestley, M., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
- P. Fajfar Capacity spectrum method based on inelastic demand spectraEarthquake Eng. Struct. Dyn., 28 (1999), pp. 979-993.
- Y.F. Vargas, L.G. Pujades, A.H. Barbat y J.E. Hurtado, (2013), Evaluación probabilista de la capacidad, fragilidad y daño sísmico de edificios de hormigón armado, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol. 2, p. 63-78.

ANEXO 1

EJEMPLIFICACION DE CALCULO DE CURVA DE FRAGILIDAD

MODELO 1

a) Modelo en Seismostruct.

b) Del Análisis de Eigenvalores

Desplazamiento Modal.

Solución-Eigen1 Frecuencia Natural (Hertz) = 5.56095 (Real) Período Natural (Seg) = 0.17982538

Desplazamientos Nodales

Nombre	e Nodo	Х	Y	Z	RX	I	RY	RZ		
N2	0.000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N12	1.8444E	-004	0.0000E-	+000	-4.1318E	-008	0.00	00E+000	4.4518E-005	0.0000E+000
N11	1.8436E	-004	0.0000E-	+000	2.7966E-	-007	0.000	00E+000	6.2266E-005	0.0000E+000
N13	1.8451E	-004	0.0000E-	+000	8.2260E-	-012	0.000	00E+000	4.6363E-005	0.0000E+000
N17	1.8445E	-004	0.0000E-	+000	-4.1212E	-008	0.00	00E+000	4.4522E-005	0.0000E+000
N1	0.0000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N3	0.000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N7	0.000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N14	1.8444E	-004	0.000E	+000	4.1224E-	-008	0.000	00E+000	4.4521E-005	0.0000E+000
N15	1.8426E	-004	0.000E-	+000	-2.7958E	-007	0.00	00E+000	6.2230E-005	0.0000E+000
N19	1.8444E	-004	0.000E	+000	4.1274E-	-008	0.000	00E+000	4.4518E-005	0.0000E+000
N16	1.8424E	-004	0.000E-	+000	2.7956E-	-007	0.000	00E+000	6.2224E-005	0.0000E+000
N18	1.8451E	-004	0.000E-	+000	-1.1584E	-011	0.00	00E+000	4.6362E-005	0.0000E+000
N20	1.8431E	-004	0.000E-	+000	-2.7962E	-007	0.00	00E+000	6.2248E-005	0.0000E+000
N4	0.000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N5	0.000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N6	0.000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N8	0.000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N9	0.000E+	+000	0.0000E+	-000	0.0000E+	-000	0.000	00E+000	0.0000E+000	0.0000E+000
N10	0.0000E	+000	0.0000E	+000	0.0000E	+000	0.00	00E+000	0.0000E+000	0.0000E+000

<u>Masas</u>

Nombre Nodo	[X]	Base	Nivel 1
N2	0.3644385	3.6443849	29.40472
N12	3.39698		
N11	2.25571		
N13	3.39698		
N17	3.39698		
N1	0.3644385		
N3	0.3644385		
N7	0.3644385		
N14	3.39698		
N15	2.25571		
N19	3.39698		
N16	2.25571		
N18	3.39698		
N20	2.25571		
N4	0.3644385		
N5	0.3644385		
N6	0.3644385		
N8	0.3644385		
N9	0.3644385		
N10	0.3644385		

c) Punto De Desempeño y Curvas De Fragilidad

Factores de Participación Modal y Masa del Sistema SDoF

FACTOR DE PAF	FACTOR DE PARTICIPACION MODAL Y MASA DEL SISTEMA SDOF								
Nudo	masa	Φ	m*Φ	m*Ф^2					
1.85E-04	29.40	1.00	29.40472	29.40472					
0.00E+00	3.64	0.00	0	0					

Suma = 29.40472 29.40472

Determinantes para la obtención de las curvas de capacidad.

De los datos obtenidos de la curva de capacidad, y la implementación de cálculos internos. Tenemos los datos característicos necesarios para la obtención de la bilinealizacion y el periodo.

Em =	60.371348
Fy* =	711.80
Δ* max =	0.115
Δγ* =	0.060369436
Area bilinealizada =	60.371348
k* =	11790.70145
T* =	0.313775168
Say=	24.20693004

Acelerogramas	Periodos de Esquina "Tc"
1986-10-10 (IGN-270°)	0.9
1986-10-10 (CIG-90°)	2.08
1986-10-10 (IVU-180°)	0.72
CIG - 2001-01-13 (Santa Tecla, 7153a_a)	2.28
UCA - 2001-01-13 (Santa Tecla, 180°)	3.62

Curva Bilinealizada	
Δ	F*
0	0
0.060369436	711.80
0.115	711.80
Espectro de Capacidad	
Δ*	A*
0	0
0.060369436	24.20693004
0.0859	24.20693004

<u>Tabla de Datos.</u>

	Incremento	Sa (m/s²)	Sa (cm/s ²)	fel	Ry	Sd*	Sd*	Deriva a utlizar %	Aceleración del terreno en valores de "g"
	0.1	0.8612	86.1175	25.3226	0.0356	0.0021	0.0021	0.1016	0.0878
	0.2	1.7223	172.2349	50.6452	0.0712	0.0043	0.0043	0.1524	0.1756
	0.25	2.1529	215.2937	63.3065	0.0889	0.0054	0.0054	0.1778	0.2195
	0.3	2.5835	258.3524	75.9678	0.1067	0.0064	0.0064	0.2286	0.2634
	0.4	3.4447	344.4699	101.2904	0.1423	0.0086	0.0086	0.2794	0.3511
	0.50	4.3059	430.5873	126.6130	0.1779	0.0107	0.0107	0.3556	0.4389
	0.6	5.1670	516.7048	151.9356	0.2135	0.0129	0.0129	0.4063	0.5267
	0.7	6.0282	602.8223	177.2582	0.2490	0.0150	0.0150	0.5079	0.6145
	0.75	6.4588	645.8810	189.9195	0.2668	0.0161	0.0161	0.5333	0.6584
	0.8	6.8894	688.9397	202.5808	0.2846	0.0172	0.0172	0.5587	0.7023
	0.9	7.7506	775.0572	227.9034	0.3202	0.0193	0.0193	0.6349	0.7901
	1.00	8.6117	861.1747	253.2260	0.3558	0.0215	0.0215	0.6857	0.8779
	1.10	9.4729	947.2921	278.5486	0.3913	0.0236	0.0236	0.7619	0.9656
	1.20	10.3341	1033.4096	303.8712	0.4269	0.0258	0.0258	0.8127	1.0534
(1.30	11.1953	1119.5271	329.1938	0.4625	0.0279	0.0279	0.8889	1.1412
-270°	1.40	12.0564	1205.6445	354.5164	0.4981	0.0301	0.0301	0.9905	1.2290
(IGN	1.50	12.9176	1291.7620	379.8390	0.5336	0.0322	0.0322	1.0413	1.3168
0-10	1.60	13.7788	1377.8795	405.1616	0.5692	0.0344	0.0344	1.1175	1.4046
986-1	1.70	14.6400	1463.9969	430.4842	0.6048	0.0365	0.0365	1.1683	1.4924
1	1.80	15.5011	1550.1144	455.8068	0.6404	0.0387	0.0387	1.2444	1.5801
	1.90	16.3623	1636.2319	481.1294	0.6759	0.0408	0.0408	1.2952	1.6679
	2.00	17.2235	1722.3493	506.4520	0.7115	0.0430	0.0430	1.3714	1.7557
	2.10	18.0847	1808.4668	531.7746	0.7471	0.0451	0.0451	1.4476	1.8435
	2.20	18.9458	1894.5843	557.0972	0.7827	0.0472	0.0472	1.5238	1.9313
	2.30	19.8070	1980.7017	582.4198	0.8182	0.0494	0.0494	1.5746	2.0191
	2.40	20.6682	2066.8192	607.7424	0.8538	0.0515	0.0515	1.6508	2.1068
	2.50	21.5294	2152.9367	633.0650	0.8894	0.0537	0.0537	1.7016	2.1946
	2.60	22.3905	2239.0541	658.3876	0.9250	0.0558	0.0558	1.7778	2.2824
	2.70	23.2517	2325.1716	683.7102	0.9605	0.0580	0.0580	1.8286	2.3702
	2.80	24.1129	2411.2891	709.0328	0.9961	0.0601	0.0601	1.9302	2.4580
	2.90	24.9741	2497.4066	734.3554	1.0317	0.0659	0.0659	2.0825	2.5458
	3.00	25.8352	2583.5240	759.6780	1.0673	0.0720	0.0720	2.3111	2.6336
	3.10	26.6964	2669.6415	785.0006	1.1028	0.0782	0.0782	2.5143	2.7213
	3.20	27.5576	2755.7590	810.3232	1.1384	0.0843	0.0843	2.6921	2.8091

	3.30	28.4188	2841.8764	835.6458	1.1740	0.0905	0.0905	2.8952	2.8969
	3.40	29.2799	2927.9939	860.9684	1.2096	0.0967	0.0967	3.0730	2.9847
	3.50	30.1411	3014.1114	886.2910	1.2451	0.1028	0.1028	3.2762	3.0725
	3.60	31.0023	3100.2288	911.6136	1.2807	0.1090	0.1090	3.4540	3.1603
	3.70	31.8635	3186.3463	936.9362	1.3163	0.1151	0.1151	3.6825	3.2481
	3.80	32.7246	3272.4638	962.2588	1.3519	0.1213	0.1213	3.8603	3.3358
	3.90	33.5858	3358.5812	987.5814	1.3874	0.1275	0.1275	4.0635	3.4236
	4.00	34.4470	3444.6987	1012.9040	1.4230	0.1336	0.1336	4.2413	3.5114
	0.1	1.8269	182.6923	53.7202	0.0755	0.0046	0.0046	0.1524	0.1862
	0.2	3.6538	365.3846	107.4403	0.1509	0.0091	0.0091	0.3048	0.3725
	0.25	4.5673	456.7307	134.3004	0.1887	0.0114	0.0114	0.3810	0.4656
	0.3	5.4808	548.0769	161.1605	0.2264	0.0137	0.0137	0.4317	0.5587
	0.4	7.3077	730.7692	214.8806	0.3019	0.0182	0.0182	0.6095	0.7449
	0.50	9.1346	913.4615	268.6008	0.3774	0.0228	0.0228	0.7365	0.9312
	0.6	10.9615	1096.1538	322.3210	0.4528	0.0273	0.0273	0.8889	1.1174
	0.7	12.7885	1278.8461	376.0411	0.5283	0.0319	0.0319	1.0159	1.3036
	0.75	13.7019	1370.1922	402.9012	0.5660	0.0342	0.0342	1.1175	1.3967
	0.8	14.6154	1461.5384	429.7613	0.6038	0.0364	0.0364	1.1683	1.4898
	0.9	16.4423	1644.2307	483.4814	0.6792	0.0410	0.0410	1.3206	1.6761
	1.00	18.2692	1826.9230	537.2016	0.7547	0.0456	0.0456	1.4476	1.8623
(.00	1.10	20.0962	2009.6153	590.9217	0.8302	0.0501	0.0501	1.6254	2.0485
CIG	1.20	21.9231	2192.3076	644.6419	0.9057	0.0547	0.0547	1.7524	2.2348
-10 (1.30	23.7500	2374.9999	698.3621	0.9811	0.0592	0.0592	1.9048	2.4210
86-10	1.40	25.5769	2557.6922	752.0822	1.0566	0.0702	0.0702	2.2603	2.6072
190	1.50	27.4038	2740.3845	805.8024	1.1321	0.0832	0.0832	2.6667	2.7935
	1.60	29.2308	2923.0768	859.5225	1.2075	0.0963	0.0963	3.0730	2.9797
	1.70	31.0577	3105.7691	913.2427	1.2830	0.1094	0.1094	3.4794	3.1659
	1.80	32.8846	3288.4614	966.9629	1.3585	0.1224	0.1224	3.9111	3.3522
	1.90	34.7115	3471.1537	1020.6830	1.4340	0.1355	0.1355	4.3175	3.5384
	2.00	36.5385	3653.8460	1074.4032	1.5094	0.1486	0.1486	4.7238	3.7246
	2.10	38.3654	3836.5383	1128.1233	1.5849	0.1616	0.1616	5.1302	3.9108
	2.20	40.1923	4019.2306	1181.8435	1.6604	0.1747	0.1747	5.5619	4.0971
	2.30	42.0192	4201.9229	1235.5637	1.7358	0.1878	0.1878	5.9683	4.2833
	2.40	43.8462	4384.6152	1289.2838	1.8113	0.2009	0.2009	6.3746	4.4695
	2.50	45.6731	4567.3075	1343.0040	1.8868	0.2139	0.2139	6.7810	4.6558
	2.60	47.5000	4749.9998	1396.7241	1.9622	0.2270	0.2270	7.2127	4.8420
	2.70	49.3269	4932.6921	1450.4443	2.0377	0.2401	0.2401	7.6444	5.0282

	2.80	51.1538	5115.3844	1504.1645	2.1132	0.2531	0.2531	8.0508	5.2145
	2.90	52.9808	5298.0767	1557.8846	2.1887	0.2662	0.2662	8.4825	5.4007
	3.00	54.8077	5480.7690	1611.6048	2.2641	0.2793	0.2793	8.8889	5.5869
	3.10	56.6346	5663.4613	1665.3249	2.3396	0.2923	0.2923	9.2952	5.7732
	3.20	58.4615	5846.1536	1719.0451	2.4151	0.3054	0.3054	9.7016	5.9594
	3.30	60.2885	6028.8459	1772.7652	2.4905	0.3185	0.3185	10.1333	6.1456
	3.40	62.1154	6211.5382	1826.4854	2.5660	0.3315	0.3315	10.5397	6.3318
	3.50	63.9423	6394.2305	1880.2056	2.6415	0.3446	0.3446	10.9460	6.5181
	3.60	65.7692	6576.9228	1933.9257	2.7170	0.3577	0.3577	11.3524	6.7043
	3.70	67.5962	6759.6151	1987.6459	2.7924	0.3707	0.3707	11.7841	6.8905
	3.80	69.4231	6942.3074	2041.3660	2.8679	0.3838	0.3838	12.1905	7.0768
	3.90	71.2500	7124.9997	2095.0862	2.9434	0.3969	0.3969	12.5968	7.2630
	4.00	73.0769	7307.6920	2148.8064	3.0188	0.4099	0.4099	13.0032	7.4492
	0.10	1.5211	152.1135	44.7286	0.0628	0.0038	0.0038	0.1270	0.1551
	0.20	3.0423	304.2271	89.4571	0.1257	0.0076	0.0076	0.2540	0.3101
	0.25	3.8028	380.2838	111.8214	0.1571	0.0095	0.0095	0.3048	0.3876
	0.30	4.5634	456.3406	134.1857	0.1885	0.0114	0.0114	0.3810	0.4652
	0.40	6.0845	608.4541	178.9142	0.2514	0.0152	0.0152	0.5079	0.6202
	0.50	7.6057	760.5677	223.6428	0.3142	0.0190	0.0190	0.6095	0.7753
	0.60	9.1268	912.6812	268.3713	0.3770	0.0228	0.0228	0.7365	0.9304
	0.70	10.6479	1064.7947	313.0999	0.4399	0.0266	0.0266	0.8635	1.0854
	0.75	11.4085	1140.8515	335.4642	0.4713	0.0285	0.0285	0.9143	1.1629
(0.80	12.1691	1216.9083	357.8285	0.5027	0.0303	0.0303	0.9905	1.2405
-180°	0.90	13.6902	1369.0218	402.5570	0.5655	0.0341	0.0341	1.1175	1.3955
(IVU	1.00	15.2114	1521.1353	447.2856	0.6284	0.0379	0.0379	1.1937	1.5506
10-10	1.10	16.7325	1673.2489	492.0141	0.6912	0.0417	0.0417	1.3206	1.7057
986-	1.20	18.2536	1825.3624	536.7427	0.7541	0.0455	0.0455	1.4476	1.8607
-	1.30	19.7748	1977.4759	581.4713	0.8169	0.0493	0.0493	1.5746	2.0158
	1.40	21.2959	2129.5894	626.1998	0.8797	0.0531	0.0531	1.7016	2.1708
	1.50	22.8170	2281.7030	670.9284	0.9426	0.0569	0.0569	1.8032	2.3259
	1.60	24.3382	2433.8165	715.6569	1.0054	0.0613	0.0613	1.9556	2.4810
	1.70	25.8593	2585.9300	760.3855	1.0683	0.0722	0.0722	2.3111	2.6360
	1.80	27.3804	2738.0436	805.1140	1.1311	0.0831	0.0831	2.6667	2.7911
	1.90	28.9016	2890.1571	849.8426	1.1939	0.0940	0.0940	2.9714	2.9461
	2.00	30.4227	3042.2706	894.5712	1.2568	0.1048	0.1048	3.3270	3.1012
	2.10	31.9438	3194.3842	939.2997	1.3196	0.1157	0.1157	3.6825	3.2563
	2.20	33.4650	3346.4977	984.0283	1.3825	0.1266	0.1266	4.0381	3.4113

	2.30	34.9861	3498.6112	1028.7568	1.4453	0.1375	0.1375	4.3683	3.5664
	2.40	36.5072	3650.7248	1073.4854	1.5081	0.1484	0.1484	4.7238	3.7214
	2.50	38.0284	3802.8383	1118.2140	1.5710	0.1592	0.1592	5.0794	3.8765
	2.60	39.5495	3954.9518	1162.9425	1.6338	0.1701	0.1701	5.4349	4.0316
	2.70	41.0707	4107.0654	1207.6711	1.6966	0.1810	0.1810	5.7397	4.1866
	2.80	42.5918	4259.1789	1252.3996	1.7595	0.1919	0.1919	6.0952	4.3417
	2.90	44.1129	4411.2924	1297.1282	1.8223	0.2028	0.2028	6.4508	4.4967
	3.00	45.6341	4563.4060	1341.8567	1.8852	0.2136	0.2136	6.7810	4.6518
	3.10	47.1552	4715.5195	1386.5853	1.9480	0.2245	0.2245	7.1365	4.8068
	3.20	48.6763	4867.6330	1431.3139	2.0108	0.2354	0.2354	7.4921	4.9619
	3.30	50.1975	5019.7466	1476.0424	2.0737	0.2463	0.2463	7.8476	5.1170
	3.40	51.7186	5171.8601	1520.7710	2.1365	0.2572	0.2572	8.1778	5.2720
	3.50	53.2397	5323.9736	1565.4995	2.1994	0.2680	0.2680	8.5333	5.4271
	3.60	54.7609	5476.0872	1610.2281	2.2622	0.2789	0.2789	8.8635	5.5821
	3.70	56.2820	5628.2007	1654.9567	2.3250	0.2898	0.2898	9.1937	5.7372
	3.80	57.8031	5780.3142	1699.6852	2.3879	0.3007	0.3007	9.5492	5.8923
	3.90	59.3243	5932.4278	1744.4138	2.4507	0.3116	0.3116	9.9048	6.0473
	4.00	60.8454	6084.5413	1789.1423	2.5136	0.3225	0.3225	10.2603	6.2024
	0.1	1.1117	111.1663	32.6881	0.0459	0.0028	0.0028	0.1016	0.1133
	0.2	2.2233	222.3326	65.3763	0.0918	0.0055	0.0055	0.1778	0.2266
	0.25	2.7792	277.9158	81.7204	0.1148	0.0069	0.0069	0.2286	0.2833
	0.3	3.3350	333.4990	98.0644	0.1378	0.0083	0.0083	0.2794	0.3400
	0.4	4.4467	444.6653	130.7526	0.1837	0.0111	0.0111	0.3810	0.4533
_a)	0.50	5.5583	555.8316	163.4407	0.2296	0.0139	0.0139	0.4317	0.5666
153a	0.6	6.6700	666.9979	196.1289	0.2755	0.0166	0.0166	0.5333	0.6799
cla, 7	0.7	7.7816	778.1642	228.8170	0.3215	0.0194	0.0194	0.6349	0.7932
a Te	0.75	8.3375	833.7474	245.1611	0.3444	0.0208	0.0208	0.6603	0.8499
(Sant	0.8	8.8933	889.3306	261.5052	0.3674	0.0222	0.0222	0.7365	0.9066
1-13 (0.9	10.0050	1000.4969	294.1933	0.4133	0.0250	0.0250	0.7873	1.0199
01-0	1.00	11.1166	1111.6632	326.8815	0.4592	0.0277	0.0277	0.8889	1.1332
3 - 20	1.10	12.2283	1222.8295	359.5696	0.5052	0.0305	0.0305	0.9905	1.2465
CIG	1.20	13.3400	1333.9959	392.2577	0.5511	0.0333	0.0333	1.0667	1.3598
	1.30	14.4516	1445.1622	424.9459	0.5970	0.0360	0.0360	1.1683	1.4732
	1.40	15.5633	1556.3285	457.6340	0.6429	0.0388	0.0388	1.2444	1.5865
	1.50	16.6749	1667.4948	490.3222	0.6889	0.0416	0.0416	1.3206	1.6998
	1.60	17.7866	1778.6611	523.0103	0.7348	0.0444	0.0444	1.4222	1.8131
	1.70	18.8983	1889.8275	555.6985	0.7807	0.0471	0.0471	1.5238	1.9264

	1.80	20.0099	2000.9938	588.3866	0.8266	0.0499	0.0499	1.5746	2.0397
	1.90	21.1216	2112.1601	621.0748	0.8725	0.0527	0.0527	1.6762	2.1531
	2.00	22.2333	2223.3264	653.7629	0.9185	0.0554	0.0554	1.7778	2.2664
	2.10	23.3449	2334.4927	686.4511	0.9644	0.0582	0.0582	1.8794	2.3797
	2.20	24.4566	2445.6591	719.1392	1.0103	0.0622	0.0622	2.0063	2.4930
	2.30	25.5683	2556.8254	751.8273	1.0562	0.0701	0.0701	2.2603	2.6063
	2.40	26.6799	2667.9917	784.5155	1.1022	0.0781	0.0781	2.5143	2.7197
	2.50	27.7916	2779.1580	817.2036	1.1481	0.0860	0.0860	2.7683	2.8330
	2.60	28.9032	2890.3243	849.8918	1.1940	0.0940	0.0940	2.9714	2.9463
	2.70	30.0149	3001.4907	882.5799	1.2399	0.1019	0.1019	3.2254	3.0596
	2.80	31.1266	3112.6570	915.2681	1.2859	0.1099	0.1099	3.4794	3.1729
	2.90	32.2382	3223.8233	947.9562	1.3318	0.1178	0.1178	3.7333	3.2863
	3.00	33.3499	3334.9896	980.6444	1.3777	0.1258	0.1258	3.9873	3.3996
	3.10	34.4616	3446.1559	1013.3325	1.4236	0.1337	0.1337	4.2413	3.5129
	3.20	35.5732	3557.3223	1046.0207	1.4695	0.1417	0.1417	4.4952	3.6262
	3.30	36.6849	3668.4886	1078.7088	1.5155	0.1496	0.1496	4.7492	3.7395
	3.40	37.7965	3779.6549	1111.3969	1.5614	0.1576	0.1576	5.0032	3.8529
	3.50	38.9082	3890.8212	1144.0851	1.6073	0.1655	0.1655	5.2571	3.9662
	3.60	40.0199	4001.9876	1176.7732	1.6532	0.1735	0.1735	5.5111	4.0795
	3.70	41.1315	4113.1539	1209.4614	1.6992	0.1814	0.1814	5.7651	4.1928
	3.80	42.2432	4224.3202	1242.1495	1.7451	0.1894	0.1894	6.0190	4.3061
	3.90	43.3549	4335.4865	1274.8377	1.7910	0.1973	0.1973	6.2730	4.4195
	4.00	44.4665	4446.6528	1307.5258	1.8369	0.2053	0.2053	6.5270	4.5328
	0.1	0.5765	57.6454	16.9505	0.0238	0.0014	0.0014	0.0508	0.0588
	0.2	1.1529	115.2908	33.9009	0.0476	0.0029	0.0029	0.1016	0.1175
	0.25	1.4411	144.1135	42.3762	0.0595	0.0036	0.0036	0.1270	0.1469
3a_a	0.3	1.7294	172.9361	50.8514	0.0714	0.0043	0.0043	0.1524	0.1763
, 715	0.4	2.3058	230.5815	67.8019	0.0953	0.0058	0.0058	0.1778	0.2350
Tecla	0.50	2.8823	288.2269	84.7523	0.1191	0.0072	0.0072	0.2540	0.2938
inta 1	0.6	3.4587	345.8723	101.7028	0.1429	0.0086	0.0086	0.2794	0.3526
3 (Sa	0.7	4.0352	403.5177	118.6532	0.1667	0.0101	0.0101	0.3556	0.4113
-01-1	0.75	4.3234	432.3404	127.1285	0.1786	0.0108	0.0108	0.3556	0.4407
2001	0.8	4.6116	461.1630	135.6037	0.1905	0.0115	0.0115	0.3810	0.4701
0	0.9	5.1881	518.8084	152.5542	0.2143	0.0129	0.0129	0.4063	0.5289
Ŭ	1.00	5.7645	576.4538	169.5046	0.2381	0.0144	0.0144	0.4825	0.5876
	1.10	6.3410	634.0992	186.4551	0.2619	0.0158	0.0158	0.5079	0.6464
	1.20	6.9174	691.7446	203.4056	0.2858	0.0173	0.0173	0.5587	0.7051
1.30	7.4939	749.3899	220.3560	0.3096	0.0187	0.0187	0.6095	0.7639	
------	---------	-----------	----------	--------	--------	--------	--------	--------	
1.40	8.0704	807.0353	237.3065	0.3334	0.0201	0.0201	0.6603	0.8227	
1.50	8.6468	864.6807	254.2569	0.3572	0.0216	0.0216	0.6857	0.8814	
1.60	9.2233	922.3261	271.2074	0.3810	0.0230	0.0230	0.7619	0.9402	
1.70	9.7997	979.9715	288.1579	0.4048	0.0244	0.0244	0.7873	0.9990	
1.80	10.3762	1037.6168	305.1083	0.4286	0.0259	0.0259	0.8127	1.0577	
1.90	10.9526	1095.2622	322.0588	0.4525	0.0273	0.0273	0.8889	1.1165	
2.00	11.5291	1152.9076	339.0093	0.4763	0.0288	0.0288	0.9143	1.1752	
2.10	12.1055	1210.5530	355.9597	0.5001	0.0302	0.0302	0.9905	1.2340	
2.20	12.6820	1268.1984	372.9102	0.5239	0.0316	0.0316	1.0159	1.2928	
2.30	13.2584	1325.8437	389.8606	0.5477	0.0331	0.0331	1.0667	1.3515	
2.40	13.8349	1383.4891	406.8111	0.5715	0.0345	0.0345	1.1175	1.4103	
2.50	14.4113	1441.1345	423.7616	0.5953	0.0359	0.0359	1.1429	1.4690	
2.60	14.9878	1498.7799	440.7120	0.6192	0.0374	0.0374	1.1937	1.5278	
2.70	15.5643	1556.4253	457.6625	0.6430	0.0388	0.0388	1.2444	1.5866	
2.80	16.1407	1614.0707	474.6130	0.6668	0.0403	0.0403	1.2952	1.6453	
2.90	16.7172	1671.7160	491.5634	0.6906	0.0417	0.0417	1.3206	1.7041	
3.00	17.2936	1729.3614	508.5139	0.7144	0.0431	0.0431	1.3968	1.7629	
3.10	17.8701	1787.0068	525.4643	0.7382	0.0446	0.0446	1.4222	1.8216	
3.20	18.4465	1844.6522	542.4148	0.7620	0.0460	0.0460	1.4984	1.8804	
3.30	19.0230	1902.2976	559.3653	0.7858	0.0474	0.0474	1.5238	1.9391	
3.40	19.5994	1959.9429	576.3157	0.8097	0.0489	0.0489	1.5492	1.9979	
3.50	20.1759	2017.5883	593.2662	0.8335	0.0503	0.0503	1.6254	2.0567	
3.60	20.7523	2075.2337	610.2167	0.8573	0.0518	0.0518	1.6508	2.1154	
3.70	21.3288	2132.8791	627.1671	0.8811	0.0532	0.0532	1.7016	2.1742	
3.80	21.9052	2190.5245	644.1176	0.9049	0.0546	0.0546	1.7524	2.2330	
3.90	22.4817	2248.1698	661.0680	0.9287	0.0561	0.0561	1.8032	2.2917	
4.00	23.0582	2305.8152	678.0185	0.9525	0.0575	0.0575	1.8286	2.3505	

Obtención de la Deriva de Entrepiso.

Altura del edificio	Nivel de piso	Ht de entrepiso
3.15	2	0
	1	3.15

Deriva Global del Edificio Δc/Ht	Numero de paso	Valor Máximo de cortante	Paso/punto de desempeño	Máximo desplazamiento Δc de Seismostruct N13	Máximo desplazamiento Δc de Seismostruct N3	Punto de desempeño	Deriva de entrepiso ID nivel 2 en %	Deriva de entrepiso ID nivel 1 en %	Valor Mayor de Deriva % GRAFICA
0.001015873	4.00	41.98	4.19855	0.0032	0	0.002147675	0.101587302	0	0.101587302
0.00152381	6.00	63.93	6.39315	0.0048	0	0.004295351	0.152380952	0	0.152380952
0.001777778	7.00	74.70	7.47038	0.0056	0	0.005369189	0.177777778	0	0.177777778
0.002285714	9.00	95.99	9.59941	0.0072	0	0.006443026	0.228571429	0	0.228571429
0.002793651	11.00	117.12	11.71242	0.0088	0	0.008590702	0.279365079	0	0.279365079
0.003555556	14.00	148.58	14.85812	0.0112	0	0.010738377	0.355555556	0	0.355555556
0.004063492	16.00	169.40	16.94033	0.0128	0	0.012886053	0.406349206	0	0.406349206
0.005079365	20.00	210.65	21.06548	0.016	0	0.015033728	0.507936508	0	0.507936508
0.005333333	21.00	220.87	22.08673	0.0168	0	0.016107566	0.533333333	0	0.533333333
0.005587302	22.00	231.05	23.10494	0.0176	0	0.017181404	0.558730159	0	0.558730159
0.006349206	25.00	261.35	26.13522	0.02	0	0.019329079	0.634920635	0	0.634920635
0.006857143	27.00	281.34	28.13444	0.0216	0	0.021476755	0.685714286	0	0.685714286
0.007619048	30.00	310.98	31.09921	0.024	0	0.02362443	0.761904762	0	0.761904762
0.008126984	32.00	330.50	33.05151	0.0256	0	0.025772105	0.812698413	0	0.812698413
0.008888889	35.00	359.38	35.94061	0.028	0	0.027919781	0.88888889	0	0.88888889
0.009904762	39.00	397.15	39.71709	0.0312	0	0.030067456	0.99047619	0	0.99047619
0.010412698	41.00	415.69	41.57082	0.0328	0	0.032215132	1.041269841	0	1.041269841
0.011174603	44.00	443.06	44.30822	0.0352	0	0.034362807	1.117460317	0	1.117460317
0.01168254	46.00	460.97	46.0993	0.0368	0	0.036510483	1.168253968	0	1.168253968
0.012444444	49.00	487.27	48.73016	0.0392	0	0.038658158	1.244444444	0	1.244444444
0.012952381	51.00	504.34	50.43679	0.0408	0	0.040805834	1.295238095	0	1.295238095
0.013714286	54.00	528.62	52.87489	0.0432	0	0.042953509	1.371428571	0	1.371428571
0.01447619	57.00	549.82	54.99695	0.0456	0	0.045101185	1.447619048	0	1.447619048
0.015238095	60.00	568.00	56.81977	0.048	0	0.04724886	1.523809524	0	1.523809524
0.015746032	62.00	579.31	57.95625	0.0496	0	0.049396536	1.574603175	0	1.574603175
0.016507937	65.00	594.91	59.53937	0.052	0	0.051544211	1.650793651	0	1.650793651
0.017015873	67.00	604.25	60.48539	0.0536	0	0.053691886	1.701587302	0	1.701587302

0.017777778	70.00	617.35	61.79783	0.056	0	0.055839562	1.777777778	0	1.777777778
0.018285714	72.00	625.74	62.63657	0.0576	0	0.057987237	1.828571429	0	1.828571429
0.019301587	76.00	641.67	64.26367	0.0608	0	0.060134913	1.93015873	0	1.93015873
0.020825397	82.00	660.77	66.12704	0.0656	0	0.065856922	2.082539683	0	2.082539683
0.023111111	91.00	677.70	67.8325	0.0728	0	0.072017091	2.311111111	0	2.311111111
0.025142857	99.00	688.38	68.92218	0.0792	0	0.078177259	2.514285714	0	2.514285714
0.026920635	106.00	694.61	69.56079	0.0848	0	0.084337428	2.692063492	0	2.692063492
0.028952381	114.00	701.30	70.24609	0.0912	0	0.090497596	2.895238095	0	2.895238095
0.030730159	121.00	703.28	70.38381	0.0968	0	0.096657765	3.073015873	0	3.073015873
0.032761905	129.00	707.20	70.78724	0.1032	0	0.102817933	3.276190476	0	3.276190476
0.034539683	136.00	709.73	71.03725	0.1088	0	0.108978102	3.453968254	0	3.453968254
0.036825397	145.00	711.80	71.31774	0.116	0	0.11513827	3.682539683	0	3.682539683
0.038603175	152.00	707.73	70.87047	0.1216	0	0.121298439	3.86031746	0	3.86031746
0.040634921	160.00	709.55	71.04385	0.128	0	0.127458607	4.063492063	0	4.063492063
0.042412698	167.00	709.82	71.07354	0.1336	0	0.133618776	4.241269841	0	4.241269841
0.00152381	6.00	63.93	6.39315	0.0048	0	0.004556146	0.152380952	0	0.152380952
0.003047619	12.00	127.64	12.76401	0.0096	0	0.009112292	0.304761905	0	0.304761905
0.003809524	15.00	159.01	15.90076	0.012	0	0.011390365	0.380952381	0	0.380952381
0.00431746	17.00	179.77	17.9767	0.0136	0	0.013668438	0.431746032	0	0.431746032
0.006095238	24.00	251.29	25.129	0.0192	0	0.018224585	0.60952381	0	0.60952381
0.007365079	29.00	301.14	30.1155	0.0232	0	0.022780731	0.736507937	0	0.736507937
0.008888889	35.00	359.38	35.94061	0.028	0	0.027336877	0.88888889	0	0.88888889
0.01015873	40.00	406.45	40.6468	0.032	0	0.031893023	1.015873016	0	1.015873016
0.011174603	44.00	443.06	44.30822	0.0352	0	0.034171096	1.117460317	0	1.117460317
0.01168254	46.00	460.97	46.0993	0.0368	0	0.036449169	1.168253968	0	1.168253968
0.013206349	52.00	512.61	51.27318	0.0416	0	0.041005315	1.320634921	0	1.320634921
0.01447619	57.00	549.82	54.99695	0.0456	0	0.045561461	1.447619048	0	1.447619048
0.016253968	64.00	589.93	59.03194	0.0512	0	0.050117608	1.625396825	0	1.625396825
0.01752381	69.00	613.07	61.36945	0.0552	0	0.054673754	1.752380952	0	1.752380952
0.019047619	75.00	637.81	63.82569	0.06	0	0.0592299	1.904761905	0	1.904761905
0.022603175	89.00	674.41	67.49156	0.0712	0	0.070169284	2.26031746	0	2.26031746
0.026666667	105.00	693.74	69.46986	0.084	0	0.083237659	2.666666667	0	2.666666667
0.030730159	121.00	703.28	70.38381	0.0968	0	0.096306033	3.073015873	0	3.073015873
0.034793651	137.00	710.32	71.14164	0.1096	0	0.109374408	3.479365079	0	3.479365079
0.039111111	154.00	709.24	71.01595	0.1232	0	0.122442783	3.911111111	0	3.911111111
0.043174603	170.00	709.37	70.99209	0.136	0	0.135511158	4.317460317	0	4.317460317
0.047238095	186.00	706.98	70.79169	0.1488	0	0.148579533	4.723809524	0	4.723809524
0.051301587	202.00	704.28	70.49238	0.1616	0	0.161647908	5.13015873	0	5.13015873
0.055619048	219.00	697.19	69.80378	0.1752	0	0.174716283	5.561904762	0	5.561904762

0.05968254	235.00	680.38	68.25135	0.188	0	0.187784658	5.968253968	0	5.968253968
0.063746032	251.00	690.34	69.13349	0.2008	0	0.200853033	6.374603175	0	6.374603175
0.067809524	267.00	686.72	68.74151	0.2136	0	0.213921408	6.780952381	0	6.780952381
0.072126984	284.00	682.55	68.25255	0.2272	0	0.226989782	7.212698413	0	7.212698413
0.076444444	301.00	679.48	67.98924	0.2408	0	0.240058157	7.64444444	0	7.64444444
0.080507937	317.00	679.39	68.01097	0.2536	0	0.253126532	8.050793651	0	8.050793651
0.084825397	334.00	675.04	67.57686	0.2672	0	0.266194907	8.482539683	0	8.482539683
0.088888889	350.00	670.63	67.10316	0.28	0	0.279263282	8.88888889	0	8.88888889
0.092952381	366.00	668.14	66.85129	0.2928	0	0.292331657	9.295238095	0	9.295238095
0.097015873	382.00	664.91	66.51484	0.3056	0	0.305400032	9.701587302	0	9.701587302
0.101333333	399.00	662.55	66.30047	0.3192	0	0.318468407	10.13333333	0	10.13333333
0.105396825	415.00	659.99	66.04741	0.332	0	0.331536782	10.53968254	0	10.53968254
0.109460317	431.00	656.86	65.69815	0.3448	0	0.344605156	10.94603175	0	10.94603175
0.11352381	447.00	654.53	65.4916	0.3576	0	0.357673531	11.35238095	0	11.35238095
0.11784127	464.00	651.51	65.16212	0.3712	0	0.370741906	11.78412698	0	11.78412698
0.121904762	480.00	648.92	64.92803	0.384	0	0.383810281	12.19047619	0	12.19047619
0.125968254	496.00	646.74	64.69985	0.3968	0	0.396878656	12.5968254	0	12.5968254
0.130031746	512.00	644.54	64.4663	0.4096	0	0.409947031	13.0031746	0	13.0031746
0.001269841	5.00	53.03	5.30354	0.004	0	0.003793545	0.126984127	0	0.126984127
0.002539683	10.00	106.58	10.6578	0.008	0	0.00758709	0.253968254	0	0.253968254
0.003047619	12.00	127.64	12.76401	0.0096	0	0.009483863	0.304761905	0	0.304761905
0.003809524	15.00	159.01	15.90076	0.012	0	0.011380635	0.380952381	0	0.380952381
0.005079365	20.00	210.65	21.06548	0.016	0	0.015174181	0.507936508	0	0.507936508
0.006095238	24.00	251.29	25.129	0.0192	0	0.018967726	0.60952381	0	0.60952381
0.007365079	29.00	301.14	30.1155	0.0232	0	0.022761271	0.736507937	0	0.736507937
0.008634921	34.00	349.81	34.98284	0.0272	0	0.026554816	0.863492063	0	0.863492063
0.009142857	36.00	368.91	36.89309	0.0288	0	0.028451589	0.914285714	0	0.914285714
0.009904762	39.00	397.15	39.71709	0.0312	0	0.030348361	0.99047619	0	0.99047619
0.011174603	44.00	443.06	44.30822	0.0352	0	0.034141906	1.117460317	0	1.117460317
0.011936508	47.00	469.82	46.98468	0.0376	0	0.037935451	1.193650794	0	1.193650794
0.013206349	52.00	512.61	51.27318	0.0416	0	0.041728997	1.320634921	0	1.320634921
0.01447619	57.00	549.82	54.99695	0.0456	0	0.045522542	1.447619048	0	1.447619048
0.015746032	62.00	579.31	57.95625	0.0496	0	0.049316087	1.574603175	0	1.574603175
0.017015873	67.00	604.25	60.48539	0.0536	0	0.053109632	1.701587302	0	1.701587302
0.018031746	71.00	621.57	62.22058	0.0568	0	0.056903177	1.803174603	0	1.803174603
0.019555556	77.00	645.23	64.56696	0.0616	0	0.061308189	1.955555556	0	1.955555556
0.023111111	91.00	677.70	67.8325	0.0728	0	0.072189199	2.311111111	0	2.311111111
0.026666667	105.00	693.74	69.46986	0.084	0	0.083070208	2.666666667	0	2.666666667
0.029714286	117.00	702.64	70.3013	0.0936	0	0.093951218	2.971428571	0	2.971428571

	-	-						-	-
0.033269841	131.00	708.21	70.92464	0.1048	0	0.104832228	3.326984127	0	3.326984127
0.036825397	145.00	711.80	71.31774	0.116	0	0.115713237	3.682539683	0	3.682539683
0.040380952	159.00	709.53	71.05168	0.1272	0	0.126594247	4.038095238	0	4.038095238
0.04368254	172.00	709.63	71.08797	0.1376	0	0.137475257	4.368253968	0	4.368253968
0.047238095	186.00	706.98	70.79169	0.1488	0	0.148356266	4.723809524	0	4.723809524
0.050793651	200.00	704.50	70.53193	0.16	0	0.159237276	5.079365079	0	5.079365079
0.054349206	214.00	701.23	70.20064	0.1712	0	0.170118285	5.434920635	0	5.434920635
0.057396825	226.00	696.45	69.72246	0.1808	0	0.180999295	5.73968254	0	5.73968254
0.060952381	240.00	687.08	68.81226	0.192	0	0.191880305	6.095238095	0	6.095238095
0.064507937	254.00	690.61	69.18348	0.2032	0	0.202761314	6.450793651	0	6.450793651
0.067809524	267.00	686.72	68.74151	0.2136	0	0.213642324	6.780952381	0	6.780952381
0.071365079	281.00	679.97	67.99517	0.2248	0	0.224523334	7.136507937	0	7.136507937
0.074920635	295.00	682.21	68.2903	0.236	0	0.235404343	7.492063492	0	7.492063492
0.07847619	309.00	680.74	68.17509	0.2472	0	0.246285353	7.847619048	0	7.847619048
0.081777778	322.00	678.46	67.92243	0.2576	0	0.257166362	8.177777778	0	8.177777778
0.085333333	336.00	674.14	67.44863	0.2688	0	0.268047372	8.533333333	0	8.533333333
0.088634921	349.00	671.35	67.19238	0.2792	0	0.278928382	8.863492063	0	8.863492063
0.091936508	362.00	669.82	67.04812	0.2896	0	0.289809391	9.193650794	0	9.193650794
0.095492063	376.00	666.84	66.72108	0.3008	0	0.300690401	9.549206349	0	9.549206349
0.099047619	390.00	663.41	66.37481	0.312	0	0.311571411	9.904761905	0	9.904761905
0.102603175	404.00	661.36	66.16576	0.3232	0	0.32245242	10.26031746	0	10.26031746
0.001015873	4.00	41.98	4.19855	0.0032	0	0.002772366	0.101587302	0	0.101587302
0.001777778	7.00	74.70	7.47038	0.0056	0	0.005544733	0.17777778	0	0.17777778
0.002285714	9.00	95.99	9.59941	0.0072	0	0.006930916	0.228571429	0	0.228571429
0.002793651	11.00	117.12	11.71242	0.0088	0	0.008317099	0.279365079	0	0.279365079
0.003809524	15.00	159.01	15.90076	0.012	0	0.011089466	0.380952381	0	0.380952381
0.00431746	17.00	179.77	17.9767	0.0136	0	0.013861832	0.431746032	0	0.431746032
0.005333333	21.00	220.87	22.08673	0.0168	0	0.016634199	0.533333333	0	0.533333333
0.006349206	25.00	261.35	26.13522	0.02	0	0.019406565	0.634920635	0	0.634920635
0.006603175	26.00	271.37	27.13695	0.0208	0	0.020792749	0.66031746	0	0.66031746
0.007365079	29.00	301.14	30.1155	0.0232	0	0.022178932	0.736507937	0	0.736507937
0.007873016	31.00	320.76	32.07782	0.0248	0	0.024951298	0.787301587	0	0.787301587
0.008888889	35.00	359.38	35.94061	0.028	0	0.027723665	0.88888889	0	0.88888889
0.009904762	39.00	397.15	39.71709	0.0312	0	0.030496031	0.99047619	0	0.99047619
0.010666667	42.00	424.87	42.48893	0.0336	0	0.033268398	1.066666667	0	1.066666667
0.01168254	46.00	460.97	46.0993	0.0368	0	0.036040764	1.168253968	0	1.168253968
0.012444444	49.00	487.27	48.73016	0.0392	0	0.038813131	1.244444444	0	1.244444444
0.013206349	52.00	512.61	51.27318	0.0416	0	0.041585497	1.320634921	0	1.320634921
0.014222222	56.00	543.21	54.33558	0.0448	0	0.044357864	1.4222222222	0	1.422222222

	-								
0.015238095	60.00	568.00	56.81977	0.048	0	0.04713023	1.523809524	0	1.523809524
0.015746032	62.00	579.31	57.95625	0.0496	0	0.049902597	1.574603175	0	1.574603175
0.016761905	66.00	599.67	60.02309	0.0528	0	0.052674963	1.676190476	0	1.676190476
0.017777778	70.00	617.35	61.79783	0.056	0	0.055447329	1.777777778	0	1.777777778
0.018793651	74.00	634.05	63.48386	0.0592	0	0.058219696	1.879365079	0	1.879365079
0.020063492	79.00	652.11	65.30954	0.0632	0	0.062155312	2.006349206	0	2.006349206
0.022603175	89.00	674.41	67.49156	0.0712	0	0.070107279	2.26031746	0	2.26031746
0.025142857	99.00	688.38	68.92218	0.0792	0	0.078059247	2.514285714	0	2.514285714
0.02768254	109.00	697.21	69.82901	0.0872	0	0.086011214	2.768253968	0	2.768253968
0.029714286	117.00	702.64	70.3013	0.0936	0	0.093963181	2.971428571	0	2.971428571
0.032253968	127.00	706.41	70.73997	0.1016	0	0.101915148	3.225396825	0	3.225396825
0.034793651	137.00	710.32	71.14164	0.1096	0	0.109867115	3.479365079	0	3.479365079
0.037333333	147.00	710.29	71.06323	0.1176	0	0.117819082	3.733333333	0	3.733333333
0.039873016	157.00	709.65	71.06654	0.1256	0	0.125771049	3.987301587	0	3.987301587
0.042412698	167.00	709.82	71.07354	0.1336	0	0.133723017	4.241269841	0	4.241269841
0.044952381	177.00	708.35	70.924	0.1416	0	0.141674984	4.495238095	0	4.495238095
0.047492063	187.00	707.23	70.84164	0.1496	0	0.149626951	4.749206349	0	4.749206349
0.050031746	197.00	705.03	70.54813	0.1576	0	0.157578918	5.003174603	0	5.003174603
0.052571429	207.00	703.75	70.47692	0.1656	0	0.165530885	5.257142857	0	5.257142857
0.055111111	217.00	699.96	70.07052	0.1736	0	0.173482852	5.511111111	0	5.511111111
0.057650794	227.00	696.73	69.75528	0.1816	0	0.181434819	5.765079365	0	5.765079365
0.060190476	237.00	683.89	68.46899	0.1896	0	0.189386786	6.019047619	0	6.019047619
0.062730159	247.00	689.62	69.02683	0.1976	0	0.197338754	6.273015873	0	6.273015873
0.065269841	257.00	689.66	69.05512	0.2056	0	0.205290721	6.526984127	0	6.526984127
0.000507937	2.00	18.20	1.82369	0.0016	0	0.001437613	0.050793651	0	0.050793651
0.001015873	4.00	41.98	4.19855	0.0032	0	0.002875225	0.101587302	0	0.101587302
0.001269841	5.00	53.03	5.30354	0.004	0	0.003594032	0.126984127	0	0.126984127
0.00152381	6.00	63.93	6.39315	0.0048	0	0.004312838	0.152380952	0	0.152380952
0.001777778	7.00	74.70	7.47038	0.0056	0	0.005750451	0.177777778	0	0.177777778
0.002539683	10.00	106.58	10.6578	0.008	0	0.007188064	0.253968254	0	0.253968254
0.002793651	11.00	117.12	11.71242	0.0088	0	0.008625676	0.279365079	0	0.279365079
0.003555556	14.00	148.58	14.85812	0.0112	0	0.010063289	0.355555556	0	0.355555556
0.003555556	14.00	148.58	14.85812	0.0112	0	0.010782096	0.355555556	0	0.355555556
0.003809524	15.00	159.01	15.90076	0.012	0	0.011500902	0.380952381	0	0.380952381
0.004063492	16.00	169.40	16.94033	0.0128	0	0.012938515	0.406349206	0	0.406349206
0.004825397	19.00	200.39	20.03943	0.0152	0	0.014376127	0.482539683	0	0.482539683
0.005079365	20.00	210.65	21.06548	0.016	0	0.01581374	0.507936508	0	0.507936508
0.005587302	22.00	231.05	23.10494	0.0176	0	0.017251353	0.558730159	0	0.558730159
0.006095238	24.00	251.29	25.129	0.0192	0	0.018688966	0.60952381	0	0.60952381

0.006603175	26.00	271.37	27.13695	0.0208	0	0.020126578	0.66031746	0	0.66031746
0.006857143	27.00	281.34	28.13444	0.0216	0	0.021564191	0.685714286	0	0.685714286
0.007619048	30.00	310.98	31.09921	0.024	0	0.023001804	0.761904762	0	0.761904762
0.007873016	31.00	320.76	32.07782	0.0248	0	0.024439417	0.787301587	0	0.787301587
0.008126984	32.00	330.50	33.05151	0.0256	0	0.025877029	0.812698413	0	0.812698413
0.008888889	35.00	359.38	35.94061	0.028	0	0.027314642	0.88888889	0	0.88888889
0.009142857	36.00	368.91	36.89309	0.0288	0	0.028752255	0.914285714	0	0.914285714
0.009904762	39.00	397.15	39.71709	0.0312	0	0.030189868	0.99047619	0	0.99047619
0.01015873	40.00	406.45	40.6468	0.032	0	0.03162748	1.015873016	0	1.015873016
0.010666667	42.00	424.87	42.48893	0.0336	0	0.033065093	1.066666667	0	1.066666667
0.011174603	44.00	443.06	44.30822	0.0352	0	0.034502706	1.117460317	0	1.117460317
0.011428571	45.00	452.05	45.207	0.036	0	0.035940319	1.142857143	0	1.142857143
0.011936508	47.00	469.82	46.98468	0.0376	0	0.037377931	1.193650794	0	1.193650794
0.012444444	49.00	487.27	48.73016	0.0392	0	0.038815544	1.244444444	0	1.244444444
0.012952381	51.00	504.34	50.43679	0.0408	0	0.040253157	1.295238095	0	1.295238095
0.013206349	52.00	512.61	51.27318	0.0416	0	0.04169077	1.320634921	0	1.320634921
0.013968254	55.00	536.15	53.62825	0.044	0	0.043128382	1.396825397	0	1.396825397
0.014222222	56.00	543.21	54.33558	0.0448	0	0.044565995	1.422222222	0	1.422222222
0.014984127	59.00	562.13	56.22978	0.0472	0	0.046003608	1.498412698	0	1.498412698
0.015238095	60.00	568.00	56.81977	0.048	0	0.047441221	1.523809524	0	1.523809524
0.015492063	61.00	573.74	57.39598	0.0488	0	0.048878833	1.549206349	0	1.549206349
0.016253968	64.00	589.93	59.03194	0.0512	0	0.050316446	1.625396825	0	1.625396825
0.016507937	65.00	594.91	59.53937	0.052	0	0.051754059	1.650793651	0	1.650793651
0.017015873	67.00	604.25	60.48539	0.0536	0	0.053191672	1.701587302	0	1.701587302
0.01752381	69.00	613.07	61.36945	0.0552	0	0.054629284	1.752380952	0	1.752380952
0.018031746	71.00	621.57	62.22058	0.0568	0	0.056066897	1.803174603	0	1.803174603
0.018285714	72.00	625.74	62.63657	0.0576	0	0.05750451	1.828571429	0	1.828571429

Nota: Para los factores de carga y la obtención de "In" ver Capitulo III.

Graficas determinantes de Regresión.

	0.2	1	2	4
	Daño Leve 0.2%	Daño Moderado 1%	Daño Extenso 2%	Daño Colapso 4%
	y = 0.9514x - 0.2426 R ² = 0.996	y = 0.9766x - 0.2309 R ² = 0.999	y = 1.3749x - 0.4467 R ² = 0.9569	y = 1.685x - 0.7109 R ² = 0.9908
а	0.9514	0.9766	1.3749	1.6850
Valor de Exp	-0.2426	-0.2309	-0.4467	-0.7109
b	0.7846	0.7938	0.6397	0.4912
STDEV	0.7311	0.6018	0.2788	0.2988
	α = MEDIANA	β=DESVIACION ESTANDAR		
DC	3.4716	0.1773		
DE	2.2911	0.2028		
DM	1.2667	0.6162		
DL	0.2377	0.7685		

Daño leve 0.2%

Daño Moderado 1%

Daño Extenso 2%

<u>Daño Colapso 4%</u>

Tabla para la obtención de la curva de Fragilidad.

	Daño (I	Daño Leve Fragilit (DL) (lognorm dist)		Fragility curve (lognormal dist)	Daño Moderado (DM)			Fragility curve (lognormal dist)	Daño Extenso (DE)			Fragility curve (lognormal dist)	Daño Severo (DS)		Fragility curve (lognormal dist)	
Ítems	sa	α	β	Promedio	sa	α	β	Promedio	sa	α	β	Promedio	sa	α	β	Promedio
1	0.0100	0.2377	0.7685	0.0000	0.0100	1.2667	0.6162	0.0000	0.0100	2.2911	0.2028	0.0000	0.0100	3.4716	0.1773	0.0000
2	0.5000	0.2377	0.7685	0.8334	0.5000	1.2667	0.6162	0.0657	0.5000	2.2911	0.2028	0.0000	0.5000	3.4716	0.1773	0.0000
3	0.8000	0.2377	0.7685	0.9428	0.8000	1.2667	0.6162	0.2279	0.8000	2.2911	0.2028	0.0000	0.8000	3.4716	0.1773	0.0000
4	1.1000	0.2377	0.7685	0.9769	1.1000	1.2667	0.6162	0.4094	1.1000	2.2911	0.2028	0.0001	1.1000	3.4716	0.1773	0.0000
5	1.4000	0.2377	0.7685	0.9895	1.4000	1.2667	0.6162	0.5645	1.4000	2.2911	0.2028	0.0076	1.4000	3.4716	0.1773	0.0000
6	1.7000	0.2377	0.7685	0.9948	1.7000	1.2667	0.6162	0.6835	1.7000	2.2911	0.2028	0.0705	1.7000	3.4716	0.1773	0.0000
7	2.0000	0.2377	0.7685	0.9972	2.0000	1.2667	0.6162	0.7707	2.0000	2.2911	0.2028	0.2514	2.0000	3.4716	0.1773	0.0009
8	2.3000	0.2377	0.7685	0.9984	2.3000	1.2667	0.6162	0.8335	2.3000	2.2911	0.2028	0.5076	2.3000	3.4716	0.1773	0.0101
9	2.6000	0.2377	0.7685	0.9991	2.6000	1.2667	0.6162	0.8784	2.6000	2.2911	0.2028	0.7336	2.6000	3.4716	0.1773	0.0515
10	2.9000	0.2377	0.7685	0.9994	2.9000	1.2667	0.6162	0.9106	2.9000	2.2911	0.2028	0.8774	2.9000	3.4716	0.1773	0.1551
11	3.2000	0.2377	0.7685	0.9996	3.2000	1.2667	0.6162	0.9337	3.2000	2.2911	0.2028	0.9503	3.2000	3.4716	0.1773	0.3229
12	3.5000	0.2377	0.7685	0.9998	3.5000	1.2667	0.6162	0.9505	3.5000	2.2911	0.2028	0.9817	3.5000	3.4716	0.1773	0.5183
13	3.8000	0.2377	0.7685	0.9998	3.8000	1.2667	0.6162	0.9627	3.8000	2.2911	0.2028	0.9937	3.8000	3.4716	0.1773	0.6949
14	4.1000	0.2377	0.7685	0.9999	4.1000	1.2667	0.6162	0.9717	4.1000	2.2911	0.2028	0.9979	4.1000	3.4716	0.1773	0.8259
15	4.4000	0.2377	0.7685	0.9999	4.4000	1.2667	0.6162	0.9783	4.4000	2.2911	0.2028	0.9994	4.4000	3.4716	0.1773	0.9093
16	4.7000	0.2377	0.7685	0.9999	4.7000	1.2667	0.6162	0.9833	4.7000	2.2911	0.2028	0.9998	4.7000	3.4716	0.1773	0.9562
17	5.0000	0.2377	0.7685	1.0000	5.0000	1.2667	0.6162	0.9871	5.0000	2.2911	0.2028	0.9999	5.0000	3.4716	0.1773	0.9802
18	5.3000	0.2377	0.7685	1.0000	5.3000	1.2667	0.6162	0.9899	5.3000	2.2911	0.2028	1.0000	5.3000	3.4716	0.1773	0.9915
19	5.6000	0.2377	0.7685	1.0000	5.6000	1.2667	0.6162	0.9921	5.6000	2.2911	0.2028	1.0000	5.6000	3.4716	0.1773	0.9965

20	5.9000	0.2377	0.7685	1.0000	5.9000	1.2667	0.6162	0.9937	5.9000	2.2911	0.2028	1.0000	5.9000	3.4716	0.1773	0.9986
21	6.2000	0.2377	0.7685	1.0000	6.2000	1.2667	0.6162	0.9950	6.2000	2.2911	0.2028	1.0000	6.2000	3.4716	0.1773	0.9995
22	6.5000	0.2377	0.7685	1.0000	6.5000	1.2667	0.6162	0.9960	6.5000	2.2911	0.2028	1.0000	6.5000	3.4716	0.1773	0.9998
23	6.8000	0.2377	0.7685	1.0000	6.8000	1.2667	0.6162	0.9968	6.8000	2.2911	0.2028	1.0000	6.8000	3.4716	0.1773	0.9999
24	7.1000	0.2377	0.7685	1.0000	7.1000	1.2667	0.6162	0.9974	7.1000	2.2911	0.2028	1.0000	7.1000	3.4716	0.1773	1.0000
25	7.4000	0.2377	0.7685	1.0000	7.4000	1.2667	0.6162	0.9979	7.4000	2.2911	0.2028	1.0000	7.4000	3.4716	0.1773	1.0000

Grafica Curvas de Fragilidad.

