

UNIVERSIDAD DE EL SALVADOR

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE POSTGRADOS

PROGRAMA REGIONAL DE ENTRENAMIENTO GEOTERMICO PREG DIPLOMADO DE ESPECIALIZACION EN GEOTERMIA EDICION 2014

PROYECTO FINAL

ESTUDIO COMPARATIVO DE GASES DIFUSOS EN AREA GEOTERMICA, EL SALVADOR, C.A.

TUTORA: Lic. María Inés Magaña Burgos.

PRESENTADO POR:

• Lic. Sandra Jeannette Ascencio Ventura

Ciudad Universitaria, San Salvador, 31 de Octubre de 2014

AGRADECIMIENTOS

Como siempre primeramente doy gracias a Dios, por darme salud y vida, por estar conmigo en cada paso que doy, por fortalecer mi corazón e iluminar mi mente y por haber puesto en mi camino a aquellas personas que han sido soporte y compañía durante todo el período de estudio, con seguridad puedo decir que los aprendizajes obtenidos marcaran mi camino de hoy en adelante. Sin duda mis mayores agradecimientos para mi familia, amigos y compañeros de trabajo, gracias a su apoyo he finalizado este proceso.

Un agradecimiento a Lic. María Inés Magaña, por haber compartido sus experiencias, aportes y orientaciones profesionales, como tutora durante el lapso de investigación de Diplomado.

Agradezco también a Lic. Roberto Renderos y Lic. Briseida Salazar quienes supieron darme apoyo para la satisfactoria culminación del presente trabajo.

A la empresa LaGeo S.A. de C.V. por brindarme la oportunidad y el tiempo de asistir al Diplomado que recién finaliza.

En general agradezco a todas las personas que me apoyaron durante la culminación del presente trabajo y por haberme brindado la colaboración, ánimo y sobre todo cariño y amistad.

Sandra Jeannette Ascencio Ventura

ÍNDICE

I.Resumen	4
II. Introducción	5
III. Objetivos	5
IV.Antecedentes	6
V. Ubicación Geográfica	7
VI.Marco Teórico	9
VII. Descripción y Metodología	12
VIII. Resultados y Discusión	18
IX.Conclusiones y Recomendaciones	28
X. Referencias Bibliográficas	30
XI.Anexos	32

ÍNDICE DE TABLAS

Tabla 1. Descripción y Aplicaciones de los Gases Difusos	11
Tabla 2. Descripción para el Desarrollo de las Mediciones	13
Tabla 3. AÑO 2007	20
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	32
Tabla 4. AÑO 2007	20
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	33
Tabla 5. AÑO 2007	0.4
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	34
Tabla 6. AÑO 2007	
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	35
Tabla 7. AÑO 2007	
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	36
Tabla 8. AÑO 2014	07
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	37
Tabla 9. AÑO 2014	
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	38
Tabla 10. AÑO 2014	
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	39
Tabla 11. AÑO 2014	10
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	40
Tabla 12. AÑO 2014	14
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	41
Tabla 13. AÑO 2014	40
Flujo de CO ₂ en g/m ² d. Flujo de H ₂ S en g/m ² d, Hg (mg/m ₃), H ₂ S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He, Log CO ₂ , H ₂ , Δ H ₂ .	42

ÍNDICE DE FIGURAS

Figura 1. Área de Estudio y Ubicación de puntos de muestreo.	8
Figura 2. Edificio Volcánico	9
Figura 3. Flujómetro portátil CO ₂ /H ₂ S Westsystem	14
Figura 4. Cámara de Acumulación y analizador	14
Figura 5. Monitor de Radiación Portátil modelo Pylon AB-5 y una Celda de Lucas modelo Pylon 300A (celda de centelleo).	15
Figura 6. Analizador de Sulfuro de Hidrógeno Arizona modelo Jerome 631-X.	15
Figura 7 . ΔH ₂ (Hidrógeno, ppm) a) Año 2007 y b) Año 2014	18
Figura 8. Concentración de Radón (pCi/L) a) Año 2007 y b) Año 2014.	19
Figura 9. Concentración de Torón (pCi/L) a) Año 2007 y b) Año 2014.	20
Figura 10.Relación Torón/Radón a) Año 2007 y b) Año 2014.	21
Figura 11. Concentración de Mercurio (Hg, mg/m ³) a) Año 2007 y b) Año 2014	22
Figura 12 . ∆He (Helio, ppm) a) Año 2007 y b) Año 2014.	23
Figura 13 . Flujo de CO ₂ (Dióxido de carbono, g/m ² -día): a) Año 2007 y b) Año 2014.	24
Figura 14 . Log de CO ₂ : a) Año 2007 y b) Año 2014.	25
Figura 15 . Flujo de Sulfhídrico (H ₂ S, g/m ² -día): a) Año 2007 y b) Año 2014.	26
Figura 16 . Concentración de Sulfhídrico medido en campo (H ₂ S, ppm): a) Año 2007 y b) Año 2014.	27

I. RESUMEN

El presente informe pretende dar a conocer los resultados obtenidos durante la evaluación de la base de datos correspondientes a los años 2007-2014, de las mediciones de gases de difusos en el área de interés geotérmico ubicada en la zona central de El Salvador, C.A.

Dicha evaluación será de utilidad para la ubicación de nuevas áreas de explotación del recurso geotérmico como una alternativa importante para el desarrollo del país fundamentalmente por ser energía limpia.

Las concentraciones de gases difusos en suelo tales como: sulfuro de hidrógeno, mercurio, radón, torón, flujos de dióxido de carbono y flujo de sulfuro de hidrógeno y otros gases son de amplio interés al momento de evaluar un potencial recurso geotérmico, dichos gases permiten delimitar el área en estudio así como la presencia de canales que conducen estos gases a la superficie y por lo tanto indica posibles sitios para la perforación en un futuro de pozos geotérmicos. Aspectos que se refuerzan con las aportaciones de otras ciencias como la Geología y la Geofísica.

A lo largo de la zona central de El Salvador, fueron realizadas mediciones de gases difusos en alrededor de 300 puntos definidos en una cuadricula Este-Oeste que se han utilizado en la medición de estos gases. Estas mediciones permiten obtener resultados para la elaboración de mapas y su debida interpretación para de esta manera definir anomalías y zonas permeables, el conjunto de estos resultados sugiere actividad de fallas o alguna estructura presente en el sitio que puede no estar visible.

Se realizó una campaña de muestreo en la zona central de El Salvador en el año 2007 y en marzo de 2014, tomando en consideración que las mediciones deben ser realizadas bajo condiciones climáticas ideales (preferentemente en época seca), las cuales son de gran importancia con el fin de evitar algún tipo de interferente al momento de realizar las mediciones, así como también condiciones de temperatura.

II. INTRODUCCIÓN

Actualmente, el escenario económico y energético del mundo requiere la entrada al sistema Energético de las llamadas energías renovables. Entre estas se encuentra la energía geotérmica. Lo primero para el desarrollo y explotación del recurso geotérmico es la exploración. Hoy en día, cuando un campo geotermal es identificado, existe un amplio espectro de técnicas de exploración para estudiarlo, una de ellas es la medición de las emanaciones difusas provenientes del suelo.

Durante la etapa de exploración geotérmica surgen muchas interrogantes en referencia al lugar adecuado para realizar la perforación, es por ello la importancia de la geoquímica, disciplina que en conjunto con técnicas de exploración de geología, geofísica, muestreo y análisis químico pueden ayudar en gran medida a disminuir dicha incertidumbre, porque permiten delimitar el área de interés.

III. OBJETIVOS

- OBJETIVO GENERAL

a) Ampliar el conocimiento del sistema profundo existente hacia el Este del Municipio de Guadalupe y al Sur del Municipio de Tepetitán.

- OBJETIVOS ESPECIFICOS

- a) Recopilación de base de datos 2007-2014 del Campo en Exploración para definir un área geotérmica.
- b) Estudio Comparativo de gases difusos en la atmósfera del suelo 2007-2014.

IV. ANTECEDENTES

El presente estudio pretende ser un aporte para la construcción de un modelo que permita dar a conocer el desplazamiento de los fluidos. Para esto se realizaron perfiles y grillas de medidas de gases difusos en el área de interés.

Este trabajo contempla también la recopilación de la base de datos 2007-2014, aplicación y evaluación del método de medición de gases difusos desde el suelo, como técnica de exploración geoquímica en la prospección de un área geotérmica.

El monitoreo de la variación temporal de desgasificación difusa puede dar una indicación del movimiento de un cuerpo de magma. Se han realizados mediciones en los años 2007 y 2014 en aproximadamente 300 puntos a una separación de 500 m entre cada punto en el año 2007 y a 250 m durante 2014 (Ver Figura 1: Área de Estudio y ubicación de puntos de muestreo). La orientación en ambos casos ha sido Este-Oeste y Norte-Sur entre cada punto.

Con estos datos se estiman flujos puntuales de gases difusos. Las mediciones siguen una planificación espacial (perfiles o grillas), dada por información geológica, geoquímica y geofísica. Estos gases difusos pueden ser liberados por estructuras que permiten la desgasificación con orientaciones preferenciales. Estos resultados motivaron un estudio sistemático acerca de las fuentes posibles de los gases difusos, y probables factores que pueden modificar las concentraciones y flujos de los gases, desde su fuente hasta la superficie en campos geotermales. Dentro de las fuentes destacan la de nivel profundo, hidrotermal o magmático; y de nivel somero, biológico. Dentro de los factores, se encuentran los inherentes al sistema hidrotermal, profundos y de largo plazo, como las condiciones geológicas y estructurales de la zona (grado de permeabilidad), procesos físico-químicos de condensación del gas en agua. Así también se consideraron los llamados factores externos, parámetros atmosféricos que pueden generar variaciones en las concentraciones y flujos de gases.

Los valores y correlaciones de los gases difusos contribuirán a la elaboración de un patrón de flujo para la zona de estudio que puede ser capaz de develar posibles zonas de ascenso de los mismos.

V. UBICACIÓN GEOGRAFICA

MARCO GEOLÓGICO

La cadena volcánica de El Salvador corre ESE, paralela a la costa. Está relacionado con la subducción de la Placa de Cocos debajo de la Placa del Caribe se define en el Medio Fosa (Molnar y Sykes, 1969). La cadena volcánica activa en El Salvador se alinea con el margen sur de la Mediana Trough, que es un graben normal formado durante el Plio-Pleistoceno. Este graben atraviesa El Salvador y continúa a lo largo de Nicaragua paralelo al Medio Fosa (Meyer-Abich, 1956).

Investigaciones anteriores muestran que las descargas de advección de calor y fluidos hidrotermales en los campos geotérmicos volcánicos ocurren preferentemente a lo largo de fallas (por ejemplo, en la isla de Ustica, Etiope et al., 1999) y los contactos entre las diferentes unidades estratigráficas.

En la interfaz entre el suelo y la atmósfera de un área geotérmica, gases y calor se descargan a la atmósfera con una distribución espacial que refleja las trayectorias de fluido preferenciales o regiones permeables cerca de la superficie. Anomalías de las concentraciones y los flujos de temperatura y de los gases difusos del suelo pueden ser utilizados para identificar estos caminos permeables. (López, et al., 2004).

El estudio geológico comprendió un levantamiento detallado de la geología superficial y geología estructural. Como resultado se elaboró un mapa geológico actualizado en formato digital, se reconstruyó la evolución vulcanológica y se identificaron los sistemas estructurales predominantes en el área de estudio, los cuales tienen un rol relevante en la conducción de fluidos geotérmicos.

A la fecha existen datos de interés en torno a este sistema, como por ejemplo las mediciones realizadas durante los años 2005, 2006 y en el año 2007 y marzo de 2014, los estudios mostrados durante la exploración presentan evidencia de encontrarse en una zona de ascenso de fluidos profundos.

Estos acontecimientos hacen que la comparación de los resultados de este sistema obtenidos en el año 2007-2014 sea de importancia para ampliar el conocimiento y delimitar el área de interés.

Figura 1. Área de Estudio y ubicación de puntos de muestreo

VI. MARCO TEORICO

1. Definiciones:

- Gas:

Estado de agregación de la materia en el cual, bajo ciertas condiciones de temperatura y presión, sus moléculas, interaccionan solo débilmente entre sí, sin formar enlaces moleculares, adoptando la forma y el volumen del recipiente que las contiene y tendiendo a separarse.

- Difusión:

Propiedad física que denota movimiento molecular. Es un proceso físico irreversible, en el que partículas se introducen en un medio en el que inicialmente estaban ausentes, aumentando la entropía (Desorden molecular) del sistema. Las partículas o soluto y el medio donde se difunden o disuelven.

- Gases Difusos:

Es el flujo de moléculas gaseosas que se han desplazado de un lugar de mayor concentración a otro de menor concentración. También conocido este fenómeno como desgasificación. La distribución espacial de las descargas de calor y fluidos, refleja las trayectorias preferenciales de estos en las regiones permeables cercanas a la superficie lo que se conoce como anomalías hidrotermales.

- Desgasificación difusa:

En sistemas volcánicos identifican los gases liberados desde el sistema magmático incorporados en el envoltorio hidrotermal y expulsados hacia la interface suelo-aire del edificio volcánico a través del fallas. (Magaña, M. I. 2010) (Figura 2. Edificio Volcánico)

Figura 2. Edificio Volcánico

2. Aplicaciones de los Gases Difusos.

Los gases liberados por volcanes son una mezcla de componentes provenientes de al menos dos fuentes distintas: a) Una fuente magmática liberando compuestos volátiles hacia las rocas, y, b) Vapor que se separa desde fluidos externos (Dietrich et al., 2003).

El estudio de la desgasificación difusa en sistemas volcánicos es empleado para identificar los gases emanados por una fuente magmática profunda, que eventualmente son parte activa de los sistemas hidrotermales en la superficie y son liberados a la atmósfera (Gutiérrez, 2009).

Éstos últimos pueden ser fluidos meteóricos, aguas subterráneas, o aguas de mar que circulan alrededor de los conductos magmáticos a través de medios porosos o fracturas. La fuerza detrás de este movimiento es el gradiente de temperatura entre la fuente magmática y la superficie, lo que se evidencia por las emisiones fumarólicas (Dietrich et al. 2003).

Se han realizado estudios alrededor del mundo, sobre la importancia de caracterizar la desgasificación difusa, puesto que son trazadores de zonas de permeabilidad del suelo (Chiodini et al., 1995; Magaña et al., 2004; Fu et al., 2005). Algunos de los gases medidos en la actualidad para efectos de investigación en el área de geotermia son: Dióxido de Carbono (CO_2), Sulfuro de hidrógeno (H_2S), Torón, Radón, Mercurio (Hg), Helio (He) e Hidrógeno (H_2).

En la Tabla 1 se muestra en resumen la Descripción y aplicaciones de los Gases Difusos.

INTERES	CARACTERISTICAS	
Dióxido de Carbono (CO ₂)	Gas pesado, inodoro e incoloro que se disuelve en agua a temperatura y presión ordinarias y forma parte de la composición de los gases de sistemas hidrotermales volcánicos. (Magaña, M. 2014).	Se utiliza como un efectivo trazador de desgasificación del magma debido a su baja solubilidad en fundidos de silicatos y a su presión moderada, que favorecen su ex solución (desprendimiento) temprana. Forma parte de la composición de los gases de sistemas hidrotermales volcánicos. Es el gas más abundante (hasta un 95%), en vapor seco a alta temperatura, y es utilizado de forma efectiva como un trazador de desgasificación del magma debido a su baja solubilidad en fundidos de silicatos (Gutiérrez, 2009). De acuerdo a Padrón et al. (2003), Magaña et al. (2004) y López et al. (2004), el dióxido de carbono emitido en sistemas hidrotermales sirve para identificar zonas donde se presentan anomalías, que usualmente coinciden con zonas donde hay una gran permeabilidad vertical.
Sulfuro de Hidrógeno (H ₂ S)	Es un gas reactivo que al interactuar con las rocas genera sulfuros de hierro. (Magaña, M. 2014).	Se origina en la alteración de rocas del reservorio o a partir de la fuente magmática. (Magaña, M. 2014).
Torón (²²⁰ Rn)	El gas torón es un isótopo del radón con una vida media mucho menor que la de éste. Forma parte de la serie de desintegración del torio (²³² Th) y tiene una vida media de 54.5 segundos, por lo que la profundidad media de la cual proviene es limitada a unos pocos centímetros; siendo sus lecturas un indicativo de ascenso rápido de fluidos. (Grimaldi, 2011).	En sistemas volcánicos, concentraciones de torón sugieren un movimiento advectivo de fluidos generado por la cámara magmática. Es importante mencionar que se considera como medida de fondo un valor de 50 pCi/L (Radón) y 100 pCi/L (Torón) aproximadamente (Salazar, et al 2004, Pérez, et al 2004) (pCi/L).
Radón (²²² Rn)	Es producto de la desintegración del radio (²²⁶ Ra), elemento altamente radiactivo, es un gas noble radiactivo, incoloro e inodoro, de densidad 9.73 g/l en condiciones normales, siendo el gas más pesado que existe en la naturaleza. Se produce en la serie radiactiva del (²³⁸ U), por emisión de radiación alfa del radio (²²⁶ Ra). Su período de vida media es de 3.82 días (Magaña, M.I y Guevara, W. 2001).	Su transporte a la superficie de otros geo fluidos proporciona una huella digital de procesos geofísicos geotérmicos, hidrológicos, sísmicos y volcánicos. Este elemento radioactivo es utilizado para determinar las fallas locales activas, ya que asociadas a éstas se localizan las fuentes de calor, debido a la gran actividad termodinámica del campo existe una gran cantidad de gases generados en el subsuelo que transportan al gas radón hacia la superficie. Es un excelente trazador de las rutas subterráneas de recarga de estos acuíferos. Altas concentraciones de Radón en sistemas volcánicos o hidrotermales, indican un transporte de flujos de tipo advectivo (Gutiérrez, 2009).
Mercurio (Hg)	El mercurio es un gas magmático y reactivo asociado con estructuras volcánicas activas (Bagnato, 2009) Usualmente, se presenta en una forma en la cual puede ser fácilmente re-volatilizado y liberado a la atmósfera. (Magaña, M. 2014).	Concentraciones de mercurio en suelo proporcionan información acerca de zonas fósiles o activas de flujo vertical convectivo de calor y gas, por lo que es considerado un indicador geoquímico importante de la actividad de fallas (López et al. 2004). Los altos valores de mercurio, en conjunto con datos geológicos, permiten definir los bordes de un reservorio (para su explotación geotérmica), y permiten dar una imagen general sobre la geometría del campo geotérmico. (Varekamp y Busseck, 1983).
Helio (He)	El helio es un gas noble, incoloro e inodoro, no es tóxico. Pueden formarse por lixiviación de la roca (si hay presencia de torio y uranio) o por entrada de fluido magmático. (Magaña, M. 2014).	Padrón et al. (2003) estimó que los gases nobles se desplazan hacia la superficie a través de zonas donde existe permeabilidad vertical, por lo que si se pueden desplazar fácilmente por tales zonas, esto sugiere que provienen de fuentes profundas.

Tabla 1. Descripción y Aplicaciones de los Gases Difusos

VII. DESCRIPCIÓN Y METODOLOGIA

- Para el desarrollo del presente trabajo se llevaron a cabo una serie de actividades que se describen a continuación:
- Seleccionar un área de estudio: se han realizado aproximadamente un total de 300 puntos, a una separación de 500 m entre cada punto para el año 2007 y a 250 m durante el año 2014.
- Identificar sitios de interés, utilizando como apoyo fundamental información existente tales como fotografías aéreas, infrarrojas, mapas geológicos de fallas y zonas de alteración.
- 3. En ambos casos fue generada una cuadricula (Grid) para llevar a cabo el desarrollo del muestreo.
- 4. Muestrear y procesar toda la data generada en campo durante el desarrollo de la campaña de investigación.
- 5. Graficar, etapa en la cual se definen los mapas con la data generada durante el muestreo.
- 6. Interpretar.

MUESTREO.

Durante la etapa de muestreo se realizaron en cada uno de los puntos las siguientes mediciones:

- 1. Medición de la temperatura del suelo: Ambiente, Superficial y Profunda (50 cm)
- 2. Medición del flujo de dióxido de carbono (CO2)
- 3. Medición del flujo de sulfuro de hidrógeno (H₂S)
- 4. Medición de la concentración de radón (Rn)
- 5. Medición de la concentración de mercurio (Hg)
- 6. Medición de la concentración de Sulfuro de hidrógeno (H₂S)
- Vacutainer conteniendo muestra de gas para realizar análisis en laboratorio de otros gases.

- MEDICIONES.

En la Tabla 2 se dan a conocer la técnica y el procedimiento práctico durante el muestreo para la realización de las mediciones.

Tabla 2 Procedimiento de las Mediciones

GAS DE INTERES	TÉCNICA	PROCEDIMIENTO PRÁCTICO				
Medición de Flujo de Dióxido de Carbono (CO ₂) y de Sulfuro de Hidrogeno (H ₂ S)	Método de la cámara de acumulación descrito por Chiodini et al. (1997).	-Antes de bombear el gas hacia el analizador este debe ser filtrado para retirar la humedad ya que ésta produce interferencia analítica y puede dañar las celdas infrarrojas al interior del equipo -Ajustar los bordes de la cámara para evitar la entrada de aire atmosférico y minimizar los errores significativos (Chiodini <i>et al.</i> , 1997; Fridriksson, 2009a), el gas se extrae de forma continua desde la cámara por una bomba, y es enviado al analizador infrarrojo de CO ₂ y al analizador infrarrojo de H ₂ S para luego ser inyectado nuevamente dentro de la cámara de acumulación la cual está equipada con un mini-ventilador para mejorar la mezcla de gas bombeado hacia los analizadores (Chiodini <i>et al.</i> , 1997). La adquisición de datos se realizó durante dos minutos en cada punto, utilizando una mini- computadora Palm con el programa Palm Flux. Ese programa permite la adquisición de información sobre cada gas, midiendo su concentración por segundo, y presenta la información como dos curvas, una para el dióxido de carbono y otra para el sulfuro de hidrógeno. Se busca el valor de flujo para ambos gases (en ppm/s) que corresponda al valor de pendiente más alto que se pueda encontrar en toda la curva que se forma en esos dos minutos de adouisición de datos				
Radón (²²² Rn) y Torón (²²⁰ Rn)	Equipo portátil y bomba de vacío	Para la colección de las muestras se realizó a una profundidad aproximada de 50 cm y se utilizó una bomba de vacío para extraer la muestra a través de una sonda que va directamente a la celda de Lucas. El monitor de radiación del equipo detecta las partículas alfa producidas durante el proceso de decaimiento del radón, y sus productos hijos. Las partículas alfa chocan contra las paredes de la celda de Lucas, y se producen impulsos de luz que son amplificados por un tubo fotomultiplicador, que luego son convertidos en pulsos electrónicos. El número de pulsos emitidos por minuto permite realizar el cálculo de las concentraciones de radón y torón (su producto hijo) (Pylon Electronics Inc., 1993).				
Mercurio (Hg) y Sulfuro de Hidrógeno H₂S	Equipo portátil	Las muestras se tomaron a una profundidad aproximada de 50 cm por medio de una sonda metálica adaptada a un septum (para mantener la presión) y de una jeringa hipodérmica. Una vez recolectada la muestra y dependiendo el gas, esta es inyectada en el analizador de mercurio o de sulfuro de hidrógeno.				
Muestra de Gases	Vacutainer	Se colectaron muestras de gases para la determinación de oxígeno, helio, hidrógeno, nitrógeno, dióxido de carbono y argón, entre otros. Éstas se extrajeron a una profundidad aproximada de 50cm, utilizando una sonda metálica provista de un septum (para mantener la presión), y de una jeringa hipodérmica. Las muestras se almacenaron er contenedores al vacío, para su análisis en e laboratorio a través de un espectrómetro de masas				

DESCRIPCIÓN DEL EQUIPO.

A continuación se dan a conocer los equipos utilizados para el desarrollo del muestreo, incluyendo especificaciones técnicas.

GAS DE INTERES	ESPECIFICACIONES TÉCNICAS DEL EQUIPO	RANGO DE MEDICIÓN
Medición de Flujo de Dióxido de Carbono (CO ₂) y de Sulfuro de Hidrogeno (H ₂ S).	Flujómetro portátil marca West Systems con cámara circular invertida, analizador con sensor infrarrojo para Dióxido de carbono modelo LI-800, un analizador con sensor infrarrojo para sulfuro de hidrógeno modelo WEST TOX-05-H2S-BH, bomba y mini-computadora portátil Palm para la adquisición de datos. El detector modelo LI-800 tiene un rango de medición de cero a 20000 ppm, mientras que el detector modelo WEST TOX-05-H2S-BH (West Systems, 2007). Ver Figura 3 y 4.	0 a 2,000 ppm o de 0 a 20,000 ppm.

Figura 3. Flujómetro portátil CO₂/H₂S Westsystem

Descripción del equipo:

- A) Cámara de acumulación
- B) Analizador infrarrojo WEST TOX-05-H2S-BH
- C) Analizador infrarrojo LICOR LI-800
- D) Adaptador de Bluetooth
- Estudio Comparativo de Gases Difusos en Área Geotérmica, El Salvador, C.A. Presentado por: Lic. Sandra Jeannette Ascencio Ventura Octubre, 2014

Figura 4. Cámara de Acumulación y analizador

GAS DE INTERES	ESPECIFICACIONES TÉCNICAS DEL EQUIPO	RANGO DE MEDICIÓN				
Radón (²²² Rn) y Torón (²²⁰ Rn)	Equipo portátil de medición marca Pylon, modelo AB-5, y una celda de Lucas marca Pylon, modelo 300A. Ver Figura 5 .	1.3241-2373.7 pCi/L				

Figura 5. Monitor de Radiación Portátil modelo Pylon AB-5 y una Celda de Lucas modelo Pylon 300A (celda de centelleo).

GAS DE INTERES	ESPECIFICACIONES TÉCNICAS DEL EQUIPO	RANGO DE MEDICIÓN
Mercurio (Hg) y	Analizador de vapor de mercurio modelo	
Sulfuro de	Jerome 431-X; o en un analizador de	$H_2S: 0.003ppm a$ 50ppm
Hidrógeno H. S	sulfuro de hidrógeno modelo Jerome 631-	Hg: 0.001 a 0.999
	X. Ver Figura 6.	mg/m ³

Figura 6. Analizador de Sulfuro de Hidrógeno Arizona modelo Jerome 631-X.

- CÁLCULOS.

Calculo de Medición de Flujo de Dióxido de Carbono (CO₂) y de Sulfuro de Hidrogeno (H₂S).

El manual de uso del equipo (West Systems, 2007) indica qué pasos seguir para cuantificar las medidas en moles/m²d. El valor obtenido se multiplica por un factor de la cámara de acumulación (K) que se obtiene de la siguiente manera (Grimaldi, 2011):

$$K = \frac{86400 * P}{10^6 * R * T} * \frac{V}{A}$$

Donde:

- **P** es la presión barométrica en milibares (mBar)
- R es la constante de los gases 0.08314510 bar . L . mol⁻¹. K⁻¹
- T es la temperatura ambiente expresada en grados Kelvin
- V es el volumen de la cámara de acumulación en metros cúbicos (m³)
- A es el área interna de la cámara de acumulación expresado en metros cuadrados (m²)

La cuantificación del flujo se realiza entonces así:

 $FlujodeCQ(mol/m^{2}d) = m_{1} * K$ $FlujodeH_{2}S(mol/m^{2}d) = m_{2} * K$

Luego este valor se calcula en g/m²d utilizando factor de conversión (Peso molecular) (WestSystem, 2007).

- Cálculos de Radón y Torón.

Suponiendo que se tienen las primeras tres cuentas en los primeros tres minutos, las cuentas aproximadas para el radón están dadas por la expresión:

Cuentas de Radón (R) = 0.87C3 + 0.32C2 - 0.34C1

Mientras que las cuentas aproximadas de torón durante los primeros tres minutos y eliminando las cuentas de radón, pueden ser calculadas de la siguiente manera:

T = C1 + C2 + C3 - R

Para la concentración de radón se utiliza la fórmula:

$$^{222}Rn = \frac{Cs - Ca}{0.748 * 4.4 * 0.228}$$

Donde:

Cs es el promedio de cuentas por minuto (10, 11, 12)

Ca es el promedio de cuentas background

Y para la concentración del torón se utiliza la formula:

Y para la concentración de torón se utiliza la fórmula:

$$^{220}Rn = \frac{\left(T \,/\, R\right)}{^{222}Rn}$$

VIII. RESULTADOS Y DISCUSIÓN

RESULTADOS DE ΔH_2 .

En los mapas que se muestran a continuación en la **figura 7** en referencia al diferencial de hidrógeno cuando la muestra colectada en el vacutanier se le resta la concentración de la línea base cuyo valor es de 100 ppm, se observan valores de desgasificación del mismo desde 120.0 hasta 1200 ppm. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías que confirman los resultados obtenidos durante las mediciones de hidrógeno.

- ✓ Anomalía 1: que se extiende hacia el Sur-Oeste de Tepetitán cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 515000-5160000 mS y 278000-282000mN.
- ✓ Anomalía 2: que se extiende hacia el Sur-Este de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 517000-519000 mS y 277000-280000mN.

Figura 7. ΔH_2 a) Año 2007 y b) Año 2014 respectivamente

En la figura 7 a) se observa la formación de lineamientos con orientación Noroeste-Sureste (E-E').

En la figura 7 b) se observa la formación de los siguientes lineamientos:

- Tres lineamientos con orientación Norte-Sur (F-F', H-H', I-I')
- Dos lineamientos con orientación Noroeste-Sureste (E-E', G-G') y un lineamiento Noreste-Sureste (J-J').

RESULTADOS DE RADÓN.

En los mapas que se muestran a continuación en la **figura 8** en referencia a la concentración de radón se observan valores de desgasificación del mismo desde 0.8 hasta 300 pCi/L. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías.

- ✓ Anomalía 1: que se extiende al Sur de Tepetitán hacia el Nor-Oeste de Guadalupe cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 515000-5166000 mS y 278000-278200mO.
- ✓ Anomalía 2: que se extiende hacia el Sur-Este de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 518000-519000 mE y 278000-280000mS.

Figura 8. Concentración de Radón (pCi/L) a) Año 2007 y b) Año 2014.

En la figura 8 a) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E' y G-G').

En la figura 8 b) se observa los mismos lineamientos que en la figura 8a)

RESULTADOS DE TORÓN.

En los mapas que se muestran a continuación en la **figura 9** en referencia a la concentración de Torón se observan valores de desgasificación del mismo desde 0.0 hasta 200 pCi/L. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías.

- ✓ Anomalía 1: que se extiende desde el Sur de Tepetitán hacia el Sur-Oeste de Guadalupe cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 515000-5160000 mS y 278000-282000mN.
- ✓ Anomalía 2: que se extiende hacia el que se extiende hacia el Sur-Oeste de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 518000-519000 mS y 278000-280000mN.

Figura 9. Concentración de Torón (pCi/L) a) Año 2007 v b) Año 2014.

En la figura 9 a) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G').

En la figura 9 b) se observan los mismos lineamientos que en la figura anterior.

RESULTADOS DE RELACIÓN TORÓN/RADÓN.

En los mapas que se muestran a continuación en la **figura 10** en referencia a la relación de Torón/Radón se confirman las anomalías obtenidas de las mediciones en los años 2007 y 2014 para los gases de Torón y Radón.

- ✓ Anomalía 1: que se extiende que se extiende desde el Sur de Tepetitán hacia el NorOeste de Guadalupe cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 515000-5160000 mS y 278000-282000mN.
- ✓ Anomalía 2: que se extiende hacia el que se extiende hacia el Norte de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 518000-519000 mS y 278000-280000mN.

Figura 10. Relación Torón/Radón a) Año 2007 y b) Año 2014.

En la figura 10 a) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G').

En la figura 10 b) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G').

RESULTADOS DE MERCURIO.

En los mapas que se muestran a continuación en la **figura 11** en referencia a la concentración de mercurio se observan valores de desgasificación del mismo desde 0.0 hasta 0.030 mg/m³. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías.

- ✓ Anomalía 1: que se extiende que se extiende desde el Sur de Tepetitán hacia el Este de Guadalupe cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 514000-5170000 mS y 276000-280000mN.
- ✓ Anomalía 2: que se extiende hacia el que se extiende hacia el Sureste de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 518000-519500 mS y 278000-280000mE.

Figura 11. Concentración de Mercurio (Hg, ppm) a) Año 2007 y b) Año 2014

En la figura 11 a) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G') y un lineamiento con orientación Norte-Sur (K-K').

En la figura 11 b) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G') y un lineamiento con orientación Norte-Sur.

Aunque no son los mismos entre ambas figuras, las tendencias u orientaciones sí son las mismas, lo que refleja un posible patrón estructural en la zona.

RESULTADOS DE \triangle **He**.

En los mapas que se muestran a continuación en la **figura 12** en referencia Δ **He** se observan valores de desgasificación de este desde 0.0 hasta 2.0 ppm. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías.

- ✓ Anomalía 1: que se extiende desde el Sur-Oeste de Tepetitán cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 514000-5160000 mS y 278000-282000mN.
- ✓ Anomalía 2: que se extiende hacia el que se extiende hacia el Sureste de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 517000-521000 mS y 278000-280000mE.

Figura 12. ∆He a) Año 2007 y b) Año 2014.

En la figura 12 a) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G').

En la figura 12 b) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G').

En la figura 12 b) se observa la formación de un lineamiento con orientación Norte-Sur (K-K').

RESULTADOS DE FLUJO DE CO₂ (g/m²-día).

En los mapas que se muestran a continuación en la **figura 13** en referencia al flujo de CO_2 g/m²-día se observan valores de desgasificación del mismo desde 0.0 hasta 800 g/m2-día. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías.

- ✓ Anomalía 1: que se extiende desde el Sur-Oeste de Tepetitán cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 514000-5170000 mS y 276000-281000mN.
- ✓ Anomalía 2: que se extiende hacia el Sur de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 517000-523000 mS y 276500-279000mN.

Figura 13. Flujo de CO₂ (g/m²-día): a) Año 2007 y b) Año 2014.

En la figura 13 a) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G').

En la figura 13 a) se observa la formación de un lineamiento con orientación Sur Noreste-Suroeste (L-L').

En la figura 13 b) se observa la formación de un lineamiento con orientación Noroeste-Sureste (G-G').

En la figura 13 b) se observa la formación de un lineamiento con orientación Noreste-Suroeste (M-M').

RESULTADOS DE LOG DE CO₂.

En los mapas que se muestran a continuación en la **figura 14** se observa los resultados obtenidos cuando se realiza el cálculo del logaritmo de la concentración de CO_2 ppm medido en la muestra colectada en vacutainer, este operación matemática se aplica debido a que los resultados obtenidos de CO_2 son muy altos y para poder visualizar el desplazamiento del mismo, pueden verse valores de desgasificación del mismo desde 2.0 hasta 4.0. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías.

- ✓ Anomalía 1: que se extiende desde el Sur de Tepetitán hacia el Oeste de Guadalupe cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 515000-5170000 mS y 278000-280000mN.
- ✓ Anomalía 2: que se extiende hacia el que se extiende hacia el Sureste de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 518000-519000 mS y 278000-279000mN.

Figura 14. Log de CO₂: a) Año 2007 y b) Año 2014.

En la figura 14 a) se observa la formación de un lineamiento con orientación Norte-Sur (I-I')

En la figura 14 a) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E').

En la figura 14 b) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E') y Noreste-Suroeste (I-I')

En la figura 14 b) se observa la formación de un lineamiento con orientación Norte-Su (I-I')

RESULTADOS DE FLUJO DE SULFHÍDRICO (H₂S, g/m²-día).

En los mapas que se muestran a continuación en la **figura 15** en referencia al flujo de sulfhídrico (H_2S , g/m²-día) se observan valores de desgasificación del mismo desde 0.0 hasta 0.28 g/m₂-día. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías.

- ✓ Anomalía 1: que se extiende desde el Sur de Tepetitán hacia el NorOeste de Guadalupe cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 515000-5160000 mS y 278000-282000mN.
- ✓ Anomalía 2: que se extiende hacia el que se extiende hacia el Sureste de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 518000-519000 mS y 278000-280000mN.

Figura 15. Flujo de Sulfhídrico (H₂S, g/m²-día): a) Año 2007 y b) Año 2014.

En la figura 15 a) se observa la formación de un lineamiento con orientación Noroeste-Sureste (E-E').

En la figura 16 b) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G').

RESULTADOS DE CONCENTRACIÓN DE SULFHÍDRICO MEDIDO EN CAMPO (H₂S, ppm)

En los mapas que se muestran a continuación en la **figura 16** en referencia a la concentración de sulfhídrico se observan valores de desgasificación del mismo desde 0.0 hasta 0.20 ppm. Con los resultados obtenidos en los años 2007 y 2014 se deben de consideran las siguientes anomalías.

- ✓ Anomalía 1: que se extiende desde el Sur de Tepetitán hacia el Oeste de Guadalupe cercana a la falla A y fumarola B que se encuentra en la coordenadas Lambert de: 515000-5160000 mS y 278000-280000mN.
- ✓ Anomalía 2: que se extiende hacia el que se extiende hacia el Sureste de Tepetitán cercana a la falla C y fumarola D que se encuentra en la coordenadas Lambert de: 518000-519000 mS y 278000-280000mN.

Figura 16. Concentración de Sulfhídrico medido en campo (H₂S, ppm): a) Año 2007 y b) Año 2014.

En la figura 16 a) se observa la formación de un lineamiento con orientación Noroeste-Sureste (E-E').

En la figura 16 b) se observa la formación de dos lineamientos con orientación Noroeste-Sureste (E-E', G-G').

En la figura 16 b) se observa la formación de dos lineamientos con orientación Norte-Sur (F-F', K-K').

IX. CONCLUSIONES Y RECOMENDACIONES

- Los gases difusos medidos en el suelo muestran la distribución de los gases en el área geotérmica en estudio, lo que indica que existen zonas donde hay ascenso de fluidos hacia la superficie con alta permeabilidad alrededor de las anomalías, lo cual puede observarse en las figuras realizadas para cada uno de los gases.
- 2. Las presencia de gases difusos que muestran las anomalías son relacionados a la presencia de fluidos provenientes de la profundidad del área en investigación, estos gases se mueven por un canal que permite la conexión entre los fluidos del reservorio y la superficie. Este canal puede ser una estructura presente en el sitio de la anomalía.
- 3. En los mapas correspondientes a las siguiente figuras:

Figura 15. Flujo de Sulfhídrico (H₂S, g/m²-día)

Figura 16. Concentración de Sulfhídrico medido en campo (H₂S, ppm)

Podemos indicar que el área se puede ver reducida esto es debido a que en el año 2007 no se contaba con el equipo para realizar las mediciones, por lo tanto se recomienda realizar mediciones puntuales de este gas, debido a que el sulfuro de hidrógeno al ser un gas muy reactivo no suele manifestarse como tal en el suelo, considerándose de origen magmático.

- 4. Al realizar el análisis de los años 2007 y 2014 se observan anomalías en la parte NO-SE de la falla mostradas en los resultados de radón (figura 8), torón(figura 9), mercurio(figura 10) los cuales indican la presencia de zonas permeables y permite la definición del borde del área geotérmica.
- Los resultados obtenidos durante la evaluación de los datos definen que las mediciones realizadas en 2007 no sufren variación significativa con respecto a las realizadas en el año 2014.
- 6. Mediante los resultados obtenidos durante la evaluación de los datos definen que las mediciones realizadas en 2007-2014 presentan posibles estructuras que son

confirmadas con los resultados obtenidos en las figuras para Flujo de CO₂ (g/m²- d), Flujo de H₂S (g/m²-d), Hg (mg/m³), H₂S (ppm), Torón (pCi/L), Radón (pCi/L), Relación Torón/Radón, Δ He (ppm), Log CO₂, Δ H₂, denominadas como (E-E', G-G').

- Durante la evaluación de los datos definen que las mediciones realizadas en 2007-2014 presenta una posible estructura que son confirmada con los resultados obtenidos en la gráficas para Hg (mg/m³), H₂S (ppm), ∆He (ppm) denominada como (K-K').
- Al realizar la evaluación de los datos definen que las mediciones realizadas en 2007-2014 presenta una posible estructura que son confirmada con los resultados obtenidos en la gráfica para H₂S (ppm) denominada como (F-F').
- Con la evaluación de los datos definen que las mediciones realizadas en 2007-2014 presenta una posible estructura que son confirmadas con los resultados obtenido en la gráfica para ∆He denominada como (J-J').
- 10. En referencia a los resultados obtenidos durante la evaluación de los datos definen que las mediciones realizadas en 2007-2014 presentan posibles estructuras que son confirmadas con los resultados obtenidos en las gráficas para Flujo de CO₂ en g/m² d, Log CO₂ denominadas como (L-L', M-M').

X. REFERENCIAS BIBLIOGRÁFICAS

- Bagnato E., Allard P., Parello F., Aiuppa A., Calabrese S. y Hammouya G., 2009: Mercury gas emissions from La Soufrière Volcano, Guadeloupe Island (Lesser Antilles). Chemical Geology, v. 266, p. 267-273
- Chiodini G., Cioni R., Guidi M. y Raco B., 1997: Soil CO₂ Flux measurements in volcanic and geothermal areas. Applied Geochemistry.
- Chiodini G., Frondini F. y Ponziani F., 1995: Deep Structures and Carbon Dioxide degassing in Central Italy. Geothermics.
- Dereinda F., 2008: CO₂ Emissions from the Krafla Geothermal Area, Iceland. United Nations University Geothermal Training Programme.
- Etiope, G., Beneduce, P., Calcara, M., Favali, P., Frugoni, F., Schiattarella, M., and Smriglio, G., 1999, Structural pattern and CO2-CH4 degassing of Ustica Island, Southern Tyrrheanian basin: J. Volcanol. Geotherm. Res., v. 88, p. 291-304.
- Fridriksson, T., 2009a: Diffuse Degassing through soil and geothermal exploration. Short Course on Surface Exploration for Geothermal Resources.
- Fridriksson, T., 2009b: Studies of diffuse CO₂ degassing: Applications to exploration and environmental monitoring in Iceland. Short Course on Surface Exploration for Geothermal Resources.
- Fridriksson T., Kristjánsson B. R., Ármannsson H., Margrétardóttir E., Ólafsdóttir S. y Chiodini G., 2006: CO₂ Emissions and heat flow through soil, fumaroles, and steam heated pools at the Reykjanes geothermal area, SW Iceland. Applied Geochemistry.
- Dickson, M. y Fanelli, M.; Geothermal Energy, Istituto di Geoscienze e Georisorse, CNR, Pisa, Italia, 2004.
- Dietrich V.J., Hurni L., 2003: GEOWARN, Geospatial Warning Systems, Nysiros Volcano, Greece. http://www.geowarn.ethz.ch/
- Gutiérrez X., 2009: Estudio Geoquímico de gases en torno a la Falla el Hollón, Berlín, Usulután. Tésis para optar al grado de licenciatura en Ciencias Químicas, Universidad de El Salvador, El Salvador.
- Grimaldi D., 2011: Estudio de Desgasificación de origen volcánica de las fumarolas del Campo Geotérmico de Ahuachapán, Ahuachapán.

- López, D.L., Padrón, E., Magaña, M. I., Gomez, L., Barrios, L.A., Pérez, N.M., and Hernández, P. 2004. Structural control on thermal anomalies and diffuse surficial degassing at Berlin Geothermal Field, El Salvador.
- López, D.L y Ransom; L. 2004. Dynamics of diffuse degassing at Ilopango Caldera, El Salvador; Geological Society of America.
- Magaña M.I., López D., Barrios L.A., Perez N. M., Padrón E. y Henriquez E., 2004: Diffuse and convective degassing of soil gases and heat at the TR-6-Zapotillo hydrothermal discharge zone, Berlin Geothermal Field, El Salvador. Geothermal Resources Council, Transactions, v. 28, p. 485-488.
- Magaña, M. I y Guevara, W.; Estudio complementario de la degasificación difusa de la zona sur y este del Campo Geotérmico de Berlín, Geotérmica Salvadoreña S. A de C. V, Junio de 2001.
- Magaña, M.I., 2010. Medición de Gases Difusos en Exploración Geotérmica.
- Magaña, M.I., 2014. Medición de Gases Difusos en Exploración Geotérmica.
- Meyer-Abich, H., 1956. Los volcanes activos de Guatemala y El Salvador (América Central). Anales del Servicio Geológico Nacional de El Salvador, 102 p.
- Padrón, E., López, D.L., Magaña, M.I., Marrero, R., and Pérez, N.M., 2003. Diffuse degassing and relation to structural flow paths at Ahuachapan Geothermal Field, El Salvador. Geothermal Resources Council Transactions, vol. 27, pp. 325-330.
- Varekamp, J.C. y Buseck, P.R., 1983: Hg anomalies in soils: a geochemical exploration method for geothermal areas. Geothermics, v. 12, p. 29-47.

Tabla 3.

AÑO 2007

ID	Coord	enadas	Flu	ijo CO ₂	Flu	ijo H₂S	Hg	H ₂ S	Torón	Radón	Relación			н.	∆H₂
	Х	Y	к	g/m² día	К	g/m² día	mg/m ₃	ppm	pCi/L	pCi/L	Torón/Radón	Дпе		п2	
L-1-00	516213	278010	0.30	5.4075	0.30	0.00055	0.004	0.003	45.98	17.32	2.654	0.6948	2.67	989.91	889.91
L-1-01	516115	277992	0.30	7.3152	0.30	0.00103	0.004	0.130	50.26	27.99	1.796	0.7339	3.07	754.06	654.06
L-1-02	516003	277984	0.30	8.8582	0.30	0.00042	0.000	0.001	141.55	82.18	1.722	0.8678	3.32	913.93	813.93
L-1-03	515905	278002	0.30	14.9801	0.30	0.00340	0.000	0.110	415.43	197.23	2.106	1.2066	2.94	976.66	876.66
L-1-04	515815	278012	0.30	13.3945	0.30	0.00041	0.000	0.110	83.46	43.98	1.898	1.4228	3.13	956.92	856.92
L-1-05	515725	278006	0.30	4.4639	0.30	0.00095	0.004	0.140	197.51	71.96	2.745	1.2914	0.00	1029.47	929.47
L-1-06	515616	278001	0.30	4.0952	0.30	0.00128	0.006	0.110	26.02	15.55	1.673	1.3985	2.65	1124.88	1024.88
L-1-07	515503	278004	0.30	6.1318	0.30	0.00077	0.007	0.110	35.88	23.99	1.496	1.1150	2.64	1057.04	957.04
L-1-08	515393	277996	0.30	3.5652	0.30	0.00000	0.008	0.000	209.17	69.74	2.999	0.9161	0.00	781.34	681.34
L-1-09	515309	278007	0.30	2.7971	0.30	0.00049	0.000	0.001	2.43	1.33	1.827	1.1460	3.33	981.98	881.98
L-1-10	515215	278003	0.30	13.8450	0.30	0.00103	0.000	0.001	326.28	119.49	2.731	1.2417	2.91	770.81	670.81
L-1-11	515123	278006	0.30	3.6882	0.30	0.00085	0.000	0.000	-106.29	-59.97	1.773	1.2014	0.00	896.41	796.41
L-1-12	514994	277947	0.30	2.9373	0.30	0.00062	0.005	0.150	43.03	29.76	1.446	0.6429	2.83	717.53	617.53
L-2-01	516193	278265	0.30	6.7075	0.30	0.00111	0.004	0.001	67.21	49.31	1.363	1.0520	0.00	888.30	788.30
L-2-02	515087	278241	0.30	3.1493	0.30	0.00088	0.007	0.001	29.67	18.21	1.629	0.9660	2.76	1169.50	1069.50
L-2-03	515937	278260	0.30	2.2463	0.30	0.00081	0.004	0.002	17.53	19.55	0.897	1.3146	2.98	1038.48	938.48
L-2-04	515811	278247	0.30	1.9872	0.30	0.00048	0.004	0.000	189.16	92.84	2.038	1.5979	2.79	813.62	713.62
L-2-05	515693	278238	0.30	4.5012	0.30	0.00047	0.004	0.000	-53.29	-33.32	1.600	1.2271	2.87	688.67	588.67
L-2-06	515596	278243	0.30	3.4297	0.30	0.00205	0.001	0.001	-58.43	-36.87	1.585	1.5309	2.79	737.11	637.11
L-2-07	515502	278238	0.30	4.7334	0.30	0.00040	0.000	0.000	131.45	53.31	2.466	1.4670	3.51	835.80	735.80
L-2-08	515394	278246	0.30	76.4858	0.30	0.00206	0.000	0.001	-43.49	-19.10	2.277	1.6189	3.46	729.27	629.27
L-2-09	515298	278257	0.30	6.3131	0.30	0.00163	0.000	0.110	-43.25	-22.65	1.909	1.5785	0.00	764.83	664.83
L-2-10	515202	278234	0.30	5.8774	0.30	0.00095	0.000	0.001	-139.68	-55.53	2.516	1.4747	0.00	710.66	610.66
L-2-11	515081	278220	0.30	6.6692	0.30	0.00172	0.000	0.120	-106.29	-59.97	1.773	0.8260	2.86	834.25	734.25
L-2-12	514994	278260	0.30	0.4503	0.30	0.00130	0.000	0.001	308.24	189.68	1.625	0.9091	0.00	683.03	583.03
L-3-01	516214	278493	0.30	5.9666	0.30	0.00000	0.004	0.000	58.97	11.99	4.916	1.3482	0.00	1055.49	955.49
L-3-02	516095	278504	0.30	2.5133	0.30	0.00155	0.005	0.130	86.12	35.09	2.454	1.1723	0.00	1091.47	991.47
L-3-03	516006	278500	0.30	3.4695	0.30	0.00065	0.000	0.001	52.11	20.88	2.496	1.3924	2.77	1016.87	916.87
L-3-04	515907	278505	0.30	5.3304	0.30	0.00143	0.003	0.140	54.89	16.44	3.340	1.1098	2.88	1035.35	935.35
L-3-05	515764	278498	0.30	30.8996	0.30	0.00093	0.012	0.002	36.62	33.76	1.085	1.4215	0.00	1094.75	994.75
L-3-06	515679	278494	0.30	7.6934	0.30	0.00267	0.007	0.110	22.17	13.77	1.610	1.7822	2.88	1029.31	929.31
L-3-07	515590	278501	0.30	1.2812	0.30	0.00040	0.007	0.190	70.21	37.76	1.859	1.5546	0.00	1015.64	915.64
L-3-08	515489	278500	0.30	5.1214	0.30	0.00036	0.000	0.000	48.52	26.21	1.851	1.2440	0.00	1033.87	933.87
L-3-09	515377	278497	0.30	4.8362	0.30	0.00068	0.007	0.110	10.41	8.44	1.234	0.9196	3.00	831.27	731.27
L-3-10	515275	278535	0.30	12.0918	0.30	0.00063	0.011	0.002	7.25	4.44	1.633	1.7434	0.00	1075.55	975.55
L-3-11	515175	278480	0.30	2.7979	0.30	0.00027	0.006	0.002	17.65	6.22	2.837	1.9120	0.00	1060.82	960.82
L-3-12	515089	278507	0.30	4.0647	0.30	0.00148	0.006	0.180	10.91	9.33	1.169	1.6702	2.74	1049.39	949.39
L-3-13	515001	278508	0.30	4.6174	0.30	0.00054	0.006	0.110	25.91	20.43	1.268	1.3067	2.74	944.76	844.76
L-4-01	516230	278740	0.30	6.6156	0.30	0.00040	0.007	0.120	72.66	42.64	1.704	1.5001	3.09	1054.95	954.95

Tabla 4.

AÑO 2007

ID	Coordenadas		Flujo CO ₂		Flujo H ₂ S		Hg	H ₂ S	Torón	Radón	Relación	٨Н٥			۸ LI
	х	Y	к	g/m² día	к	g/m² día	mg/m ₃	ppm	pCi/L	pCi/L	Torón/Radón	Ane		112	
L-4-02	516093	278749	0.30	4.6801	0.30	0.00129	0.005	0.120	255.61	94.17	2.714	1.6312	0.00	1081.07	981.07
L-4-03	515995	278749	0.30	4.9707	0.30	0.00075	0.004	0.130	48.59	20.43	2.378	1.6379	0.00	1183.18	1083.18
L-4-04	515894	278757	0.30	7.3171	0.30	0.00194	0.000	0.000	70.08	35.09	1.997	1.4362	0.00	1098.45	998.45
L-4-05	515801	278748	0.30	5.9525	0.30	0.00101	0.007	0.130	43.06	26.21	1.643	1.7009	2.68	1214.56	1114.56
L-4-06	515704	278751	0.30	2.8019	0.30	0.00071	0.011	0.110	31.02	13.33	2.328	1.5780	3.74	1123.40	1023.40
L-4-07	515610	278728	0.30	4.9682	0.30	0.00219	0.012	0.000	3.39	1.33	2.545	1.6073	2.69	1167.48	1067.48
L-4-08	515483	278753	0.30	4.8803	0.30	0.00167	0.010	0.120	-2.22	-0.89	2.495	1.6350	2.75	1140.31	1040.31
L-4-09	515392	278749	0.30	10.1557	0.30	0.00092	0.011	0.002	164.54	69.30	2.374	1.1250	3.23	973.95	873.95
L-4-10	515291	278760	0.30	6.6665	0.30	0.00152	0.008	0.000	103.57	55.08	1.880	1.7292	2.73	1017.36	917.36
L-4-11	515204	278744	0.30	3.0973	0.30	0.00036	0.009	0.110	209.80	76.40	2.746	1.6619	0.00	1126.24	1026.24
L-4-12	515091	278748	0.30	7.3022	0.30	0.00049	0.016	0.001	92.48	38.65	2.393	1.3030	2.69	1021.53	921.53
L-4-13	514995	278741	0.30	15.9360	0.30	0.00134	0.010	0.001	96.47	51.53	1.872	1.3291	2.92	1096.72	996.72
L-5-01	516192	279003	0.30	15.9360	0.30	0.00134	0.009	0.000	20.73	16.21	1.278	1.6065	2.75	1200.28	1100.28
L-5-02	516102	279000	0.30	4.8146	0.30	0.00103	0.009	0.000	0.00	0.00	0.000	1.5767	2.79	1068.40	968.40
L-5-03	516008	279015	0.30	1.7289	0.30	0.00045	0.003	0.110	41.75	26.65	1.567	0.6969	2.92	603.71	503.71
L-5-04	515918	278979	0.30	2.1818	0.30	0.00110	0.007	0.004	19.27	14.21	1.356	1.5491	3.12	1155.11	1055.11
L-5-05	515804	279017	0.30	5.7045	0.30	0.00082	0.000	0.120	75.05	35.98	2.086	1.3760	0.00	1091.69	991.69
L-5-06	515702	279000	0.30	3.1743	0.30	0.00157	0.005	0.120	0.96	0.89	1.078	1.3438	2.64	1076.82	976.82
L-5-07	515600	279014	0.30	4.7408	0.30	0.00140	0.000	0.120	0.00	0.00	0.000	1.2234	2.71	1038.62	938.62
L-5-08	515496	278996	0.30	5.5035	0.30	0.00096	0.006	0.120	7.44	3.11	2.393	1.3120	2.86	1138.45	1038.45
L-5-09	515396	278999	0.30	6.7871	0.30	0.00060	0.000	0.120	-18.48	-6.66	2.774	1.1715	2.91	1014.02	914.02
L-5-10	515300	278999	0.30	4.6084	0.30	0.00057	0.000	0.001	63.93	43.53	1.468	1.4746	2.91	1253.81	1153.81
L-5-11	515197	279009	0.30	2.7684	0.30	0.00077	0.000	0.001	15.14	8.00	1.893	1.4101	3.62	1070.27	970.27
L-5-12	514993	279030	0.30	7.9691	0.30	0.00100	0.000	0.000	11.23	9.77	1.149	0.6784	2.66	506.81	406.81
L-5-13	515099	278978	0.30	3.5388	0.30	0.00185	0.000	0.000	5.06	5.33	0.950	1.6284	0.00	1249.53	1149.53
L-5-14	514908	279030	0.30	2.2410	0.30	0.00138	0.000	0.110	27.07	11.99	2.257	1.4176	0.00	1077.57	977.57
L-5-15	514803	279018	0.30	1.5662	0.30	0.00186	0.000	0.190	20.37	16.88	1.207	1.3403	2.72	1175.19	1075.19
L-5-16	514693	279008	0.30	2.2086	0.30	0.00185	0.000	0.002	11.12	9.77	1.138	1.4180	0.00	1076.36	976.36
L-5-17	514594	279006	0.30	1.1176	0.30	0.00045	0.000	0.130	23.27	12.44	1.871	1.3888	0.00	1086.20	986.20
L-6-01	516200	279236	0.30	2.8159	0.30	0.00059	0.004	0.120	21.61	13.33	1.622	1.6177	0.00	1085.64	985.64
L-6-02	516104	279261	0.30	4.5387	0.30	0.00169	0.000	0.001	10.08	5.33	1.891	1.4364	2.87	1047.79	947.79
L-6-03	515998	279252	0.30	2.3172	0.30	0.00032	0.000	0.001	-0.74	-0.44	1.667	1.5772	3.05	1077.94	977.94
L-6-04	515896	279251	0.30	6.4042	0.30	0.00097	0.008	0.140	65.06	26.21	2.482	1.2784	0.00	731.79	631.79
L-6-05	515795	279251	0.30	7.5129	0.30	0.00256	0.013	0.110	48.11	23.54	2.043	1.0960	0.00	1873.20	1773.20
L-6-06	515693	279251	0.30	3.0840	0.30	0.00089	0.006	0.000	36.87	14.21	2.594	1.2515	0.00	593.93	493.93
L-6-07	515600	279249	0.30	2.1268	0.30	0.00089	0.009	0.110	13.52	11.55	1.171	1.5192	0.00	617.79	517.79
L-6-08	515496	279249	0.30	1.7539	0.30	0.00079	0.000	0.001	-0.76	-0.89	0.852	1.4946	0.00	719.61	619.61
L-6-09	515401	279250	0.30	1.8151	0.30	0.00126	0.007	0.120	5.17	4.44	1.164	1.4882	2.69	712.44	612.44
L-6-10	515299	279248	0.30	3.4800	0.30	0.00049	0.000	0.001	23.54	10.66	2.208	1.6627	0.00	661.79	561.79

Tabla 5.

AÑO 2007

ID	Coord	enadas	Flu	ijo CO₂	Flujo H ₂ S		Hg	H ₂ S	Torón	Radón	Relación	٨Ц٥		U	۸ Ц
	х	Y	к	g/m² día	к	g/m² día	mg/m₃	ppm	pCi/L	pCi/L	Torón/Radón	Ane		112	
L-6-11	515198	279249	0.30	2.6769	0.30	0.00018	0.007	0.120	4.61	4.00	1.153	1.3872	0.00	663.45	563.45
L-6-12	515104	279246	0.30	5.3153	0.30	0.00224	0.008	0.120	12.68	7.55	1.679	1.4115	0.00	707.94	607.94
L-6-13	514970	279262	0.30	3.1376	0.30	0.00135	0.000	0.110	13.57	8.44	1.608	1.4024	3.10	663.94	563.94
L-6-14	514905	279255	0.30	2.0605	0.30	0.00232	0.000	0.000	73.92	31.98	2.311	1.6590	0.00	1243.63	1143.63
L-6-15	514798	279252	0.30	1.4162	0.30	0.00019	0.000	0.001	62.98	46.20	1.363	1.8688	2.87	1152.71	1052.71
L-6-16	514694	279263	0.30	1.5427	0.30	0.00023	0.000	0.000	40.95	27.99	1.463	1.7249	0.00	1120.16	1020.16
L-6-17	514596	279255	0.30	2.6055	0.30	0.00128	0.000	0.190	33.05	25.32	1.305	1.6622	2.93	1138.99	1038.99
L-6-18	514518	279247	0.30	2.6090	0.30	0.00040	0.000	0.002	42.92	16.88	2.543	1.3843	0.00	1063.94	963.94
L-7-01	516276	279511	0.30	11.8691	0.30	0.00111	0.012	0.002	4.41	3.11	1.417	1.2427	2.87	1043.68	943.68
L-7-02	516102	279520	0.30	16.5795	0.30	0.00131	0.006	0.000	27.06	22.65	1.194	1.3883	0.00	662.76	562.76
L-7-03	516000	279501	0.30	4.1755	0.30	0.00030	0.006	0.001	57.53	36.87	1.560	0.8047	2.82	1656.87	1556.87
L-7-04	515905	279509	0.30	3.8540	0.30	0.00088	0.000	0.001	57.82	31.98	1.808	1.3843	2.94	685.82	585.82
L-7-05	515804	279515	0.30	9.7206	0.30	0.00045	0.000	0.000	8.47	4.89	1.733	1.2560	3.11	631.44	531.44
L-7-06	515705	279505	0.30	4.4632	0.30	0.00243	0.000	0.000	10.74	8.00	1.343	1.4418	2.82	817.86	717.86
L-7-07	515597	279491	0.30	5.1215	0.30	0.00132	0.007	0.210	6.68	8.00	0.835	1.4352	0.00	883.66	783.66
L-7-08	515505	279491	0.30	2.9957	0.30	0.00132	0.008	0.000	18.05	12.88	1.401	1.0633	0.00	639.21	539.21
L-7-09	515403	279497	0.30	4.8431	0.30	0.00021	0.007	0.130	32.58	12.88	2.529	1.1450	2.73	819.13	719.13
L-7-10	515308	279495	0.30	2.4891	0.30	0.00016	0.000	0.001	8.88	5.33	1.667	1.3435	0.00	929.48	829.48
L-7-11	515212	279503	0.30	4.1293	0.30	0.00056	0.000	0.000	99.75	33.76	2.955	1.3071	0.00	838.35	738.35
L-7-12	515100	279499	0.30	2.2044	0.30	0.00043	0.000	0.002	31.45	15.10	2.083	1.4442	2.74	947.46	847.46
L-7-17	514607	279502	0.30	1.0891	0.30	0.00064	0.000	0.002	49.09	23.10	2.125	1.5448	2.77	905.99	805.99
L-7-18	514482	279497	0.30	2.5127	0.30	0.00111	0.003	0.000	86.19	30.65	2.812	1.9216	2.63	1039.50	939.50
L-8-01	516194	279766	0.30	2.8624	0.30	0.00046	0.004	0.000	0.77	0.89	0.872	1.4767	0.00	779.33	679.33
L-8-02	516096	279760	0.30	10.1616	0.30	0.00264	0.003	0.000	10.14	8.44	1.201	0.9941	0.00	844.68	744.68
L-8-03	515998	279754	0.30	5.4679	0.30	0.00160	0.000	0.001	36.21	11.99	3.019	1.0880	3.25	786.71	686.71
L-8-04	515914	279727	0.30	3.0155	0.30	0.00089	0.010	0.002	206.35	73.74	2.798	1.1469	2.79	902.74	802.74
L-8-05	515802	279752	0.30	15.7790	0.30	0.00244	0.012	0.110	114.96	51.97	2.212	1.3839	2.65	1021.32	921.32
L-8-06	515673	279741	0.30	9.2557	0.30	0.00373	0.012	0.000	66.78	30.65	2.179	1.2595	2.83	897.45	797.45
L-8-07	515590	279748	0.30	7.1969	0.30	0.00192	0.000	0.140	69.88	31.98	2.185	1.2441	2.64	891.93	791.93
L-8-08	515507	279755	0.30	5.3455	0.30	0.00079	0.008	0.001	67.64	30.21	2.239	1.2736	2.90	917.17	817.17
L-8-09	515383	279738	0.30	0.7183	0.30	0.00046	0.008	0.002	117.21	44.87	2.612	1.3757	2.75	941.71	841.71
L-8-10	515288	279757	0.30	6.5918	0.30	0.00043	0.000	0.001	47.38	27.99	1.693	1.2944	2.73	995.83	895.83
L-8-11	515200	279760	0.30	4.2155	0.30	0.00042	0.005	0.120	406.04	28.87	14.063	1.5572	2.64	1322.63	1222.63
L-8-12	515113	279753	0.30	3.4722	0.30	0.00146	0.011	0.000	190.77	53.75	3.549	1.8058	3.06	1104.54	1004.54
L-8-17	514600	279757	0.30	2.9046	0.30	0.00000	0.000	0.210	52.12	22.65	2.301	1.6364	2.81	1019.26	919.26
L-8-18	514500	279749	0.30	2.1159	0.30	0.00163	0.000	0.130	33.56	15.10	2.222	1.7836	0.00	986.80	886.80
L-9-01	516198	279999	0.30	2.1189	0.30	0.00047	0.007	0.130	72.11	31.54	2.286	1.6790	3.21	1099.35	999.35
L-9-02	516093	279994	0.30	3.1050	0.30	0.00066	0.000	0.000	193.86	70.63	2.745	1.1771	0.00	1014.07	914.07
L-9-03	515995	280008	0.30	2.7927	0.30	0.00048	0.003	0.000	59.12	37.31	1.585	1.5767	0.00	1068.13	968.13

Tabla 6.

AÑO 2007

ID	Coord	enadas	Flu	ijo CO ₂	Flu	ujo H₂S	Hg	H ₂ S	Torón	Radón	Relación	۸Ho		U	۸ L I
	х	Y	к	g/m² día	к	g/m² día	mg/m₃	ppm	pCi/L	pCi/L	Torón/Radón	ДПС		п2	ΔΠ ₂
L-9-04	515908	280008	0.30	2.7598	0.30	0.00206	0.004	0.140	33.38	20.88	1.599	1.5685	3.03	1061.24	961.24
L-9-05	515792	279999	0.30	3.5299	0.30	0.00104	0.000	0.130	52.76	23.10	2.284	1.4491	3.06	1126.35	1026.35
L-9-06	515697	280011	0.30	4.7469	0.30	0.00066	0.000	0.120	170.21	41.76	4.076	1.5499	0.00	1044.31	944.31
L-9-17	514614	279999	0.30	1.5133	0.30	0.00072	0.010	0.110	37.00	23.99	1.542	1.4770	2.85	892.35	792.35
L-9-18	514513	279999	0.30	1.5904	0.30	0.00256	0.009	0.140	131.21	34.65	3.787	1.6974	0.00	1104.25	1004.25
L-10-01	516201	280228	0.30	2.6256	0.30	0.00101	0.004	0.150	20.92	9.33	2.242	1.2949	2.98	1164.25	1064.25
L-10-02	516093	280238	0.30	5.1104	0.30	0.00108	0.003	0.002	3.12	1.33	2.340	1.3672	2.85	981.73	881.73
L-10-03	516004	280251	0.30	2.4655	0.30	0.00198	0.007	0.002	3.29	4.44	0.741	1.4966	3.08	1098.25	998.25
L-10-17	514575	280248	0.30	2.5168	0.30	0.00000	0.008	0.002	25.28	17.77	1.423	1.7945	2.81	1001.13	901.13
L-10-18	514469	280252	0.30	2.1653	0.30	0.00045	0.010	0.140	48.08	20.88	2.303	1.3932	3.61	970.74	870.74
L1-P2=PG-7	514440	281995	0.30	190.0	0.30	0.00000	0.000	0.000	9.07	1.78	5.103	-0.9378	3.53	0.00	-100.00
L1-P4	515419	282113	0.30	20.0	0.30	0.00000	0.400	0.000	83.05	9.33	8.903	0.9286	3.55	0.00	-100.00
L1-P5	516199	281956	0.30	180.0	0.30	0.00000	0.400	0.000	20.52	3.11	6.598	0.0335	3.44	0.00	-100.00
L1-P6	516543	282138	0.30	140.0	0.30	0.00000	0.000	0.000	22.10	3.11	7.108	0.0042	3.14	0.00	-100.00
L2-P3	515037	281629	0.30	250.0	0.30	0.00000	0.400	0.000	60.04	16.44	3.653	-0.0883	3.63	0.00	-100.00
L3-P3	514827	280991	0.30	370.0	0.30	0.00000	0.400	0.000	87.37	19.99	4.371	1.1357	3.45	0.00	-100.00
L3-P4	515463	280996	0.30	160.0	0.30	0.00000	0.300	0.000	55.83	4.89	11.426	1.0771	3.40	0.00	-100.00
L3-P5	515976	281007	0.30	120.0	0.30	0.00000	0.300	0.000	58.02	9.77	5.937	-0.2058	3.51	0.00	-100.00
L3-P6	516516	280997	0.30	170.0	0.30	0.00000	0.000	0.000	43.67	11.99	3.641	-0.1894	3.86	0.00	-100.00
L4-P2	514536	280477	0.30	80.0	0.30	0.00000	0.000	0.000	71.06	31.09	2.285	0.0400	3.34	0.00	-100.00
L4-P3	514796	280643	0.30	230.0	0.30	0.00000	0.000	0.000	70.88	10.66	6.648	1.1250	3.70	0.00	-100.00
L4-P4	515364	280624	0.30	300.0	0.30	0.00000	0.300	0.000	52.41	11.55	4.538	1.0361	3.30	0.00	-100.00
L4-P5	515864	280607	0.30	260.0	0.30	0.00000	0.300	0.000	51.12	4.89	10.461	0.9663	3.67	0.00	-100.00
L4-P6	516424	280579	0.30	320.0	0.30	0.00000	0.000	0.000	29.03	5.33	5.447	0.7961	3.59	0.00	-100.00
L5-P2	514537	280020	0.30	220.0	0.30	0.00000	0.400	0.000	46.41	15.99	2.902	0.2535	3.36	0.00	-100.00
L5-P3	514774	280131	0.30	350.0	0.30	0.00000	0.400	0.000	98.89	7.55	13.096	1.2278	3.34	0.00	-100.00
L5-P4	515282	280128	0.30	300.0	0.30	0.00000	0.000	0.000	53.27	6.66	7.995	1.0824	3.52	0.00	-100.00
L5-P5	515841	280117	0.30	210.0	0.30	0.00000	0.300	0.000	0.00	0.00	0.000	0.6552	3.17	0.00	-100.00
L5-P6	516581	279926	0.30	210.0	0.30	0.00000	0.400	0.000	50.46	8.88	5.680	0.0723	3.28	0.00	-100.00
L6-P2	514593	279620	0.30	290.0	0.30	0.00000	0.300	0.000	143.62	19.99	7.185	0.8005	3.57	0.00	-100.00
L6-P3	514730	279605	0.30	280.0	0.30	0.00000	0.300	0.000	50.34	7.55	6.666	0.8934	3.55	0.00	-100.00
L6-P4	515298	279615	0.30	290.0	0.30	0.00000	0.400	0.000	125.11	6.66	18.776	0.9713	3.56	0.00	-100.00
L6-P5	516223	279454	0.30	280.0	0.30	0.00000	0.300	0.000	42.96	8.88	4.836	0.0109	3.30	0.00	-100.00
L6-P6	516555	279459	0.30	330.0	0.30	0.00000	0.000	0.000	25.66	1.78	14.441	0.1088	3.20	0.00	-100.00
L7-P2	514570	279030	0.30	200.0	0.30	0.00000	0.000	0.000	113.01	11.99	9.423	-0.1111	3.46	0.00	-100.00
L7-P3	514720	279098	0.30	380.0	0.30	0.00000	0.000	0.000	100.35	13.99	7.172	0.9237	3.75	0.00	-100.00
L7-P4	515515	279107	0.30	230.0	0.30	0.00000	0.400	0.000	62.95	6.66	9.448	1.5137	3.59	0.00	-100.00
L7-P5	516001	279042	0.30	250.0	0.30	0.00000	0.400	0.000	74.32	11.55	6.435	0.0355	3.79	0.00	-100.00
L7-P6	516601	278984	0.30	450.0	0.30	0.00000	0.000	0.000	54.09	23.54	2.297	0.0154	3.79	0.00	-100.00

Tabla 7.

AÑO 2007

ID	Coordenadas		Flujo CO ₂		Flujo H ₂ S		Hg	H ₂ S	H₂S Torón		Relación				۸ LI
	Х	Y	к	g/m² día	к	g/m² día	mg/m₃	ppm	pCi/L	pCi/L	Torón/Radón	ДПС		п2	∆ ⊓ 2
L8-P1	513981	278524	0.30	300.0	0.30	0.00000	0.300	0.000	60.94	5.33	11.432	0.6836	3.46	0.00	-100.00
L8-P2	514507	278512	0.30	170.0	0.30	0.00000	0.400	0.000	230.62	24.43	9.440	0.4197	3.23	0.00	-100.00
L8-P3	515021	278496	0.30	210.0	0.30	0.00000	0.000	0.000	79.82	14.21	5.616	-0.1977	3.64	0.00	-100.00
L8-P4	515331	278247	0.30	90.0	0.30	0.00000	0.300	0.000	55.49	23.54	2.357	0.2019	4.08	0.00	-100.00
L8-P5	516190	278087	0.30	60.0	0.30	0.00000	0.000	0.000	123.45	60.41	2.043	0.4646	3.60	0.00	-100.00
L8-P6	516286	278549	0.30	200.0	0.30	0.00000	0.000	0.000	79.12	27.54	2.873	-0.1078	3.38	0.00	-100.00
L9-P2	514536	278016	0.30	280.0	0.30	0.00000	0.000	0.000	77.52	32.43	2.390	1.0429	0.00	0.00	-100.00
L9-P3	514809	278048	0.30	220.0	0.30	0.00000	0.500	0.000	108.53	14.66	7.403	-5.2400	3.63	0.00	-100.00
L9-P4	515361	278224	0.30	240.0	0.30	0.00000	0.000	0.000	30.49	12.44	2.452	0.9318	3.27	0.00	-100.00
L9-P5	515848	278222	0.30	240.0	0.30	0.00000	0.300	0.000	84.90	10.22	8.310	1.0157	3.81	0.00	-100.00
L9-P6	516392	278216	0.30	120.0	0.30	0.00000	0.000	0.000	87.29	10.66	8.188	1.1350	3.36	0.00	-100.00
L10-P2	514496	277503	0.30	420.0	0.30	0.00000	0.000	0.000	173.70	18.21	9.537	0.9830	3.45	0.00	-100.00
L10-P3	514833	277556	0.30	190.0	0.30	0.00000	0.000	0.000	72.99	21.32	3.423	-0.1807	3.52	0.00	-100.00
L10-P4	515368	277711	0.30	30.0	0.30	0.00000	0.000	0.000	138.37	29.76	4.649	0.3488	2.87	0.00	-100.00
L10-P5	515947	277728	0.30	230.0	0.30	0.00000	0.000	0.000	7.03	3.11	2.261	0.3473	3.78	0.00	-100.00
L10-P6	516431	277535	0.30	180.0	0.30	0.00000	0.300	0.000	24.82	9.33	2.661	1.0322	3.13	0.00	-100.00
L11-P2	514485	277088	0.30	100.0	0.30	0.00000	0.300	0.000	34.29	15.99	2.144	0.3225	3.06	0.00	-100.00
L12-P2	514483	276539	0.30	160.0	0.30	0.00000	0.000	0.000	17.48	8.00	2.186	0.2495	3.31	0.00	-100.00
L12-P3	514885	276531	0.30	140.0	0.30	0.00000	0.400	0.000	464.74	9.77	47.555	0.3544	3.44	0.00	-100.00
L12-P4	515595	276578	0.30	190.0	0.30	0.00000	0.300	0.000	129.76	31.09	4.173	-0.2268	3.45	0.00	-100.00
L12-P5	516022	276762	0.30	60.0	0.30	0.00000	0.000	0.000	1.17	0.89	1.317	0.4749	2.72	0.00	-100.00
L12-P6	516540	276515	0.30	10.0	0.30	0.00000	0.300	0.000	42.87	7.55	5.677	-0.0542	3.23	0.00	-100.00
L13-P2	514435	276040	0.30	50.0	0.30	0.00000	0.500	0.000	251.42	59.30	4.240	0.0714	3.14	0.00	-100.00
L13-P3	514962	276045	0.30	100.0	0.30	0.00000	0.400	0.000	240.43	39.09	6.151	0.4584	3.43	0.00	-100.00
L13-P4	515457	275996	0.30	30.0	0.30	0.00000	0.400	0.000	98.71	19.55	5.051	0.0907	3.26	0.00	-100.00
L13-P5	516061	276377	0.30	80.0	0.30	0.00000	0.000	0.000	11.41	1.33	8.565	0.3809	3.51	0.00	-100.00
L13-P6	516552	276010	0.30	70.0	0.30	0.00000	0.000	0.000	186.50	46.64	3.998	0.1720	3.16	0.00	-100.00
PG-3	516410	282969	0.30	170.0	0.30	0.00000	0.400	0.000	17.21	9.77	1.761	-0.0205	3.19	0.00	-100.00
PG-4	515784	282971	0.30	110.0	0.30	0.00000	0.400	0.000	98.69	14.21	6.943	0.1297	3.26	0.00	-100.00
PG-5	515224	282691	0.30	220.0	0.30	0.00000	0.000	0.000	64.57	18.21	3.545	0.0268	2.94	0.00	-100.00
PG-6	514728	282496	0.30	180.0	0.30	0.00000	0.000	0.000	567.04	45.31	12.515	0.0663	3.51	0.00	-100.00
PG-8	514786	281117	0.30	180.0	0.30	0.00000	0.400	0.000	63.77	11.99	5.317	0.0711	2.80	0.00	-100.00
PG-9	514620	280605	0.30	210.0	0.30	0.00000	0.000	0.000	0.00	-1.33	0.000	0.0001	3.35	0.00	-100.00
PG-24	514873	282880	0.30	190.0	0.30	0.00000	0.000	0.000	60.02	19.99	3.002	0.1012	3.99	0.00	-100.00
P-FLF1	516125	275096	0.30	0.0	0.30	0.00000	0.400	0.000	159.50	95.06	1.678	0.3012	3.93	0.00	-100.00
P-FLF2	516124	275096	0.30	0.0	0.30	0.00000	0.400	0.000	118.46	43.98	2.694	0.5545	3.88	0.00	-100.00
P-FLF3	516124	275097	0.30	0.0	0.30	0.00000	0.400	0.000	84.51	47.97	1.762	0.5550	4.04	0.00	-100.00
P-FLF4	516224	275097	0.30	0.0	0.30	0.00000	0.400	0.000	335.14	110.61	3.030	0.1376	0.00	0.00	-100.00

Tabla 8.

AÑO 2014

ID	Coord	enadas Flujo CO ₂		CO ₂	Flujo H ₂ S			Hg	H ₂ S Torón		Radón	Relación			ц	ΔH_2	
	х	Y	ppm/s	κ	g/m² día	ppm/s	к	g/m² día	mg/m₃	ppm	pCi/L	pCi/L	Torón/Radón	Дпе		п2	∆ ⊓ 2
C9	517497	279501	3.662	0.30	48.34	0.0027	0.30	0.0275	0.000	0.0020	47.14	2.221	21.22	0.69	2.75	138.82	38.82
C10	517749	279501	5.228	0.30	69.01	0.0037	0.30	0.0377	0.000	0.0010	4.95	3.554	1.39	0.30	2.68	148.38	48.38
D9	517509	279251	0.340	0.30	4.49	0.0008	0.30	0.0086	0.000	0.0030	30.40	4.442	6.84	0.62	2.74	150.36	50.36
E9	517504	279999	6.419	0.30	84.73	0.0018	0.30	0.0184	0.000	0.0020	78.44	5.775	13.58	0.46	2.74	137.79	37.79
F8	517249	278753	2.820	0.30	37.22	0.0011	0.30	0.0112	0.000	0.0010	7.07	5.331	1.33	0.48	2.77	150.24	50.24
G8	517249	278499	3.630	0.30	47.92	0.0026	0.30	0.0265	0.000	0.0010	-51.14	4.886	-10.47	0.59	2.74	140.82	40.82
A12	518280	279970	2.213	0.30	29.21	0.0021	0.30	0.0214	0.005	0.0010	11.13	6.219	1.79	0.68	2.67	151.01	51.01
B12	518253	279740	4.485	0.30	59.20	0.0014	0.30	0.0143	0.000	0.0000	6.47	3.998	1.62	0.58	2.66	124.79	24.79
C12	518251	279510	4.566	0.30	60.27	0.0007	0.30	0.0068	0.004	0.0010	15.51	6.219	2.49	0.69	2.74	139.34	39.34
D12	518251	279248	0.950	0.30	12.54	0.0008	0.30	0.0084	0.006	0.0010	3.23	2.665	1.21	0.68	2.68	142.49	42.49
E12	518249	279003	2.817	0.30	37.18	0.0011	0.30	0.0112	0.005	0.0000	11.24	4.442	2.53	0.63	2.73	141.80	41.80
E11	518007	278997	6.643	0.30	87.69	0.0014	0.30	0.0143	0.004	0.0010	12.16	6.219	1.96	0.64	2.68	141.25	41.25
D11	517999	279251	1.781	0.30	23.51	0.0035	0.30	0.0357	0.004	0.0020	3.23	2.665	1.21	0.59	2.67	141.46	41.46
C11	518002	279507	3.700	0.30	48.84	0.0053	0.30	0.0541	0.006	0.0030	1.20	2.221	0.54	0.54	2.69	142.08	42.08
B11	517985	279750	3.996	0.30	52.75	0.0120	0.30	0.1224	0.003	0.0030	21.27	8.884	2.39	0.45	2.70	137.37	37.37
A11	518001	279985	2.746	0.30	36.25	0.0029	0.30	0.0296	0.000	0.0030	4.71	2.665	1.77	0.56	2.73	138.57	38.57
A10	517755	280000	1.797	0.30	23.72	0.0210	0.30	0.2142	0.000	0.0010	11.69	7.996	1.46	0.83	2.73	131.61	31.61
B10	517750	279751	0.290	0.30	3.83	0.0009	0.30	0.0095	0.000	0.0020	5.52	3.998	1.38	0.69	2.77	149.91	49.91
D10	517745	279252	1.380	0.30	18.22	0.0012	0.30	0.0122	0.000	0.0010	3.97	2.221	1.79	0.75	2.68	145.69	45.69
A13	518506	279988	1.438	0.30	18.98	0.0063	0.30	0.0643	0.008	0.0000	11.84	4.442	2.66	1.00	2.69	135.93	35.93
A14	518752	279996	3.389	0.30	44.73	0.0035	0.30	0.0357	0.009	0.0010	2.24	3.554	0.63	0.84	2.74	138.29	38.29
B14	518746	279776	3.253	0.30	42.94	0.0015	0.30	0.0153	0.008	0.0000	9.40	4.886	1.92	1.38	2.67	139.02	39.02
B15	519005	279748	5.430	0.30	71.68	0.0077	0.30	0.0785	0.007	0.0000	4.44	4.442	1.00	0.80	2.69	141.50	41.50
A15	519005	280005	1.513	0.30	19.97	0.0100	0.30	0.1020	0.006	0.0010	10.55	6.219	1.70	1.09	2.66	153.14	53.14
C15	519011	279512	2.823	0.30	37.26	0.0041	0.30	0.0418	0.007	0.0020	3.60	4.442	0.81	0.70	2.75	134.18	34.18
C14	518767	279471	5.429	0.30	71.66	0.0029	0.30	0.0296	0.006	0.0010	8.07	4.442	1.82	0.56	2.66	149.21	49.21
C13	518505	279515	1.734	0.30	22.89	0.0140	0.30	0.1428	0.004	0.0010	1.27	0.888	1.43	0.91	2.68	153.67	53.67
B13	518501	279745	1.752	0.30	23.13	0.0180	0.30	0.1836	0.004	0.0010	4.46	0.888	5.02	0.91	2.64	147.24	47.24
F15	518999	278755	11.345	0.30	149.75	0.0096	0.30	0.0979	0.004	0.0000	13.22	6.219	2.13	1.03	2.80	144.17	44.17
F14	518742	278738	3.424	0.30	45.20	0.0130	0.30	0.1326	0.003	0.0020	30.49	5.775	5.28	0.80	2.72	145.47	45.47
E15	519003	278997	2.820	0.30	37.22	0.0028	0.30	0.0286	0.021	0.0030	7.85	4.442	1.77	0.79	2.66	137.05	37.05
E14	518732	278980	3.331	0.30	43.97	0.0026	0.30	0.0265	0.003	0.0020	5.18	3.109	1.67	1.25	2.67	140.10	40.10
D14	518742	279250	5.454	0.30	71.99	0.0018	0.30	0.0184	0.000	0.0020	6.23	7.996	0.78	0.83	2.75	141.99	41.99
D13	518504	279245	1.798	0.30	23.73	0.0013	0.30	0.0133	0.009	0.0010	8.87	4.886	1.82	0.82	2.68	129.41	29.41
E13	518459	278999	1.879	0.30	24.80	0.0065	0.30	0.0663	0.013	0.0010	32.85	2.221	14.79	0.59	2.69	131.41	31.41
F13	518446	278753	1.681	0.30	22.19	0.0098	0.30	0.1000	0.011	0.0000	3.47	2.221	1.56	1.25	2.66	136.74	36.74
G13	518490	278503	3.759	0.30	49.62	0.0110	0.30	0.1122	0.009	0.0000	4.25	5.331	0.80	1.17	2.67	147.78	47.78
G12	518249	278506	2.819	0.30	37.21	0.0017	0.30	0.0173	0.008	0.0010	3.82	5.331	0.72	0.92	2.72	143.47	43.47
F12	518249	278750	3.611	0.30	47.67	0.0033	0.30	0.0337	0.007	0.0010	6.17	3.998	1.54	0.76	2.67	131.56	31.56

Tabla 9.

AÑO 2014

ID	Coord	oordenadas Fl		lujo CO₂		Flujo H ₂ S		Hg	H ₂ S Torón Radón		Radón	Relación			U	۸ L I	
	х	Y	ppm/s	к	g/m² día	ppm/s	к	g/m² día	mg/m₃	ppm	pCi/L	pCi/L	Torón/Radón	ДПе		п2	Δ Π 2
F11	518001	278753	5.292	0.30	69.85	0.0025	0.30	0.0255	0.007	0.0010	1.68	0.888	1.895	1.432	2.666	152.26	52.26
F10	517751	278744	2.440	0.30	32.21	0.0023	0.30	0.0235	0.006	0.0010	7.29	2.221	3.281	1.050	2.657	144.01	44.01
F9	517502	278748	5.492	0.30	72.49	0.0120	0.30	0.1224	0.006	0.0010	2.43	2.221	1.096	1.084	2.698	139.68	39.68
E10	517752	278994	3.769	0.30	49.75	0.0200	0.30	0.2040	0.007	0.0030	3.45	1.777	1.941	0.633	2.670	137.55	37.55
L9	517496	277250	16.221	0.30	214.12	0.0036	0.30	0.0367	0.007	0.0000	21.07	12.438	1.694	0.510	2.680	130.84	30.84
L10	517748	277243	6.438	0.30	84.98	0.0045	0.30	0.0459	0.009	0.0010	9.45	6.663	1.418	0.646	2.698	130.78	30.78
19	517507	278005	1.881	0.30	24.83	0.0082	0.30	0.0836	0.008	0.0010	38.68	16.880	2.291	0.598	2.672	125.24	25.24
H9	517500	278261	1.881	0.30	24.83	0.0079	0.30	0.0806	0.004	0.0000	123.11	76.849	1.602	0.548	2.710	136.11	36.11
G7	517000	278496	1.975	0.30	26.07	0.0008	0.30	0.0081	0.006	0.0000	99.31	54.638	1.818	0.535	2.739	139.26	39.26
J9	517495	277758	6.903	0.30	91.12	0.0180	0.30	0.1836	0.003	0.0000	78.12	44.865	1.741	0.574	2.702	127.84	27.84
J8	517273	277789	32.416	0.30	427.89	0.0068	0.30	0.0694	0.004	0.0010	69.03	35.981	1.918	0.705	2.699	131.65	31.65
18	517251	278004	2.526	0.30	33.34	0.0054	0.30	0.0551	0.004	0.0010	70.77	36.870	1.919	0.557	2.670	150.92	50.92
17	517004	278007	6.738	0.30	88.94	0.0054	0.30	0.0551	0.004	0.0000	66.29	34.204	1.938	0.629	2.656	134.17	34.17
H8	517251	278252	2.426	0.30	32.02	0.0025	0.30	0.0255	0.003	0.0000	47.14	30.206	1.561	0.750	2.753	152.05	52.05
H7	517000	278242	5.639	0.30	74.43	0.0066	0.30	0.0673	0.003	0.0010	83.47	30.206	2.763	0.642	2.712	133.84	33.84
F5	516495	278754	2.747	0.30	36.26	0.0018	0.30	0.0184	0.000	0.0010	59.59	42.200	1.412	0.821	2.735	131.56	31.56
G5	516456	278500	8.467	0.30	111.76	0.0040	0.30	0.0408	0.000	0.0010	50.24	33.316	1.508	0.610	2.740	128.77	28.77
G6	516716	278498	1.858	0.30	24.53	0.0180	0.30	0.1836	0.000	0.0020	83.15	29.318	2.836	0.784	2.671	130.18	30.18
H5	516498	278245	0.910	0.30	12.01	0.0160	0.30	0.1632	0.000	0.0010	53.23	22.211	2.397	0.596	2.751	137.35	37.35
H6	516749	278251	2.473	0.30	32.64	0.0160	0.30	0.1632	0.000	0.0020	59.20	27.541	2.150	0.668	2.809	133.00	33.00
15	516503	277998	1.870	0.30	24.68	0.0051	0.30	0.0520	0.000	0.0020	75.27	25.764	2.922	0.391	2.749	125.86	25.86
J5	516502	277751	3.979	0.30	52.52	0.0020	0.30	0.0204	0.000	0.0020	94.43	34.648	2.725	0.540	2.729	146.02	46.02
J6	516754	277752	1.812	0.30	23.92	0.0059	0.30	0.0602	0.000	0.0020	49.77	29.762	1.672	0.609	2.718	135.72	35.72
J7	516915	277750	2.512	0.30	33.16	0.0099	0.30	0.1010	0.000	0.0010	58.09	27.541	2.109	0.534	2.695	134.25	34.25
16	516752	278002	3.917	0.30	51.70	0.0012	0.30	0.0122	0.000	0.0020	31.42	21.766	1.444	0.736	2.702	127.93	27.93
E5	516502	279003	5.656	0.30	74.66	0.0130	0.30	0.1326	0.000	0.0000	49.52	21.766	2.275	0.864	2.689	131.11	31.11
D5	516500	279247	3.620	0.30	47.78	0.0130	0.30	0.1326	0.000	0.0020	37.34	24.876	1.501	0.638	2.690	130.17	30.17
O5	516558	276502	2.986	0.30	39.42	0.0005	0.30	0.0047	0.013	0.0000	16.80	7.996	2.101	0.477	2.637	134.21	34.21
06	516736	276523	2.843	0.30	37.53	0.0100	0.30	0.1020	0.009	0.0010	15.51	5.331	2.909	0.394	2.665	134.07	34.07
07	516988	276498	1.854	0.30	24.47	0.0150	0.30	0.1530	0.009	0.0000	3.11	3.554	0.874	0.395	2.705	143.60	43.60
N7	516973	276729	4.525	0.30	59.73	0.0032	0.30	0.0326	0.006	0.0010	4.43	4.442	0.997	0.379	2.694	147.89	47.89
N6	516744	276748	18.492	0.30	244.09	0.0009	0.30	0.0087	0.007	0.0000	3.06	2.221	1.376	0.431	2.746	135.04	35.04
N5	516504	276751	3.176	0.30	41.92	0.0066	0.30	0.0673	0.007	0.0030	4.77	3.998	1.194	0.255	2.696	135.11	35.11
M5	516506	277001	4.331	0.30	57.17	0.0038	0.30	0.0388	0.006	0.0000	1.64	0.888	1.846	0.336	2.670	138.33	38.33
M6	516746	276989	3.208	0.30	42.35	0.0013	0.30	0.0133	0.004	0.0000	-12.90	2.221	-5.808	0.198	2.695	127.80	27.80
F6	516749	278749	2.414	0.30	31.86	0.0055	0.30	0.0561	0.000	0.0010	3.37	1.333	2.529	0.807	2.810	133.74	33.74
F7	516999	278750	6.307	0.30	83.25	0.0017	0.30	0.0173	0.000	0.0000	3.14	5.331	0.590	0.637	2.933	126.94	26.94
E8	517251	279000	2.312	0.30	30.52	0.0120	0.30	0.1224	0.009	0.0010	-64.49	1.777	-36.294	0.913	2.735	135.06	35.06
E7	517010	279000	3.427	0.30	45.24	0.0019	0.30	0.0194	0.004	0.0000	6.99	2.665	2.623	0.941	2.732	135.25	35.25

Tabla 10.

AÑO 2014

ID	Coord	enadas	Flujo C		CO ₂	Flujo H₂S		Hg	H ₂ S	Torón	Radón	Relación	n ∆He Log CO		ц	ΔH_2	
	Х	Y	ppm/s	К	g/m² día	ppm/s	К	g/m² día	mg/m ₃	ppm	pCi/L	pCi/L	Torón/Radón	Дпе		п2	<u>⊿п</u> 2
D7	517000	279250	1.132	0.30	14.94	0.0300	0.30	0.3060	0.003	0.0000	3.11	2.665	1.167	0.940	2.809	132.96	32.96
D8	517250	279250	2.560	0.30	33.79	0.0048	0.30	0.0490	0.000	0.0010	29.01	5.775	5.024	0.480	2.751	138.79	38.79
C8	517249	279496	5.635	0.30	74.38	0.0022	0.30	0.0224	0.000	0.0010	-2.42	-0.444	5.452	0.661	2.844	146.31	46.31
B8	517252	279748	0.870	0.30	11.48	0.0160	0.30	0.1632	0.000	0.0010	0.18	0.444	0.403	0.576	2.796	125.41	25.41
A8	517253	280000	2.824	0.30	37.28	0.0010	0.30	0.0101	0.000	0.0000	47.61	4.442	10.719	1.115	2.779	158.16	58.16
l10	517753	278001	10.399	0.30	137.27	0.0083	0.30	0.0847	0.010	0.0000	2.03	4.442	0.456	0.642	2.776	142.40	42.40
O10	517745	276494	1.931	0.30	25.49	0.0024	0.30	0.0245	0.013	0.0000	3.75	0.888	4.217	0.533	2.734	130.85	30.85
O9	517494	276500	3.385	0.30	44.68	0.0011	0.30	0.0112	0.012	0.0000	0.38	0.444	0.852	0.543	2.689	139.77	39.77
08	517305	276371	9.167	0.30	121.00	0.0031	0.30	0.0316	0.010	0.0000	0.22	0.444	0.488	0.461	2.781	130.77	30.77
N9	517499	276752	0.570	0.30	7.52	0.0013	0.30	0.0133	0.010	0.0010	50.48	1.777	28.412	0.620	2.656	127.02	27.02
N11	517982	276755	5.045	0.30	66.59	0.0047	0.30	0.0479	0.009	0.0000	1.22	2.665	0.456	0.784	2.745	132.44	32.44
O11	518004	276485	16.678	0.30	220.15	0.0037	0.30	0.0377	0.009	0.0010	1.18	0.888	1.326	0.501	2.769	136.54	36.54
012	518259	276465	2.647	0.30	34.94	0.0097	0.30	0.0989	0.007	0.0000	8.36	3.109	2.689	0.515	2.789	134.77	34.77
N10	517754	276758	12.505	0.30	165.07	0.0020	0.30	0.0204	0.008	0.0000	1.04	0.888	1.167	0.717	2.699	129.75	29.75
M9	517497	276989	4.578	0.30	60.43	0.0075	0.30	0.0765	0.005	0.0010	1.25	2.221	0.565	0.836	2.961	144.23	44.23
M11	518002	276989	2.703	0.30	35.68	0.0055	0.30	0.0561	0.005	0.0010	1.51	1.777	0.852	0.566	2.790	153.44	53.44
M10	517749	277007	1.164	0.30	15.36	0.0036	0.30	0.0367	0.004	0.0010	1.12	0.444	2.529	0.787	2.817	155.29	55.29
G9	517502	278486	3.552	0.30	46.89	0.0084	0.30	0.0857	0.005	0.0010	-0.38	-0.444	0.852	0.965	2.844	130.26	30.26
J10	517750	277748	59.751	0.30	788.71	0.0082	0.30	0.0836	0.019	0.0000	1.09	0.888	1.230	1.384	2.915	148.85	48.85
K10	517760	277489	4.150	0.30	54.78	0.0069	0.30	0.0704	0.015	0.0010	8.22	3.998	2.055	0.733	2.902	144.89	44.89
K11	518003	277499	6.660	0.30	87.91	0.0076	0.30	0.0775	0.016	0.0000	5.66	4.442	1.275	0.573	2.778	133.75	33.75
L11	518057	277222	20.158	0.30	266.09	0.0019	0.30	0.0194	0.014	0.0000	3.65	3.998	0.912	0.990	2.763	121.95	21.95
L12	518268	277270	54.546	0.30	720.01	0.0024	0.30	0.0245	0.012	0.0000	17.89	7.552	2.369	0.670	2.825	145.82	45.82
M12	518252	276994	16.494	0.30	217.72	0.0056	0.30	0.0571	0.012	0.0010	24.07	5.775	4.168	0.852	3.038	144.79	44.79
N12	518197	276800	33.825	0.30	446.49	0.0010	0.30	0.0102	0.012	0.0000	10.91	6.219	1.754	0.822	2.889	140.18	40.18
l11	518002	277999	2.046	0.30	27.01	0.0100	0.30	0.1020	0.010	0.0000	11.78	8.884	1.326	0.907	2.858	150.13	50.13
J11	517998	277766	5.537	0.30	73.09	0.0048	0.30	0.0490	0.008	0.0000	33.89	23.987	1.413	1.068	2.809	137.68	37.68
l12	518254	277997	4.883	0.30	64.46	0.0043	0.30	0.0439	0.008	0.0000	23.78	13.771	1.727	0.642	2.763	134.83	34.83
A7	517008	280008	21.611	0.30	285.27	0.0100	0.30	0.1020	0.000	0.0000	18.27	7.552	2.419	1.019	2.982	134.37	34.37
B7	516993	279750	10.209	0.30	134.76	0.0062	0.30	0.0632	0.000	0.0000	16.57	6.219	2.665	1.330	2.956	134.69	34.69
B6	516750	279750	3.769	0.30	49.75	0.0024	0.30	0.0245	0.000	0.0010	39.29	15.103	2.601	0.981	2.897	124.09	24.09
C6	516747	279494	3.000	0.30	39.60	0.0063	0.30	0.0643	0.000	0.0040	8.73	9.773	0.894	1.255	2.883	131.86	31.86
D6	516751	279252	4.812	0.30	63.52	0.0041	0.30	0.0418	0.000	0.0010	5.49	3.998	1.372	1.430	3.004	145.83	45.83
E6	516750	279002	3.358	0.30	44.33	0.1100	0.30	1.1220	0.000	0.0010	5.93	5.331	1.113	1.290	2.797	131.28	31.28
C7	517006	279500	6.202	0.30	81.87	0.0084	0.30	0.0857	0.003	0.0020	17.26	7.107	2.428	1.403	3.026	126.97	26.97
A5	516501	279995	4.098	0.30	54.09	0.0015	0.30	0.0153	0.004	0.0010	6.68	5.775	1.158	0.949	2.828	124.78	24.78
B5	516494	279736	2.486	0.30	32.82	0.0048	0.30	0.0490	0.003	0.0010	14.14	5.775	2.448	1.269	2.951	136.65	36.65
C5	516501	279501	3.716	0.30	49.05	0.0053	0.30	0.0541	0.004	0.0020	6.79	6.219	1.092	1.343	2.818	125.42	25.42
A4	516249	280000	3.792	0.30	50.05	0.0032	0.30	0.0326	0.017	0.0000	9.44	9.328	1.012	1.541	2.895	157.90	57.90

Tabla 11.

AÑO 2014

ID	Coord	enadas	Flujo CO ₂		Flujo H ₂ S			Hg	H ₂ S	Torón	Radón	Relación			U	ΔH ₂	
	Х	Y	ppm/s	к	g/m² día	ppm/s	κ	g/m² día	mg/m₃	ppm	pCi/L	pCi/L	Torón/Radón	Дпе		Π2	ΔΠ2
A3	516004	280005	4.816	0.30	63.57	0.0032	0.30	0.0326	0.015	0.0000	4.92	5.775	0.852	1.390	2.863	134.77	34.77
A2	515750	279997	3.738	0.30	49.34	0.0022	0.30	0.0224	0.015	0.0010	11.53	5.775	1.996	0.694	2.827	123.79	23.79
B2	515751	279752	1.451	0.30	19.15	0.0053	0.30	0.0541	0.030	0.0010	7.85	4.442	1.768	1.597	3.035	140.48	40.48
B3	516006	279752	4.119	0.30	54.37	0.0052	0.30	0.0530	0.018	0.0010	2.42	2.221	1.092	1.487	2.943	154.18	54.18
B4	516251	279751	2.360	0.30	31.15	0.0011	0.30	0.0112	0.012	0.0010	6.92	2.665	2.596	1.429	2.931	137.35	37.35
C4	516249	279502	1.539	0.30	20.31	0.0023	0.30	0.0235	0.009	0.0010	28.71	8.440	3.402	1.160	2.882	140.76	40.76
C3	516000	279499	2.612	0.30	34.48	0.0026	0.30	0.0265	0.012	0.0000	10.17	8.440	1.205	1.350	2.902	147.18	47.18
C2	515747	279497	3.003	0.30	39.64	0.0034	0.30	0.0347	0.008	0.0010	17.10	6.663	2.566	1.451	2.822	135.79	35.79
D3	516002	279249	0.610	0.30	8.05	0.0023	0.30	0.0235	0.006	0.0010	4.31	3.998	1.078	1.527	2.739	148.45	48.45
D4	516254	279248	1.838	0.30	24.26	0.0026	0.30	0.0265	0.007	0.0000	6.58	4.442	1.480	1.579	2.992	146.45	46.45
K9	517436	277502	6.940	0.30	91.61	0.0110	0.30	0.1122	0.007	0.0000	4.43	3.554	1.247	0.984	2.777	133.81	33.81
E4	516248	279032	0.920	0.30	12.14	0.0250	0.30	0.2550	0.007	0.0010	6.85	6.663	1.028	0.963	2.960	141.92	41.92
E3	515998	278995	5.663	0.30	74.75	0.0160	0.30	0.1632	0.024	0.0040	19.52	5.775	3.380	1.132	2.756	138.08	38.08
F3	516003	278749	5.537	0.30	73.09	0.0130	0.30	0.1326	0.007	0.0010	11.52	2.221	5.188	0.802	2.796	137.64	37.64
H4	516247	278236	2.249	0.30	29.69	0.0026	0.30	0.0265	0.004	0.0010	8.36	5.331	1.569	1.280	3.276	142.93	42.93
H11	517997	278248	11.674	0.30	154.10	0.0092	0.30	0.0938	0.025	0.0010	57.95	27.541	2.104	1.303	2.769	148.83	48.83
G10	517774	278474	2.100	0.30	27.72	0.0035	0.30	0.0357	0.011	0.0000	119.34	216.331	0.552	1.456	2.814	154.30	54.30
H10	517750	278265	6.383	0.30	84.26	0.0021	0.30	0.0214	0.010	0.0000	13.53	3.554	3.808	0.883	2.756	130.87	30.87
H12	518229	278230	51.562	0.30	680.62	0.0130	0.30	0.1326	0.009	0.0020	602.56	326.495	1.846	1.494	3.338	145.35	45.35
113	518499	278000	3.770	0.30	49.76	0.0220	0.30	0.2244	0.007	0.0000	194.88	118.160	1.649	0.231	2.732	127.43	27.43
J13	518497	277742	4.376	0.30	57.76	0.0110	0.30	0.1122	0.008	0.0010	106.23	41.312	2.571	0.443	2.951	132.81	32.81
J12	518248	277762	1.839	0.30	24.27	0.0018	0.30	0.0184	0.000	0.0000	98.38	49.307	1.995	0.913	2.877	130.07	30.07
K12	518241	277504	45.340	0.30	598.49	0.0060	0.30	0.0612	0.007	0.0010	56.11	27.985	2.005	0.940	2.818	133.53	33.53
14	516251	278002	10.104	0.30	133.37	0.0031	0.30	0.0316	0.006	0.0010	37.61	15.103	2.490	1.162	2.762	131.47	31.47
G3	515999	278499	4.628	0.30	61.09	0.0026	0.30	0.0265	0.010	0.0020	17.24	8.440	2.043	1.462	2.878	140.38	40.38
L13	518466	277238	21.592	0.30	285.01	0.0047	0.30	0.0479	0.011	0.0000	1.11	1.777	0.626	0.807	2.702	127.20	27.20
K15	518966	277454	6.268	0.30	82.74	0.0150	0.30	0.1530	0.015	0.0000	35.17	19.101	1.841	1.030	2.769	132.76	32.76
K14	518740	277500	13.106	0.30	173.00	0.0046	0.30	0.0469	0.011	0.0000	20.18	11.549	1.747	1.073	2.981	146.79	46.79
K13	518500	277499	5.734	0.30	75.69	0.0070	0.30	0.0714	0.012	0.0000	37.87	22.211	1.705	1.253	2.769	139.80	39.80
J14	518751	277751	6.462	0.30	85.30	0.0091	0.30	0.0928	0.015	0.0020	52.13	14.659	3.556	1.193	2.873	137.03	37.03
J15	518964	277748	3.874	0.30	51.14	0.0038	0.30	0.0388	0.008	0.0000	45.12	24.432	1.847	1.007	2.828	132.49	32.49
115	518999	277996	3.260	0.30	43.03	0.0025	0.30	0.0255	0.008	0.0010	46.54	21.766	2.138	1.287	2.792	131.94	31.94
l14	518752	277998	11.945	0.30	157.67	0.0081	0.30	0.0826	0.010	0.0010	19.86	14.215	1.397	1.362	2.963	133.12	33.12
H13	518504	278255	3.390	0.30	44.75	0.0083	0.30	0.0847	0.008	0.0010	19.59	19.990	0.980	0.819	2.704	129.79	29.79
H14	518787	278260	8.009	0.30	105.72	0.0066	0.30	0.0673	0.028	0.0030	24.05	11.549	2.083	1.446	2.785	148.80	48.80
H15	519001	278252	4.210	0.30	55.57	0.0074	0.30	0.0755	0.005	0.0010	52.91	17.324	3.054	0.985	2.822	141.27	41.27
O13	518490	276503	1.587	0.30	20.95	0.0010	0.30	0.0102	0.007	0.0000	14.07	8.440	1.667	0.480	2.778	125.74	25.74
N13	518522	276700	46.875	0.30	618.75	0.0180	0.30	0.1836	0.016	0.0010	15.68	7.996	1.961	0.586	2.995	132.60	32.60
014	518747	276503	6.782	0.30	89.52	0.0052	0.30	0.0530	0.014	0.0000	9.53	4.886	1.950	0.434	2.848	125.31	25.31

Tabla 12.

AÑO 2014

ID	Coord	enadas	Flujo CO ₂		:O ₂	Flujo H ₂ S		Hg	H ₂ S	Torón Radón		Relación			ы	۸ LI	
	Х	Y	ppm/s	К	g/m² día	ppm/s	к	g/m² día	mg/m₃	ppm	pCi/L	pCi/L	Torón/Radón	Дпе		п2	∆ ⊓ 2
O15	518990	276493	1.778	0.30	23.47	0.0110	0.30	0.1122	0.012	0.0000	1.92	1.333	1.441	0.637	2.895	123.10	23.10
N15	519003	276737	2.819	0.30	37.21	0.0071	0.30	0.0724	0.011	0.0000	4.04	5.775	0.699	0.449	2.798	129.63	29.63
A1	515497	279995	3.334	0.30	44.01	0.0061	0.30	0.0622	0.012	0.0000	8.83	3.109	2.840	0.595	2.820	124.41	24.41
B1	515499	279751	3.620	0.30	47.78	0.0150	0.30	0.1530	0.013	0.0010	2.83	1.333	2.125	0.714	3.018	131.13	31.13
C1	515502	279504	4.566	0.30	60.27	0.0045	0.30	0.0459	0.015	0.0010	8.26	1.777	4.650	0.656	2.910	127.15	27.15
D2	515748	279249	2.601	0.30	34.33	0.0110	0.30	0.1122	0.015	0.0000	5.66	2.665	2.125	0.929	3.075	128.06	28.06
E2	515741	279009	4.803	0.30	63.40	0.0150	0.30	0.1530	0.012	0.0000	3.03	1.777	1.705	0.623	2.959	125.55	25.55
E1	515500	279000	3.361	0.30	44.37	0.0078	0.30	0.0796	0.009	0.0000	1.86	1.777	1.048	0.659	2.991	132.96	32.96
D1	515502	279257	2.608	0.30	34.43	0.0092	0.30	0.0938	0.008	0.0010	13.23	3.998	3.310	1.062	2.970	129.67	29.67
K7	516998	277503	7.593	0.30	100.23	0.0048	0.30	0.0490	0.010	0.0000	12.11	6.663	1.818	0.286	3.072	118.41	18.41
K8	517170	277498	1.511	0.30	19.95	0.0008	0.30	0.0078	0.015	0.0000	11.58	7.552	1.534	0.762	2.857	128.77	28.77
L8	517160	277250	1.620	0.30	21.38	0.0010	0.30	0.0102	0.013	0.0010	9.86	5.331	1.850	0.702	2.842	125.79	25.79
L7	516998	277254	1.689	0.30	22.29	0.0007	0.30	0.0072	0.010	0.0000	171.53	8.440	20.324	0.540	3.011	132.95	32.95
M8	517235	276974	1.085	0.30	14.32	0.0045	0.30	0.0459	0.012	0.0000	3.81	3.109	1.226	0.288	2.769	131.57	31.57
M7	517016	277000	2.727	0.30	36.00	0.0039	0.30	0.0398	0.007	0.0000	15.06	8.884	1.696	0.523	2.763	126.70	26.70
N8	517239	276750	1.167	0.30	15.40	0.0057	0.30	0.0581	0.011	0.0000	7.95	5.775	1.377	0.309	2.892	124.50	24.50
M1	515480	276981	4.193	0.30	55.35	0.0050	0.30	0.0510	0.008	0.0000	9.58	8.884	1.078	0.970	2.997	133.29	33.29
N1	515498	276754	1.976	0.30	26.08	0.0005	0.30	0.0053	0.010	0.0010	17.94	8.440	2.125	0.863	2.782	135.39	35.39
01	515499	276500	1.692	0.30	22.33	0.0026	0.30	0.0265	0.008	0.0000	5.66	2.221	2.547	0.942	3.019	143.14	43.14
02	515750	276499	5.918	0.30	78.12	0.0023	0.30	0.0235	0.010	0.0000	4.35	3.554	1.224	0.894	2.789	135.15	35.15
03	516001	276502	0.990	0.30	13.07	0.0010	0.30	0.0098	0.010	0.0010	10.81	7.107	1.521	0.781	2.885	153.83	53.83
N4	516220	276730	2.613	0.30	34.49	0.0016	0.30	0.0163	0.012	0.0010	20.94	7.552	2.774	0.658	2.868	148.84	48.84
N3	516000	276749	0.930	0.30	12.28	0.0022	0.30	0.0224	0.011	0.0010	3.11	2.665	1.167	0.905	3.000	155.59	55.59
N2	515748	276753	1.113	0.30	14.69	0.0017	0.30	0.0173	0.005	0.0010	9.59	7.107	1.349	0.485	2.986	131.95	31.95
M3	516004	276997	2.783	0.30	36.74	0.0011	0.30	0.0112	0.006	0.0010	14.81	5.775	2.565	1.038	2.827	157.28	57.28
M2	515748	276996	2.064	0.30	27.24	0.0023	0.30	0.0235	0.004	0.0000	5.90	5.331	1.107	0.599	3.016	138.80	38.80
N14	518750	276754	1.074	0.30	14.18	0.0043	0.30	0.0439	0.017	0.0000	6.41	6.219	1.031	0.973	2.771	135.02	35.02
M14	518785	277001	0.880	0.30	11.62	0.0022	0.30	0.0224	0.015	0.0010	15.10	7.107	2.125	0.990	2.768	146.55	46.55
M15	519001	277003	5.493	0.30	72.51	0.0061	0.30	0.0622	0.012	0.0000	8.32	6.219	1.339	0.613	2.745	147.94	47.94
L15	519080	277240	9.897	0.30	130.64	0.0053	0.30	0.0541	0.01	0.0000	9.96	8.440	1.180	0.557	2.738	129.26	29.26
L16	519250	277245	0.350	0.30	4.62	0.0053	0.30	0.0541	0.01	0.0010	6.25	8.884	0.703	0.619	2.710	126.62	26.62
L17	519465	277260	1.143	0.30	15.09	0.0035	0.30	0.0357	0.004	0.0010	7.01	7.107	0.987	0.619	2.736	126.65	26.65
K17	519507	277495	14.671	0.30	193.66	0.0060	0.30	0.0612	0.009	0.0010	52.10	29.762	1.750	0.652	2.813	131.16	31.16
B9	517502	279754	0.005	0.30	0.06	0.0049	0.30	0.0500	0.008	0.0020	32.11	22.655	1.418	1.175	3.054	136.80	36.80
M4	516206	276990	8.092	0.30	106.81	0.0065	0.30	0.0663	0.009	0.0000	17.45	6.219	2.805	0.424	2.749	136.25	36.25
L3	516000	277254	4.940	0.30	65.21	0.0022	0.30	0.0224	0.013	0.0000	8.68	5.331	1.628	0.482	3.035	138.42	38.42
K4	516248	277498	1.065	0.30	14.06	0.0028	0.30	0.0286	0.013	0.0010	20.05	5.331	3.762	0.597	3.087	147.01	47.01
L4	516230	277270	3.331	0.30	43.97	0.0015	0.30	0.0153	0.009	0.0000	5.48	3.554	1.542	0.228	2.776	138.02	38.02
K3	516004	277500	0.770	0.30	10.16	0.0044	0.30	0.0449	0.010	0.0000	23.99	2.665	9.000	0.614	2.939	141.84	41.84

Tabla 13.

AÑO 2014

ID	Coorde	enadas Flujo CO ₂		CO2	Flujo H ₂ S			Hg	H₂S	Torón	Radón	Relación	۸Ho		ц	лц	
	х	Y	ppm/s	к	g/m² día	ppm/s	к	g/m² día	mg/m ₃	ppm	pCi/L	pCi/L	Torón/Radón	Дпе		п2	<u>⊿п</u> 2
J3	516000	277750	6.583	0.30	86.90	0.0000	0.30	0.0000	0.004	0.0010	3.32	2.221	1.496	0.885	3.017	161.71	61.71
H3	516008	278245	5.100	0.30	67.32	0.0017	0.30	0.0173	0.009	0.0000	10.98	11.994	0.916	1.092	3.056	144.13	44.13
F1	515456	278750	1.420	0.30	18.74	0.0052	0.30	0.0530	0.013	0.0000	25.91	9.773	2.651	0.896	2.908	144.83	44.83
G1	515502	278500	2.529	0.30	33.38	0.0022	0.30	0.0224	0.013	0.0010	6.85	5.775	1.186	0.905	2.898	160.97	60.97
H1	515504	278256	1.957	0.30	25.83	0.0044	0.30	0.0449	0.014	0.0010	15.44	7.107	2.172	1.132	3.117	146.13	46.13
F2	515749	278749	0.380	0.30	5.02	0.0055	0.30	0.0561	0.014	0.0010	8.99	3.998	2.249	0.537	2.701	137.23	37.23
G2	515757	278505	2.240	0.30	29.57	0.0033	0.30	0.0337	0.010	0.0000	5.75	3.998	1.439	1.069	2.926	141.80	41.80
F4	516249	278753	1.652	0.30	21.81	0.0016	0.30	0.0163	0.039	0.0010	20.81	8.440	2.465	1.383	2.963	139.10	39.10
G4	516249	278497	0.690	0.30	9.11	0.0034	0.30	0.0347	0.017	0.0010	13.97	7.996	1.747	1.647	3.617	157.77	57.77
J4	516262	277760	1.115	0.30	14.72	0.0007	0.30	0.0069	0.006	0.0000	0.44	0.888	0.499	1.460	3.016	140.49	40.49
K5	516504	277510	1.258	0.30	16.61	0.0016	0.30	0.0166	0.009	0.0000	-9.85	-3.109	3.167	0.678	2.884	131.18	31.18
K6	516749	277501	5.632	0.30	74.34	0.0045	0.30	0.0459	0.010	0.0000	63.54	31.095	2.043	1.127	2.987	136.47	36.47
A6	516750	280002	2.134	0.30	28.17	0.0012	0.30	0.0122	0.011	0.0010	25.29	19.990	1.265	1.217	2.910	155.41	55.41
L1	515498	277248	3.304	0.30	43.61	0.0013	0.30	0.0133	0.006	0.0000	5.97	7.552	0.791	0.912	2.896	138.34	38.34
L2	515751	277248	1.080	0.30	14.26	0.0025	0.30	0.0255	0.015	0.0000	4.19	2.665	1.572	0.802	2.811	128.36	28.36
K2	515751	277501	0.980	0.30	12.94	0.0016	0.30	0.0163	0.011	0.0000	2.88	3.554	0.809	0.991	3.107	137.95	37.95
J2	515753	277752	3.570	0.30	47.12	0.0023	0.30	0.0235	0.011	0.0010	10.38	6.663	1.558	0.729	2.910	131.16	31.16
13	516002	278001	1.977	0.30	26.10	0.0029	0.30	0.0296	0.009	0.0000	401.36	156.362	2.567	1.276	3.178	144.94	44.94
12	515749	278002	5.093	0.30	67.23	0.0028	0.30	0.0286	0.012	0.0000	168.12	82.179	2.046	1.309	3.073	134.83	34.83
H2	515752	278249	3.521	0.30	46.48	0.0010	0.30	0.0102	0.008	0.0010	92.87	51.084	1.818	1.101	2.953	130.68	30.68
11	515491	278001	2.847	0.30	37.58	0.0008	0.30	0.0086	0.009	0.0010	40.77	25.320	1.610	0.765	2.898	130.22	30.22
J1	515502	277749	3.939	0.30	51.99	0.0019	0.30	0.0194	0.006	0.0010	44.32	26.653	1.663	1.342	2.850	139.46	39.46
K1	515491	277505	5.313	0.30	70.13	0.0017	0.30	0.0173	0.008	0.0010	38.24	12.438	3.075	1.241	3.219	143.16	43.16
M13	518401	277039	3.023	0.30	39.90	0.0000	0.30	0.0000	0.012	0.0000	52.21	37.314	1.399	0.769	2.895	136.55	36.55
L14	518649	277249	6.504	0.30	85.85	0.0048	0.30	0.0490	0.012	0.0020	22.99	21.322	1.078	1.190	2.721	140.57	40.57
G15	519018	278499	8.688	0.30	114.68	0.0023	0.30	0.0235	0.012	0.0000	16.80	11.549	1.455	1.246	2.750	133.06	33.06
G14	518754	278508	3.305	0.30	43.63	0.0019	0.30	0.0194	0.011	0.0010	28.49	9.328	3.054	1.174	2.918	130.77	30.77
D15	518997	279250	0.550	0.30	7.26	0.0025	0.30	0.0255	0.008	0.0010	10.58	8.440	1.254	0.972	2.831	130.48	30.48
F16	519253	278752	2.748	0.30	36.27	0.0017	0.30	0.0173	0.008	0.0020	11.05	7.552	1.463	0.846	2.835	142.31	42.31
G16	519247	278505	1.317	0.30	17.38	0.0056	0.30	0.0571	0.008	0.0010	148.62	69.297	2.145	1.364	3.082	140.73	40.73
G17	519498	278490	6.579	0.30	86.84	0.0045	0.30	0.0459	0.006	0.0010	92.90	51.973	1.787	0.975	2.740	126.10	26.10
G19	520003	278502	2.943	0.30	38.85	0.0037	0.30	0.0377	0.008	0.0000	42.29	27.097	1.561	1.238	2.794	130.40	30.40
H19	520007	278253	1.397	0.30	18.44	0.0048	0.30	0.0490	0.014	0.0010	63.78	26.653	2.393	0.843	2.685	129.88	29.88
l19	520002	277996	2.520	0.30	33.26	0.0014	0.30	0.0143	0.009	0.0020	26.75	11.105	2.408	0.762	2.726	128.58	28.58
J18	519752	277754	5.607	0.30	74.01	0.0034	0.30	0.0347	0.006	0.0000	27.73	10.217	2.714	1.071	3.021	132.44	32.44
l18	519748	278006	2.040	0.30	26.93	0.0019	0.30	0.0194	0.005	0.0020	17.15	13.326	1.287	1.002	2.883	140.05	40.05
J17	519497	277753	0.780	0.30	10.30	0.0016	0.30	0.0163	0.014	0.0000	46.07	18.213	2.529	1.280	2.836	127.28	27.28
J16	519251	277747	1.835	0.30	24.22	0.0027	0.30	0.0275	0.008	0.0010	17.22	10.661	1.616	0.773	2.745	125.39	25.39
L5	516521	277192	2.624	0.30	34.64	0.0037	0.30	0.0377	0.013	0.0010	55.31	17.324	3.193	1.164	2.969	129.97	29.97
L6	516725	277249	3.282	0.30	43.32	0.0011	0.30	0.0112	0.012	0.0000	202.06	85.289	2.369	1.203	3.052	146.909	46.91
K16	519248	277499	6.019	0.30	79.45	0.0023	0.30	0.0235	0.006	0.0010	35.81	19.990	1.791	0.937	2.741	134.378	34.38