UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA

ACTUALIZACIÓN DE FACTORES DE DEMANDA PARA EL DISEÑO DE INSTALACIONES ELÉCTRICAS EN EL SALVADOR

PRESENTADO POR:

BRYAN NOÉ CASTRO CORTEZ

EDUARDO FRANCISCO VÁSQUEZ RAMOS

PARA OPTAR AL TÍTULO DE:

INGENIERO ELECTRICISTA

CIUDAD UNIVERSITARIA, NOVIEMBRE DE 2018

UNIVERSIDAD DE EL SALVADOR

RECTOR :
MSC. ROGER ARMANDO ARIAS ALVARADO
SECRETARIO GENERAL :
LIC. CRISTÓBAL HERNÁN RÍOS BENÍTEZ
FACULTAD DE INGENIERÍA Y ARQUITECTURA
DECANO :
ING. FRANCISCO ANTONIO ALARCÓN SANDOVAI
SECRETARIO :
ING. JULIO ALBERTO PORTILLO
ESCUELA DE INGENIERÍA ELÉCTRICA
DIRECTOR :
INC. ARMANDO MARTÍNEZ CALDERÓN

UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA

Trabajo de Graduación previo a la opción al Grado de:

INGENIERO ELECTRICISTA

Título :

ACTUALIZACIÓN DE FACTORES DE DEMANDA PARA EL DISEÑO DE INSTALACIONES ELÉCTRICAS EN EL SALVADOR

Presentado por

BRYAN NOÉ CASTRO CORTEZ

EDUARDO FRANCISCO VÁSQUEZ RAMOS

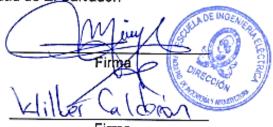
Trabajo de Graduación Aprobado por :

Docente Asesor :

ING. NUMA POMPILIO JIMENEZ

San Salvador, noviembre de 2018

Trabajo de Graduación Aprobado por:


Docente Asesor :

ING. NUMA POMPILIO JIMENEZ

ACTA DE CONSTANCIA DE NOTA Y DEFENSA FINAL

En esta fecha, jueves 6 septiembre de 2018, en Sala de Lectura de la Escuela de Ingeniería Eléctrica, a las 4:00 p.m. horas, en presencia de las siguientes autoridades de la Escuela de Ingeniería Eléctrica de la Universidad de El Salvador:

- Ing. Armando Martínez Calderón Director
- MSC. José Wilber Calderón Urrutia Secretario

Y, con el Honorable Jurado de Evaluación integrado por las personas siguientes:

- ING. NUMA POMPILIO JIMÉNEZ CORTEZ. (Docente Asesor)
- ING. ARMANDO MARTÍNEZ CALDERÓN
- MSC. LUIS ROBERTO CHEVEZ PAZ

Firma

Se efectuó la defensa final reglamentaria del Trabajo de Graduación:

ACTUALIZACIÓN DE FACTORES DE DEMANDA PARA EL DISEÑO DE INSTALACIONES ELÉCTRICAS EN EL SALVADOR

A cargo de los Bachilleres:

- CASTRO CORTEZ BRYAN NOÉ
- VÁSQUEZ RAMOS EDUARDO FRANCISCO

Habiendo obtenido en el presente Trabajo una nota promedio de la defensa final: (Ocho punto tres

Dedicatoria

A cada una de las personas que permitieron la realización del presente trabajo. Y a los ingenieros que diseñen nuevos sistemas de distribución, que les sirva como una guía de estudio y sea el inicio de nuevos trabajos de investigación.

Los autores.

Agradecimientos.

A mis padres, que gracias a ellos y su apoyo he logrado llegar hasta este punto y cumplir cada uno de mis objetivos, mis metas. Gracias a sus consejos y educación para ayudarme a ser mejor persona.

A mis familiares cercanos, que siempre han estado para mí cuando se les ha necesitado y han demostrado su apoyo en gran parte de mi vida.

A mis compañeros de la carrera, con los que formamos grupos de estudio, de trabajo, ya que con este mismo apoyo mutuo hemos logrado avanzar en la carrera hasta la culminación de la misma, además de haber hecho del ambiente en la U más ameno. A todos se les recordará siempre.

A mis amigos, que sin duda ellos son los que me también me impulsaron a siempre seguir adelante, a no rendirme y siempre han estado en los momentos buenos, los malos ratos y los momentos más alegres.

A nuestro asesor de tesis, que, sin su apoyo, sus correcciones, su enseñanza, este trabajo no habría sido posible, además de ser quien nos ha guiado en cada avance del mismo.

Y a todos los que han formado parte de mi vida de una forma u otra. A los que han contribuido de diversas formas para el desarrollo de esta tesis.

Agradecimientos.

A Dios por la oportunidad de darme la vida hasta este punto y poder lograr esta meta tan importante y difícil después de tantas pruebas superadas.

A mis padres, Manuel Vásquez y Liduvina de Vásquez, que fueron el apoyo incondicional durante este proceso, que con sus enseñanzas y correcciones me ayudaron a convertirme en lo que soy y en lo que en algún momento de mi vida transmitiré a mis hijos.

A familiares y personas cercanas que forman parte de mi vida y que día a día confiaron en que podía lograr esta meta, que me apoyaron siempre cuando los necesite y nunca me dieron su espalda.

A todos los maestros que me enseñaron con una educación excelente, a ser una persona productiva a la sociedad, que colabore al desarrollo y que pueda enseñar todo lo aprendido a nuevas generaciones.

A nuestro asesor de tesis, por confiar en nosotros para la realización de este trabajo y por ser el guía que nos enseñó el camino correcto para poder llegar hasta este punto.

Contenido.

Dedi	catoria	i
GLOSAI	RIO Y ABREVIATURAS.	viii
INTRO	DUCCIÓN	x
OBJETIV	VOS	xi
OBJE	TIVO GENERAL	xi
OBJE	TIVOS ESPECIFICOS:	xi
CAPITU	ILO 1	1
GENE	ERALIDADES	1
1.1	1 ANTECEDENTES	1
1.2	2 PLANTEAMIENTO DEL PROBLEMA	2
1.3	3 JUSTIFICACIÓN	2
1.5	5 ALCANCES Y LIMITACIONES	3
1.6	6 METODOLOGIA DE LA INVESTIGACIÓN	3
CAPITU	JLO 2	5
	LISIS DE LA NORMATIVA NACIONAL VIGENTE PARA EL CÁLCULO DE TRANSFORMADOR RIBUCION	
2.1	1 ACUERDO SIGET	5
2.2	2 METODO DEL NATIONAL ELECTRICAL CODE (NEC)	5
2.3	3 DESCRIPCIÓN DEL METODO.	5
2.4	4 APLICACIÓN DEL METODO	9
CAPITU	JLO 3	14
MET	ODOS INTERNACIONALES PARA EL CÁLCULO DE TRANSFORMADORES DE DISTRIBUCIÓ	N 14
3.1	1 INTRODUCCIÓN	14
	2 NORMAS INTERNACIONALES DE DIMENSIONAMIENTO DE TRANSFORMADORES DE STRIBUCION	
CAPITU	JLO 4	23
ESTU	IDIO ESTADÍSTICO DE CARGABILIDAD EN TRANSFORMADORES DE DISTRIBUCION	23
4.1	1 INTRODUCCIÓN	23
	2 METODOLOGÍA PARA EL CÁLCULO DE CARGABILIDAD EN LOS TRANSFORMADORES	
	STRIBUCIÓN	
4 3	3 CLASIFICACIÓN DE LOS TRANSFORMADORES ESTUDIADOS.	26

CAPITULO 5	34
MÉTODO PROPUESTO PARA EL CÁLCULO DE TRANSFORMADORES DE DISTRIBUCIÓN	34
5.1 DESCRIPCIÓN DEL MÉTODO PROPUESTO	34
5.2 TABLAS A UTILIZAR EN EL MÉTODO PROPUESTO	35
5.3 DISEÑO DE HERRAMIENTA EN EXCEL PARA EL DISEÑO Y ESTUDIO DE CARGABILIE UN TRANSFORMADOR DE DISTRIBUCION	
5.4 COMPARATIVA ENTRE LAS DEMANDAS MAXIMAS REALES Y EL USO DEL MODELO PROPUESTO.	_
5.5 EFECTIVIDAD DEL METODO PROPUESTO	42
CONCLUSIONES	45
RECOMENDACIONES	46
BIBLIOGRAFIA	47
ANEXOS.	48
ANEXO 1.	48
TABLAS DE DIMENSIONAMIENTOS DE TRANSFORMADORES NORMA CODENSA". (NT 2050 COLOMBIA)	
ANEXO 2	50
TABLAS COMPARATIVAS POR DISTRIBUIDORA ENTRE LAS DEMANDAS MAXIMAS RE ESTIMADAS.	_
ANEXO 3	70
FACTORES DE RESPONSABILIDAD HORARIA POR DISTRIBUIDORA Y CATEGORIA TARI	FARIA.
ANEXO 4.	74
RESUMEN DEL PORCENTAJE DE EFECTIVIDAD DEL METODO PROPUESTO POR DISTRIBUIDORA.	74
ANEXO 5.	86
RESUMEN DEL METODO PROPUESTO	86

Lista de Ilustraciones.

Ilustración 1. Método de cálculo para ramales, alimentadores y cargas eléctricas	6
Ilustración 2. Perfil de carga del transformador T10025	10
Ilustración 3. Perfil de carga del transformador T10030	12
Ilustración 4. Ejemplo de curva de demanda promedio de un transformador	24
Ilustración 5. Muestra de Transformadores Urbanos – Distribuidora A	27
Ilustración 6. Muestra de Transformadores Rurales – Distribuidora A	28
Ilustración 7. Muestra de Transformadores Urbanos – Distribuidora B	28
Ilustración 8. Muestra de Transformadores Rurales – Distribuidora B	29
Ilustración 9. Muestra de Transformadores Urbanos – Distribuidora C	29
Ilustración 10. Muestra de Transformadores Rurales – Distribuidora C	30
Ilustración 11. Muestra de Transformadores Urbanos – Distribuidora D	30
Ilustración 12. Muestra de Transformadores Rurales - Distribuidora D	31
Ilustración 13. Muestra total de Transformadores Urbanos	32
Ilustración 14. Muestra total de Transformadores Rurales	32
Ilustración 15. Muestra total de Transformadores	33
Ilustración 16. Datos de entrada en el modelo diseñado	38
Ilustración 17. Datos de salida	39
Ilustración 18. Curva de demanda horaria en el transformador obtenida en el modelo	39

Lista de Tablas.

Tabla 1. Potencias de consumo de principales electrodomésticos	3
Tabla 2. Aplicación de otros artículos del NEC	
Tabla 3. Factores de demanda por iluminación y artefactos pequeños ¹	7
Tabla 4. Factores de demanda y rangos para los electrodomésticos	8
Tabla 5. Factores de demanda para conjuntos habitacionales	8
Tabla 6. Características del Transformador T10025.	
Tabla 7. Datos técnicos del transformador T10025 actualizados	10
Tabla 8. Características del transformador T10030.	11
Tabla 9. Datos Técnicos del transformador T10030 actualizados	12
Tabla 10. Resumen de resultados obtenidos con el método del NEC	13
Tabla 11. Factores de carga para el uso de la norma CODENSA	15
Tabla 12. Ejemplo del uso del Método CODENSA	
Tabla 13. Coeficiente de simultaneidad, según el número de viviendas	18
Tabla 14. Tipos de clientes del sector urbano según la distribuidora ecuatoriana CENTROSUR	20
Tabla 15. Tipos de clientes del sector rural según la distribuidora ecuatoriana CENTROSUR	20
Tabla 16. Factores de sobrecarga para determinar la capacidad de transformadores de distribu	ıción
CENTROSUR	21
Tabla 17. Especificaciones del Transformador de una ciudad ecuatoriana	21
Tabla 18. Demanda máxima para viviendas en zonas rurales calculadas en base a los consumos	
reales y caracterización de la carga en forma horaria.	
Tabla 19. Capacidades usuales de lámparas de alumbrado público	
Tabla 20. Cantidad de lámparas asociadas a un transformador de distribución	35
Tabla 21. Factores de simultaneidad según la Asociación Electrotécnica Argentina (AEA)	35
Tabla 22. Factores de responsabilidad horaria ajustados por empresa distribuidora	37
Tabla 23. Energías mensuales promedio para usuarios rurales	37
Tabla 24. Energías mensuales promedio para usuarios urbanos	
Tabla 25. Resumen de comparativas entre demandas reales y demandas estimadas	40
Tabla 26. Comparativa de Capacidades Instaladas Reales versus Capacidades Recomendadas p	or el
Método Propuesto	43

GLOSARIO Y ABREVIATURAS.

AEA: Asociación Electrotécnica Argentina.

Capacidad instalada efectiva. Es la suma de los valores efectivos de las potencias de todas las unidades generadoras en el sistema

Capacidad instalada nominal: Es la suma de los valores de placa de la potencia de todas las unidades generadoras instaladas en el sistema.

Carga conectada: La suma de las intensidades o potencias de placa de todos los artefactos de consumo dependientes del sistema de distribución de energía eléctrica.

Carga: La carga de un sistema de distribución de energía eléctrica es la parte terminal del sistema que convierte la energía eléctrica a otra forma de energía.

CODENSA: Empresa Colombiana dedicada a la Distribución y Comercialización de Energía Eléctrica

Confiabilidad: Es la probabilidad de un dispositivo o de un sistema, de desempeñar su función adecuadamente, por un período de tiempo determinado y bajo determinadas condiciones de operación.

Demanda Eléctrica: La demanda eléctrica de un sistema es la intensidad de corriente, o potencia eléctrica, relativa a un intervalo de tiempo específico, que absorbe su carga para funcionar.

Demanda Máxima: punto más alto de la gráfica de los perfiles de carga diarios.

Demanda promedio: Es la demanda constante en un intervalo de tiempo.

Dimensionar: Establecer las dimensiones exactas o el valor preciso de alguien o algo.

Energía total consumida: Área bajo la curva de la gráfica de los puntos de los perfiles de carga diarios.

Energía: Capacidad que tiene la materia de producir trabajo en forma de movimiento, luz, calor, etc.

Factor de Demanda: Es la razón entre la demanda máxima de la instalación o sistema y la carga total conectada, definida sobre un total de tiempo dado.

ITC (BT): Instrucciones Técnicas Complementarias (Baja Tensión).

NEC: National Electric Code. (Código Eléctrico Nacional.)

NFPA: National Fire Protection Association. (Asociación Nacional de Protección contra el Fuego).

NTC: Norma Técnica Colombiana.

Perfil de Carga: consiste en conocer el comportamiento de la energía eléctrica en el tiempo (periodos cuartos horarios), para analizar detalladamente los consumos mensuales en cada ciclo de facturación.

SIGET: Superintendencia General de Electricidad y Telecomunicaciones.

Transformador: Aparato que sirve para transformar la tensión de una corriente eléctrica alterna sin modificar su potencia.

INTRODUCCIÓN

El avance de la tecnología, el crecimiento poblacional, entre otros factores, han influido en el crecimiento del consumo de energía eléctrica a nivel residencial, lo que ha llevado a las empresas distribuidoras a extender sus sistemas de distribución tanto a nivel urbano como a nivel rural, todo esto con el fin de proporcionar un servicio de calidad, confiable y garantizar la continuidad del mismo.

La situación del sector eléctrico de El Salvador ha obligado a las distribuidoras a considerar diferentes parámetros para el dimensionamiento de los transformadores de distribución, hoy por hoy, se ha encontrado una constante: Los transformadores se están sobredimensionando en un alto porcentaje, todo esto implica mayores pérdidas en el sistema, mayor costo inicial para las distribuidoras y el poco aprovechamiento de los mismos.

En el presente trabajo se desarrolla un estudio del sector de distribución de energía eléctrica para el rubro residencial del país mediante el análisis de una muestra amplia de transformadores y así, proponer un método que cumpla con las normativas vigentes y que sea capaz de recomendar las capacidades óptimas de transformadores a instalar.

En el diseño de las redes de distribución de energía eléctrica es muy importante la toma de decisiones acerca del calibre de los conductores, protecciones y mucho más aún, la capacidad del transformador. Actualmente en nuestro país la elección de la capacidad del transformador de distribución es un poco empírico, por lo que se necesita un método más exacto y que esté respaldado por un estudio realizado previamente, para poder tomar decisiones de Ingeniería. En este análisis realizado con datos reales de demandas de transformadores de la zona metropolitana de El Salvador, intenta ser el respaldo, antes mencionado, para crear un método matemático que involucre la cantidad de usuarios, demanda máxima promedio y la zona de instalación para poder elegir la capacidad del transformador.

OBJETIVOS.

OBJETIVO GENERAL:

- Proponer una metodología para la determinación de factores de demanda para la optimización de los Sistemas de Distribución de Energía Eléctrica en El Salvador.

OBJETIVOS ESPECIFICOS:

- a) Identificar las diferencias entre los perfiles de carga de los usuarios residenciales urbanos y rurales.
- b) Analizar la metodología utilizada actualmente en el país por las compañías distribuidoras y algunas normativas internacionales para el cálculo de transformadores de distribución.
- c) Analizar perfiles de carga de los transformadores de distribución para obtener una metodología para el cálculo de los factores de demanda.
- d) Definir los factores que influyen en la cargabilidad de los transformadores de distribución.
- e) Establecer factores de demanda específicos para cada una de las categorías de usuarios mencionadas anteriormente.
- f) Optimizar el diseño de las redes de distribución eléctrica con los factores de demanda adecuados a nuestro país.
- g) Comparar los resultados obtenidos con el método propuesto y el método que se utiliza actualmente en nuestro país.

CAPITULO 1

GENERALIDADES

1.1 ANTECEDENTES

La mayoría de países del continente americano, utilizan sus respectivas normas eléctricas para el diseño de sus redes de distribución eléctrica en alta, media y baja tensión, subestaciones, diseños de instalaciones residenciales e industriales, etc., pero todas tiene algo en común, todas tienen como base el Código Eléctrico Nacional americano (NEC por sus siglas en inglés).

En nuestro país, se utiliza el NEC para el diseño y selección de los elementos eléctricos de las instalaciones, cumpliendo los requerimientos establecidos para el dimensionamiento de los transformadores de distribución para el área residencial.

Es de suma importancia que el área residencial sea abastecida con energía eléctrica constante y de calidad, para que el usuario final tenga la plena satisfacción del servicio. Para dicho objetivo se deben considerar muchos aspectos entre ellos el correcto diseño de la subestación, conductor, etc. También se debe tener en cuenta el factor económico en la construcción de dicho sistema de distribución cuyo papel principal lo adquiere la empresa distribuidora.

Estos aspectos han sido campo de estudio de muchas empresas distribuidoras en todo el mundo, con el propósito de crear técnicas de diseño que aseguren la dimensión correcta de transformadores, para proveer la demanda máxima de potencia que el rubro residencial requiere y que el factor económico este de acuerdo a la construcción de la misma.

En la Universidad Nacional Mayor de San Marcos (Perú), se realizó un estudio de mediciones muestrales de campo en tiempos definidos de 15 min durante 24 horas, posteriormente graficaron diagramas de carga de cada uno de los sectores elegidos como campo de estudio y determinaron la metodología más adecuada para el cálculo de los factores de interés.

En la ciudad de Cuenca, Ecuador, también se realizó un estudio de factores de demanda para realizar cambios de dimensionamiento de la potencia de distribución, ya que para 2010 poseía una demanda de 141.0 MW y de acuerdo al Plan Maestro de Electrificación del Ecuador del año 2009 para el año 2020 la potencia demandada será de 235MW

Estos solo son algunos de los países que han realizado el estudio de campo, para poder cambiar este método de diseño, ya que a la larga se sobredimensionan los transformadores de distribución de las subestaciones.

En el país no hay antecedentes de investigación similar a los planteados anteriormente, así que puede concluirse que las empresas distribuidoras se basan estrictamente en la norma de construcción del Código Eléctrico Nacional (NEC).

1.2 PLANTEAMIENTO DEL PROBLEMA

Las pérdidas de potencia están ligadas a muchos factores, entre ellos está la mala elección de la capacidad de los transformadores para las redes eléctricas, en este caso sería la red eléctrica residencial, este mal dimensionamiento de los transformadores implica muchos problemas, debido a que hay sistemas eléctricos cuya potencia suministrada es demasiado baja.

Un transformador real tiene perdidas por diferentes circunstancias y sin embargo todas se manifiestan en forma de calor, es decir, si un transformador tiene pérdidas de potencia esta pérdida se transformará en calor, este es el principio de la conservación de energía. Debido a esta naturaleza entre más grande sea el transformador utilizado, más grande serán las perdidas, esto causa reducción de los años de vida del transformador.

Las distribuidoras eléctricas han tenido en cuenta la eficiencia de los transformadores, ya que se demostró que si estos se encontraban sobredimensionados presentarían mayores pérdidas en el núcleo y los embobinados del mismo. Uno de los retos que han tenido que enfrentar las empresas del sector eléctrico después de conocer esta realidad, ha sido la búsqueda de una estrategia que permita reubicar y/o cambiar los transformadores de distribución de forma adecuada, con la cual se encuentren costos mínimos de operación e inversión y al mismo tiempo se obtenga un mayor beneficio económico debido a activos de transformación que posea la empresa. De acuerdo a esto, es importante que las distribuidoras posean herramientas adecuadas que faciliten tomar decisiones, dando cumplimiento a criterios técnicos y económicos, que permitan disminuir costos de pérdidas de energía y mejoren los beneficios obtenidos por cargos por uso.

1.3 JUSTIFICACIÓN

Debido al mal dimensionamiento del transformador de distribución, es necesario encontrar una solución que permita que, a la hora de diseñar redes eléctricas de distribución, en este caso en el área residencial, aseguren un buen diseño, ya que no solo se sobredimensiona el transformador, si no que todos los demás elementos que constituyen la red eléctrica, tales como: aisladores, cortacircuitos, cables para líneas primarias, cables para líneas secundarias, etc. Todo esto conlleva costos mayores a la distribuidora.

Como se había mencionado anteriormente ya se tiene claro que todos estos problemas, al final terminan afectando fuertemente la parte económica de la distribuidora y del cliente, por ello se debe realizar un método técnico que cumpla con todas las normativas vigentes y satisfaga todos los factores de demanda que son estrictamente a la realidad eléctrica de nuestro país, ya que actualmente los métodos de diseño de transformadores vigentes utilizan factores de demandas ajenos a la realidad del rubro residencial salvadoreño: cocinas eléctricas, duchas eléctricas, calefacción, aires acondicionados, etc. debido a esto, los transformadores resultantes son de demasiada capacidad para las cargas que se desean instalar. A continuación, se ejemplifican algunas de las cargas especiales y sus respectivas potencias demandadas.

Equipo	Potencia (Watts)	Equipo	Potencia (Watts)
Cocina Eléctrica	9000	Aspiradora	500
Secadora de ropa	5000	Computadora	300
Ducha Eléctrica	5000	Licuadora	300
Calentador de agua	4500	Ventilador	300
Secadora de pelo	1200	Refrigerador	200
Aire Acondicionado	1200	Batidora	200
Plancha	1000	Estéreo	100
Microondas	1000	Televisor	100
Lavadora	800	Focos	100
Cafetera	800		
Tostadora	700		

Tabla 1. Potencias de consumo de principales electrodomésticos.

Todos estos problemas se pretenden mejorar con el método que se plantea y así poder reducir la capacidad del transformador hasta obtener una capacidad optima, aumentar su eficiencia, años de vida útil y, lo más importante, disminuir costos económicos.

1.5 ALCANCES Y LIMITACIONES

La investigación realizada tiene como objetivo crear una guía técnica que posea formulas funcionales que permitan dimensionar correctamente los transformadores de distribución de nuestro país.

Esta guía será funcional en el sector residencial del área urbana y rural. En el área industrial y comercial, la falta de información del tipo de cargas instaladas en las subestaciones, obstaculizaron el avance de calcular los factores de demanda más comunes y elaborar un modelo base para obtener resultados más exactos de la dimensión de los transformadores, en este caso, la mayoría son transformadores trifásicos.

1.6 METODOLOGIA DE LA INVESTIGACIÓN

El método utilizado en la investigación para obtener información fue la de recolección del historial de consumo de usuarios residenciales, con el cual se conoce la demanda en cada transformador de distribución, este método nos permite apegarnos a la realidad de consumo que generan los hogares salvadoreños promedio en distintas horas del día, así tendremos conocimiento de la máxima potencia que se demanda y en que lapsos de tiempo ocurre.

Las variables en los cuales se puso la mayor atención posible fueron: Consumos en energía mensual de los usuarios, Tipo de usuario (Urbano o rural), horas de demanda máxima. Estos datos nos dan una pauta de las potencias demandadas por los consumidores a los transformadores de distribución, al obtener esto tenemos una variable que le llamamos porcentaje de cargabilidad, que no es más que un valor cuantitativo de forma porcentual que nos permite medir la capacidad máxima demandada al transformador, y así poder compararlo

con el cálculo que estipula el Código Eléctrico Nacional de manera segura para transformadores de distribución.

De esta forma podremos hacer la comparación de los dos valores, uno obtenido de manera técnica a través de la guía de diseño de la norma, y el otro obtenido de datos reales recolectados de mediciones tomadas de los transformadores de distribución.

Cuando se analicen los dos resultados se observará fácilmente que los niveles de cargabilidad son muy diferentes, que el NEC proporciona un nivel de cargabilidad muy bajo, y el obtenido en la investigación es más ajustado al consumo real máximo del sector residencial.

CAPITULO 2

ANALISIS DE LA NORMATIVA NACIONAL VIGENTE PARA EL CÁLCULO DE TRANSFORMADORES DE DISTRIBUCION

2.1 ACUERDO SIGET

En el año 2011 la SIGET aprueba la adopción del NEC 2008 en español como código eléctrico nacional a través del acuerdo No. 294-E-2011.En resumen, esta adopción trata de la aplicación en nuestro país como norma de instalaciones eléctricas que contiene las exigencias de seguridad y calidad, para todas las personas naturales o jurídicas que tengan relación con trabajos de diseño, construcción, supervisión, operación y mantenimiento de instalaciones eléctricas, incluyendo sus mejoras, ampliaciones, e instalaciones provisionales o temporales, y todas aquellas personas, naturales o jurídicas, que diseñen obras de infraestructura civil relacionadas con edificios, viviendas, condominios, alcantarillados, vías de tránsito, etc. Razón por la cual deberán considerar el alcance y aplicación de estas normativas para el diseño y desarrollo de sus respectivos proyectos.

Las entidades, tanto privadas como gubernamentales y municipales, encargadas de aprobar estos proyectos deberán velar por el cumplimiento de estas normas.

2.2 METODO DEL NATIONAL ELECTRICAL CODE (NEC)

El Código Nacional Eléctrico (NEC, por sus siglas en inglés) es un estándar de los Estados Unidos. Fue desarrollado por la National Fire Protection Association (NFPA), también se le conoce como la norma NFPA 70.

Para los fines de estimación de la demanda eléctrica residencial, se aplica el artículo 220 del NEC, en el cual se describe completamente la metodología.

2.3 DESCRIPCIÓN DEL METODO.

En este método se proporcionan los requisitos para los cálculos de ramales, acometidas y cargas eléctricas. Para esto se ha dividido el método en las siguientes secciones:

- Sección 1: Requisitos para los métodos de cálculo.
- Sección 2: Calculo para cargas en ramales.
- Secciones 3 y 4: Cálculos para acometidas y servicios.
- Sección 5: Cálculos para grupos de viviendas.

El método se organiza de la siguiente forma:

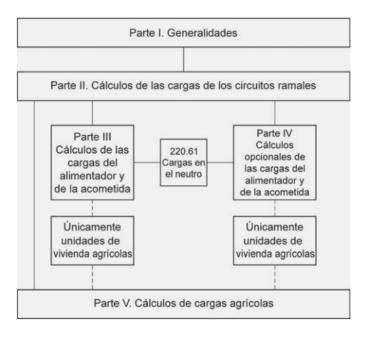


Ilustración 1. Método de cálculo para ramales, alimentadores y cargas eléctricas.

SECCION 1: REQUISITOS PARA LOS METODOS DE CÁLCULO.

Tensiones: Para el cálculo de cargas en ramales y alimentadores, se deben considerar los siguientes niveles de tensión: 120V, 120/240V, 208Y/120V, 480Y/277V y 600Y/347V.

La aplicación de otros artículos se puede observar en la siguiente tabla:

CÁLCULO	ARTÍCULO DE LA NORMA NEC
Aire acondicionado y refrigeración, calibre del conductor del circuito secundario	440
Grúas y Montacargas, tipo y calibre del conductor	610
Soldadores eléctricos, cálculo de amperaje	630
Máquinas de riego o de accionamiento eléctrico	675
Iluminación y guía de estacionamiento	626
Celdas electrolíticas	668
Galvanoplastia, calibre del conductor del circuito secundario	669
Circuito de alimentación del ascensor, factores de demanda	620
Bombas de incendio, caída de tensión (cálculo obligatorio)	695
Equipos de calefacción eléctrica fija de tuberías y recipientes, calibre del conductor del circuito secundario	427
Espacio fijo del equipo de calefacción, calibre del conductor del circuito secundario	424
Maquinaria industrial, calibre del conductor de alimentación	670
Casas móviles o prefabricadas, carga total para determinar la fuente de alimentación	550
Estudios de TV, teatros o similares, calibre del conductor de alimentación	530
Motores, calibre del conductor de alimentación	430
Motores, equipos de carga combinada	430
Varios motores o un motor y otras cargas	430
Circuitos sobre los 600V, calibre del conductor del ramal	210
Circuitos sobre los 600V, calibre del conductor de la acometida	215
Convertidor de fase, conductor	455
Parques de vehículos recreativos	551
Equipos electrónicos sensibles, caída de tensión	455
Sistema solar fotovoltaico, calibre del conductor y amperaje	690
Tipo de almacenamiento de los calentadores de agua	422
Teatros, estadios y locaciones similares	520

Tabla 2. Aplicación de otros artículos del NEC.

SECCION 2: CALCULO PARA CARGAS EN RAMALES

Carga por iluminación para espacios específicos

Se considera una carga de iluminación mínima. La superficie de construcción de cada planta se calcula a partir de las dimensiones exteriores del edificio o vivienda.

Cargas en todos los espacios.

Para el cálculo de otro tipo de artefacto eléctrico que no sea de iluminación, se toman en cuenta las siguientes consideraciones.

Tomacorrientes específicos: Para un enchufe dedicado a un artefacto específico (motor, lavadora, cocina, etc.) se tomará en cuenta la potencia de placa del artefacto.

Tomacorrientes generales: En todos los espacios, la carga mínima para cada tomacorriente de uso general, no deberá ser inferior a 180VA por cada tomacorriente.

SECCION 3: CALCULOS PARA ACOMETIDAS Y SERVICIOS

La demanda calculada para una acometida no debe ser menor a la suma de las cargas en los ramales a los que sirve de acuerdo a lo que se determinó en las secciones anteriores, luego se aplican factores de demanda.

Iluminación General y Pequeños Artefactos

Los factores de demanda especificados en la Tabla 3 se aplican en los ramales designados para iluminación y artefactos pequeños.

Tipo de Ocupación	Carga por iluminación (VA)	Factor de demanda (%)
	Primeros 3000 o menos	100
Vivienda	De 3001 a 120000	35
	Más de 120000	25

Tabla 3. Factores de demanda por iluminación y artefactos pequeños¹

Rangos para los artefactos eléctricos

La carga para los electrodomésticos, hornos, cocinas eléctricas y otros artefactos, se calculan de acuerdo a la tabla 4.

Número de	Factores de demanda (%)		Demanda Máxima	
aparatos	Menores a 3,5 kW	De 3,5 kW a 8,75 kW	(Hasta los 12 kW por electrodoméstico)	
1	80	80	8	
2	75	65	11	
3	70	55	14	
4	66	50	17	
5	62	45	20	
6	59	43	21	
7	56	40	22	
8	53	36	23	
9	51	35	24	
10	49	34	25	
11	47	32	26	
12	45	32	27	
13	43	32	28	
14	41	32	29	
15	40	32	30	
16	39	28	31	
17	38	28	32	
18	37	28	33	
19	36	28	34	
20	35	28	35	
21	34	26	36	
22	33	26	37	
23	32	26	38	
24	31	26	39	
25	30	26	40	
26 - 30	30	24	15kW + 1kW por cada rango	
31 - 40	30	22	15kW + 1kW por cada rango	
41 - 50	30	20	25kW + 0,75 kW por cada rango	
51 - 60	30	18	25kW + 0,75 kW por cada rango	
61 y mas	30	16	25kW + 0,75 kW por cada rango	

Tabla 4. Factores de demanda y rangos para los electrodomésticos.

SECCION 4: CALCULO PARA ALIMENTADORES Y SERVICIOS (OPCIONAL)

Esta sección será aplicable para las viviendas con su carga total conectada a una red de 120/240V o 208Y/120V, con una corriente de 100A o mayor.

SECCION 5: CALCULO PARA CONJUNTOS DE VIVIENDAS

Cuando un alimentador sirva a un conjunto habitacional, la demanda se calculará tomando en cuenta los factores de la tabla 5.

Cargas Individuales	Factor de demanda (%)	
Mayor Carga	100	
Segunda mayor carga	75	
Tercera mayor carga	65	
Cargas restantes	50	

Tabla 5. Factores de demanda para conjuntos habitacionales.

Además, a esta carga, se deben aplicar los factores de demanda de acuerdo a la sección 3, que corresponde a iluminación general y pequeños artefactos.

2.4 APLICACIÓN DEL METODO

Se realizará un estudio de casos. Para esto, el método se aplicará a algunos de los transformadores de distribución instalados en diferentes puntos.

Para el primer caso se selecciona el transformador T10025, cuyas características son las siguientes:

Código del transformador	T10025
Capacidad Instalada	50kVA
Número de clientes	45
Dirección	Colonia Metrópolis, Mejicanos

Tabla 6. Características del Transformador T10025.

Realizando las estimaciones del área de las viviendas de los clientes de este transformador, tienen un área aproximada de $105m^2$.

Se aplica lo establecido en la sección 2: Por iluminación general se aplican $33 VA/m^2$ y por tomacorriente de uso general se considera 180VA, para las cargas en los tomacorrientes específicos, se toman los datos de placa del electrodoméstico conectado (refrigerador, plancha, lavadora).

A continuación, se desarrollan los cálculos por cada cliente:

Iluminación general: $105m^2 * 33 VA/m^2 = 3465 VA$

Tomacorriente de uso general: 12 * 180VA = 2160VA

Cargas especiales: 2000VA

Carga total por cliente: 7625VA

A esta carga por cada cliente se le aplicaran los factores de demanda de la sección 3 (Tabla 3).

Cargas menores a 3000VA: 3000VA

Cargas Especiales: 2000VA

Carga restante al 35%: 2625*0.35 = 918.75VA

Carga total con factores de demanda: 5918.75VA.

Ahora se aplica lo descrito en la sección 5, para un conjunto de viviendas, en este caso, son 45 viviendas.

Mayor carga: 5918.75VA

Segunda mayor carga: 5918.75*0.75 = 4439.06VA

Tercera mayor carga: 5918.75*0.65 = 3847.19VA

Cargas restantes: (5918.75*0.5) *42 = 124293.75 VA

Carga Total para en Transformador: 138498.75VA.

Finalmente se aplican los factores de la sección 3:

Primeros 3000VA: 3000VA

De 3001 a 120000VA: 117000*0.35VA = 40950VA

Más de 120000VA: 18498.75*0.25 = 4624.69VA

Carga Final para el Transformador: 48574.69VA → 48.574kVA

Ahora se observan los datos reales de este transformador:

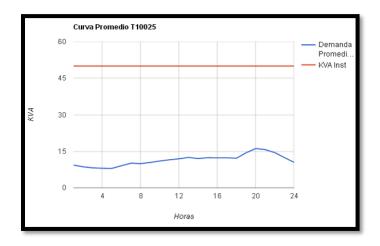


Ilustración 2. Perfil de carga del transformador T10025.

Datos T10025			
% Cargabilidad	32.28%		
Demanda máxima	16.14 KVA		
Capacidad Instalada	50 KVA		
Hora demanda máxima	20:00		

Tabla 7. Datos técnicos del transformador T10025 actualizados.

De los datos del transformador, se observa que este si cumple los parámetros establecidos por el NEC, ya que la capacidad que se instaló es de 50kVA.

Ahora se selecciona el transformador T10030, cuyas características son las siguientes:

Código del transformador	T10030
Capacidad Instalada	50kVA
Número de clientes	36
Dirección	Urbanización Satélite, Mejicanos

Tabla 8. Características del transformador T10030.

Realizando las estimaciones del área de las viviendas de los clientes de este transformador, tienen un área aproximada de $7m * 15m = 105m^2$.

Se aplica lo establecido en la sección 2: Por iluminación general se aplican $33 VA/m^2$ y por tomacorriente de uso general de consideran 180VA, para las cargas en los tomacorrientes específicos, se toman los datos de placa del electrodoméstico conectado (refrigerador, plancha, lavadora).

A continuación, se desarrollan los cálculos por cada cliente:

Iluminación general: $105m^2 * 33 VA/m^2 = 3465 VA$

Tomacorriente de uso general: 12 * 180VA = 2160VA

Cargas especiales: 2000VA

Carga total por cliente: 7625VA

Por cada cliente se le aplicaran los factores de demanda de la sección 3 (Tabla 3).

Cargas menores a 3000VA: 3000VA

Cargas Especiales: 2000VA

Carga restante al 35%: 2625*0.35 = 918.75VA

Carga total con factores de demanda: 5918.75VA.

Ahora se aplica lo descrito en la sección 5, para un conjunto de viviendas, en este caso, son 36 viviendas.

Mayor carga: 5918.75VA

Segunda mayor carga: 5918.75*0.75 = 4439.06VA

Tercera mayor carga: 5918.75*0.65 = 3847.19VA

Cargas restantes: (5918.75*0.5)*33 = 97659.38 VA

Carga Total para en Transformador: 111864.38VA.

Finalmente se aplican los factores de la sección 3:

Primeros 3000VA: 3000VA

De 3001 a 120000VA: 108864.38*0.35 = 38102.53VA

Más de 120000VA: 0VA

Carga Final para el Transformador: 41102.53VA → 41.102kVA

Ahora, se observa la información de este transformador:



Ilustración 3. Perfil de carga del transformador T10030.

Datos T10030				
% Cargabilidad	25.54%			
Demanda máxima	12.77 KVA			
Capacidad Instalada	50 KVA			
Hora demanda máxima	20:00			

Tabla 9. Datos Técnicos del transformador T10030 actualizados.

De los datos del transformador, se observa que este si cumple los requerimientos establecidos por el NEC, ya que la capacidad que se instaló es de 50kVA.

A continuación, se presenta una tabla resumen con estudios de casos para observar la cargabilidad de los transformadores de distribución en el país.

Código del	Capacidad	Demanda	Máxima	Porcentaje de
Transformador	Instalada	estimada NEC	Demanda	Cargabilidad
T10025	50 kVA	48.57kVA	16.14kVA	32.28%
T10030	50kVA	41.10kVA	12.77kVA	25.54%
T10045	37.5kVA	20.85kVA	6.28kVA	16.53%
T10000	50kVA	48.65kVA	14.1kVA	28.2%
T10020	75kVA	17.20kVA	2.61kVA	3.48%
T10035	75kVA	71.67kVA	36.74kVA	48.99%

Tabla 10. Resumen de resultados obtenidos con el método del NEC.

Como puede observarse en la tabla anterior, los niveles de cargabilidad reales de los transformadores calculados mediante el método del NEC, son muy bajos, por lo que el aprovechamiento de los transformadores de distribución es muy bajo. Esto se amplía en el Capítulo 4 del presente trabajo, en el cual se analiza a fondo el nivel de cargabilidad de una muestra amplia del parque de transformadores de distribución.

CAPITULO 3

METODOS INTERNACIONALES PARA EL CÁLCULO DE TRANSFORMADORES DE DISTRIBUCIÓN

3.1 INTRODUCCIÓN

En la actualidad, el problema del dimensionamiento óptimo de transformadores ha sido tratado ampliamente, existiendo numerosas publicaciones y normas que otorgan una buena solución al problema. En el desarrollo de estos trabajos se han utilizado criterios estándares que buscan minimizar el valor presente de la inversión más operación, incluyendo pérdidas de energía y potencia. Las diferentes metodologías tienen por objetivo determinar la capacidad inicial óptima que puede abastecer un trasformador, minimizando el costo total presente. Para tal efecto se consideraron diversas tasas de crecimiento de la demanda; partiendo de una demanda de 1 [kVA] hasta la capacidad máxima del mayor transformador disponible, con incrementos de 1 [kVA]. La combinación de capacidades para abastecer un proyecto representativo se realiza posteriormente a partir de los resultados que se obtienen de los análisis.

Todos estos métodos tienen en común cumplir ciertos objetivos que son de vital importancia al momento de realizar el análisis y diseño de los sistemas de distribución en el área residencial: Suministrar correctamente la energía demandada por los usuarios y que estos sean capaces de soportar un porcentaje de cargas futuras sin que los mismos queden subdimensionados.

En este documento se presentarán Métodos Internacionales para el dimensionamiento de los transformadores de distribución que son normas ya establecidas en cada país y que deben acatarse como tal.

3.2 NORMAS INTERNACIONALES DE DIMENSIONAMIENTO DE TRANSFORMADORES DE DISTRIBUCION

3.2.1 NORMA CODENSA "CARGA MAXIMA PARA EL SECTOR RESIDENCIAL". (NTC - 2050 COLOMBIA)

Para determinar la capacidad de los transformadores en proyectos de vivienda, se aplicarán las tablas del cálculo de transformadores por número de clientes según estrato socioeconómico, la cual ya incluye: la carga propia del cliente, la carga de servicios comunes y las cargas especiales tal como los locales comerciales, zonas de cesión tipo B, etc. En las tablas de selección, el transformador asociado a un determinado número de clientes ya tiene implícito el consumo propio de cada uno de los clientes según estrato socioeconómico en el cual han sido clasificados. Para el cálculo de la incidencia de la carga en el transformador por servicios comunes y cargas especiales, teniendo en cuenta que la NTC 2050 no indica valores, se emplearán los siguientes factores de carga.

Factor de carga	Cargas representadas en:
1	Ascensores, bombas eyectoras, alumbrado general
	que no tenga control individual y puntos fijos.
1	Equipos de presión, otros alumbrados como salón
'	comunal, parqueaderos, etc.
	Cargas especiales: locales comerciales zonas de
1	cesión tipo B, etc.

Tabla 11. Factores de carga para el uso de la norma CODENSA.

PASOS PARA SELECCIÓN DEL TRANSFORMADOR.

Los siguientes pasos son los que deben seguirse para la selección correcta del transformador de distribución.

- 1. Establecer el número de clientes y estrato socioeconómico del proyecto.
- 2. Establecer la carga de servicios comunes y/o cargas especiales calculadas según NTC-2050 o según criterio del diseñador.
- 3. Calcular la carga de servicios comunes y cargas especiales por cliente utilizando la Ecuación 1:

$$kVA_{SC+CE\ cliente} = \frac{kVA_{SC}+kVA_{CE}}{N}$$
 Ecuación 1.

Donde:

- \triangleright kVA_{SC}: kVA correspondientes a los Servicios Comunes
- \triangleright kVA_{CE}: kVA correspondientes a las Cargas Especiales
- ➤ *N*: Número de Clientes
- \triangleright kVA_{SC+CE cliente}: kVA totales por cliente
- 4. Seleccione la tabla de dimensionamiento del transformador (ver anexo 1), según estrato socioeconómico, en dichas tablas la primera columna corresponde a las capacidades nominales de los transformadores.
- 5. Buscar en la tabla la columna correspondiente la carga de servicios comunes y cargas especiales por cliente realizando la aproximación por el valor próximo más alto.
- 6. Una vez encontrada la columna, desplazarse por la misma (bajar) hasta encontrar el número de clientes asociados al proyecto, si no se encuentra el valor exacto entonces se debe seleccionar el valor próximo más alto.
- 7. La capacidad del transformador para atender esta carga se encuentra en la Columna TRANSFORMADOR sobre la fila que asocia el número de clientes encontrados en el punto 6.

EJEMPLO DE CÁLCULO DE TRANSFORMADOR DE DISTRIBUCION NORMA CODENSA.

El proyecto a evaluar tiene entonces 110 clientes Estrato 3 con una carga de 42 KVA de servicios comunes, no se tienen cargas especiales. La carga de servicios comunes por cada cliente es:

kVA (SC+CE)/CLIENTE =
$$\frac{42 \text{ kVA} + 0 \text{ kVA}}{110 \text{ Clientes}} = 0.38 \frac{\text{kVA}}{\text{Cliente}}$$

Después de conocer la carga por cliente se debe tener en cuenta únicamente la columna (aproximar por arriba), en este caso la carga que se toma es 0.4 kVA, al buscar en la columna de 0.4 no se encuentra el valor exacto de número de clientes por lo cual se toma el valor próximo más alto correspondiente a 140, de este modo el transformador a utilizar debe tener una capacidad de 112.5 kVA.

ESTRATO 3											
Carga Servicios Comunes por cliente	0 kVA	0.1 kVA	0.2 kVA	0.3 kVA	0.4 kVA	0.5 kVA	0.6 kVA	0.7 kVA	0.8 kVA	0.9 kVA	1.0 kVA
TRANSFORMADORES [KVA]				N	lúmero de	Clientes d	el Proyect	0			
15	46	37	30	26	23	20	18	16	15	14	13
30	71	57	47	41	35	31	28	26	23	21	20
45	123	98	82	70	61	54	49	44	40	37	34
75	175	140	117	100	07	77	70	63	58	53	49
112,5	281	220	187	-00		124	112	101	93	85	79
150	408	327	272	233	200	180	162	147	135	124	115
225	488	391	326	279	243	216	194	176	161	149	138
300	564	451	376	322	281	249	224	203	186	172	159
400	1014	812	676	578	505	449	403	366	335	309	287
500	1238	992	826	707	617	548	493	447	410	378	350
630	1644	1316	1096	938	820	728	654	594	544	502	465
750	2112	1691	1408	1206	1053	935	841	763	699	645	598

Tabla 12. Ejemplo del uso del Método CODENSA.

3.2.2 REGLAMENTO ELECTROTÉCNICO PARA BAJA TENSIÓN E INSTRUCCIONES TÉCNICAS COMPLEMENTARIAS (ITC)BT-10

Esta norma se utiliza para la selección de los transformadores de distribución para España, a continuación, se presenta cuáles son los aspectos y los factores que influyen en el cálculo para el dimensionamiento de los transformadores de la subestación

Se establece la siguiente clasificación de los lugares de consumo:

- Edificios destinados principalmente a viviendas
- Edificios comerciales o de oficinas
- Edificios destinados a una industria específica
- Edificios destinados a una concentración de industrias
- Estacionamientos dotados de infraestructura para la recarga de los vehículos eléctricos.

GRADO DE ELECTRIFICACION Y PREVISION DE LA POTENCIA EN LAS VIVIENDAS.

La carga máxima por vivienda depende del grado de utilización que se desee alcanzar. Se establecen los siguientes grados de electrificación.

GRADO DE ELECTRIFICACION

- Electrificación básica

Es la necesaria para la cobertura de las posibles necesidades de utilización primarias sin necesidad de obras posteriores de adecuación. Debe permitir la utilización de los aparatos eléctricos de uso común en una vivienda.

- Electrificación elevada

Es la correspondiente a viviendas con una previsión de utilización de aparatos electrodomésticos superior a la electrificación básica o con previsión de utilización de sistemas de calefacción eléctrica o de acondicionamiento de aire o con superficies útiles de la vivienda superiores a 160 m2, o con una instalación para la recarga del vehículo eléctrico en viviendas unifamiliares, o con cualquier combinación de los casos anteriores.

PREVISION DE LA POTENCIA

El promotor, propietario o usuario del edificio fijará de acuerdo con la Empresa suministradora la potencia a prever, la cual para nuevas construcciones, no será inferior a 5 750 W a 230 V, en cada vivienda, independientemente de la potencia a contratar por cada usuario, que dependerá de la utilización que éste haga de la instalación eléctrica.

En las viviendas con grado de electrificación elevada, la potencia a prever no será inferior a 9 200 W.

En todos los casos, la potencia a prever se corresponderá con la capacidad máxima de la instalación, definida ésta por la intensidad asignada del interruptor general automático, según se indica en la ITC-BT-25.

CARGA TOTAL CORRESPONDIENTE A UN EDIFICIO DESTINADO A VIVIENDAS.

La carga total correspondiente a un edificio destinado principalmente a viviendas resulta de la suma de la carga correspondiente al conjunto de viviendas, de los servicios generales del edificio, de la correspondiente a los locales comerciales y de los garajes que forman parte del mismo.

La carga total correspondiente a varias viviendas o servicios se calculará de acuerdo con los siguientes apartados:

CARGA CORRESPONDIENTE A UN CONJUNTO DE VIVIENDAS

Se obtendrá multiplicando la media aritmética de las potencias máximas previstas en cada vivienda, por el coeficiente de simultaneidad indicado en la tabla 1, según el número de viviendas.

Nº Viviendas (n)	Coeficiente de Simultaneidad
1	1
2	2
3	3
4	3,8
5	4,6
6	5,4
7	6,2
8	7
9	7,8
10	8,5
11	9,2
12	9,9
13	10,6
14	11,3
15	11,9
16	12,5
17	13,1
18	13,7
19	14,3
20	14,8
21	15,3
n>21	15,3+(n-21).0,5

Tabla 13. Coeficiente de simultaneidad, según el número de viviendas.

Para edificios cuya instalación esté prevista para la aplicación de la tarifa nocturna, la simultaneidad será 1 (coeficiente de simultaneidad = nº de viviendas).

CARGAS CORRESPONDIENTES A SERVICIOS GENERALES.

Será la suma de la potencia prevista en ascensores, aparatos elevadores, centrales de calor y frío, grupos de presión, alumbrado de portal, caja de escalera y espacios comunes y en todo el servicio eléctrico general del edificio sin aplicar ningún factor de reducción por simultaneidad (factor de simultaneidad = 1).

CARGAS CORRESPONDIENTES A LOCALES COMERCIALES Y OFICINAS

Se calculará considerando un mínimo de 100 W por metro cuadrado y planta, con un mínimo por local de 3450 W a 230 V y coeficiente de simultaneidad 1.

CARGAS CORRESPONDIENTES A GARAGES

Se calculará considerando un mínimo de 10 W por metro cuadrado y planta para garajes de ventilación natural y de 20 W para los de ventilación forzada, con un mínimo de 3450W a 230 V y coeficiente de simultaneidad 1.

Cuando en aplicación de la NBE-CPI-96 sea necesario un sistema de ventilación forzada para la evacuación de humos de incendio, se estudiará de forma específica la previsión de cargas de los garajes.

CARGA TOTAL CORRESPONDIENTE A EDIFICIOS COMERCIALES, DE OFICINAS O DESTINADO A LA INDUSTRIA

En general, la demanda de potencia determinará la carga a prever en estos casos que no podrá ser nunca inferior a los siguientes valores.

EDIFICIOS COMERCIALES O DE OFICINA

Se calculará considerando un mínimo de 100 W por metro cuadrado y planta, con un mínimo por local de 3450 W a 230 V y coeficiente de simultaneidad 1.

EDIFICIOS DESTINADOS A CONCENTRACION DE INDUSTRIAS.

Se calculará considerando un mínimo de 125 W por metro cuadrado y planta, con un mínimo por local de 10 350 W a 230 V y coeficiente de simultaneidad 1.

SUMINISTROS MONOFASICOS.

Las empresas distribuidoras estarán obligadas, siempre que lo solicite el cliente, a efectuar el suministro de forma que permita el funcionamiento de cualquier receptor monofásico de potencia menor o igual a 5750 W a 230 V, hasta un suministro de potencia máxima de 14 490 W a 230 V.

3.2.3 ESTUDIO DE DISTRIBUCION DE ENERGIA ELECTRICA Y ALUMBRADO PUBLICO CUENCA Y AREA METROPOLITANA. (INELIN-COINELCA ECUADOR 1986.)

En la actualidad para el dimensionamiento de redes secundarias o de baja tensión, así como los transformadores de distribución, la empresa distribuidora CENTROSUR de Ecuador, determina la demanda basándose en las características de carga de los diferentes tipos de clientes:

- Residenciales
- Comerciales
- Industriales

DESCRIPCION DEL METODO.

Para los clientes residenciales se aplican los siguientes criterios generales:

- Los alimentadores primarios de media tensión se proyectan para 15 años.

- Las redes de baja tensión y transformadores de distribución se dimensionan para un período de entre 8 y 10 años.
- Para el caso de la CENTROSUR en función del área promedio de los lotes, se realiza una clasificación del tipo de cliente y su demanda unitaria promedio proyectada (DMUp), estableciéndose lo siguiente:

ABONADOS DE SECTORES URBANOS							
Área Promedio de Lotes (m²) Abonado Tipo DMUp(KVA) ₁₀ DMUp(KVA							
A > 400	Α	7,47	7,99				
300 < A < 400	В	3,93	4,29				
200 < A < 300	С	2,23	2,48				
100 < A < 200	D	1,36	1,55				
A < 100	Е	0,94	1,09				

Tabla 14. Tipos de clientes del sector urbano según la distribuidora ecuatoriana CENTROSUR.

ABONADOS DEL SECTOR RURAL							
Área Promedio de Lotes (m²) Abonado Tipo DMUp(KVA) ₁₀ DMUp(KVA) ₁₅							
Periferia ciudad	F	1,02	1,16				
Centro parroquial	G	0,84	0,98				
Rural	Н	0,65	0,76				

Tabla 15. Tipos de clientes del sector rural según la distribuidora ecuatoriana CENTROSUR.

La demanda de diseño para la red de baja tensión y transformadores de distribución para un punto dado de la red se calcula mediante la siguiente ecuación:

$$DM_n = DMU_n * N * F_{coin}$$
 Ecuación 2.

Dónde:

 DMU_p : Demanda máxima unitaria proyectada (kVA).

N: Número de clientes.

 F_{coin} : Factor de coincidencia.

 DM_p : Demanda máxima proyectada en el punto dado.

Como se conoce que el factor de coincidencia está en función del número de clientes conectados a la red y para el caso de CENTROSUR está dado por la expresión:

$$F_{coin} = N^{-0.0944}$$
 Ecuación 3.

Las tablas que contienen los valores de demanda diversificada (demanda máxima proyectada) por categorías y número de clientes se encuentran detallados en el Anexo 2.

Además de la demanda de los clientes, debe considerarse, de ser el caso, las demandas de las cargas especiales, así como del alumbrado público.

$$D = DM_P + A + C_e$$
 Ecuación 4.

Dónde:

- D: Demanda de diseño (kVA).
- A: Carga de alumbrado público (kVA).
- Ce: Cargas especiales (puntuales) (kVA).

Para determinar la capacidad de los transformadores de distribución, a los valores de la demanda establecidos, se deberán aplicar los siguientes factores, por concepto de sobrecarga:

CATEGORÍA	FACTOR
Α	0.9
ВуС	0.8
DH	0.7

Tabla 16. Factores de sobrecarga para determinar la capacidad de transformadores de distribución CENTROSUR.

APLICACIÓN DEL METODO¹

La siguiente tabla muestra la información técnica de un transformador de una ciudad ecuatoriana a la cual se le aplica el método.

Código del transformador	183
Alimentador	0103
Capacidad	225 kVA
No. de fases	3
No. de clientes	406
Dirección	Gaspar Sangurima y Padre Aguirre

Tabla 17. Especificaciones del Transformador de una ciudad ecuatoriana.

En primer lugar, se establece la categoría de los clientes que pertenecen al transformador analizado, para el caso del transformador 183, los clientes son categoría D.

De la tabla 12 se tiene que la demanda unitaria proyectada para los clientes categoría D es de 1.36, mientras que el factor de coincidencia, es:

$$F_{coin} = 0.5672$$

La demanda máxima proyectada será de:

$$DM_p = 1.36 * 406 * 0.5672 = 313.18 \, kVA$$

Para encontrar la demanda de diseño del transformador se debe incluir la demanda correspondiente a alumbrado público y cargas especiales, para luego aplicar el factor de

¹ De Trabajo de Graduación: "Determinación de la demanda en Transformadores para los servicios de comercialización en base a los usos de energía, en la empresa eléctrica regional CENTROSUR para la ciudad de Cuenca, Ecuador. 2012 – Campoverde, Darwin y Sánchez, Juan.

sobrecarga. Por el momento no se consideran los valores de alumbrado público y cargas especiales, únicamente la demanda residencial.

 $DM = 219,23 \ kVA$

CAPITULO 4

ESTUDIO ESTADÍSTICO DE CARGABILIDAD EN TRANSFORMADORES DE DISTRIBUCION

4.1 INTRODUCCIÓN

Entre los datos que se analizan, se encuentran los datos de placa del transformador de distribución, por medio de la cual se conoce la capacidad instalada o la potencia nominal del transformador, este parámetro es de suma importancia ya que permite conocer el nivel de utilización del transformador, para definir si se encuentra Sobredimensionado, Correctamente Dimensionado o Sub Dimensionado.

4.2 METODOLOGÍA PARA EL CÁLCULO DE CARGABILIDAD EN LOS TRANSFORMADORES DE DISTRIBUCIÓN

La metodología aplicada se fundamenta en calcular la demanda máxima de los transformadores de distribución a partir del consumo de energía total y, posteriormente, calcular su cargabilidad considerando su capacidad instalada. Para determinar su demanda máxima se convierte su consumo de energía a demanda de potencia por cada hora del día aplicando los factores de responsabilidad horaria definidos por SIGET.

Para lo cual se utilizan los siguientes insumos²:

- Consumo de energía mensual en kWh por usuario Tabla FACTURACIÓN.
- Factores de responsabilidad horaria de la carga por tarifa y por empresa (se toman las tarifas residenciales).
- Vinculación cliente-red para determinar los usuarios conectados a cada transformador de distribución – Tabla DATOS_USUARIOS.
- Capacidad instalada de cada transformador de distribución de alta en dicho mes de análisis - Tabla DATOS_CENTROS.
- Estimación de la carga de Alumbrado Público conectada a cada transformador de distribución.

Formulas aplicadas:

1) Cargabilidad máxima del transformador de distribución (o nivel de Aprovechamiento) [%]

$$Carg_max = \frac{Dem_max}{KVA Inst}$$
 Ecuación 5.

Donde:

- Dem max: Potencia máxima demandada al transformador de distribución [kVA]

² Tablas que son enviadas a SIGET mensualmente por cada una de las empresas distribuidoras.

- KVA Inst³: Capacidad de potencia instalada del transformador de distribución [kVA]
- 2) Demanda máxima [kVA]: Valor máximo de la curva de demanda de potencia promedio del transformador.

$$Dem_{-}Max = Max (Dem_{prom}i + Dem_{prom}AP i)$$
 Ecuación 6.

Donde:

- $Dem_{prom}i$: Potencia promedio del transformador (carga de los usuarios conectados) desde la hora i=1 hasta la 24.
- $Dem_{prom}APi$: Potencia promedio de alumbrado público del transformador desde la hora i=1 hasta la 24.
 - 2.1) Curva de demanda de potencia del transformador.

Se determina la curva de demanda de potencia del transformador a partir de los valores de demanda promedio para cada hora del día (24 puntos).

Ilustración 4. Ejemplo de curva de demanda promedio de un transformador.

$$Dem_{prom}i = \sum_{1}^{n} \frac{FR \times kWh \ diario}{FP}$$
 Ecuación 7.

Donde:

- FR: Factores de responsabilidad horaria por cada categoría tarifaria residencial y de AP, que representan la curva típica de carga de los usuarios de dicha tarifa⁴.

³ A partir de la tabla DATOS CENTROS

⁴ En el Anexo 3 se muestran las tablas de Factores de Responsabilidad Horaria por Distribuidora

- kWh diario: Consumo de energía diaria promedio [kWh]
- FP: Factor de potencia (Se ha normalizado utilizar el valor de 0.9)
- n: cantidad de usuarios conectados al transformador de distribución.
- i: Hora del día (24 puntos de la curva de demanda promedio)
- $Dem_{prom}i$: Demanda promedio en el transformador en la hora i.

ADICIÓN DE CARGA DE ALUMBRADO PÚBLICO

Debido a que actualmente la carga de alumbrado público conectada en baja tensión no está vinculada a su transformador de distribución asociado, pero si tiene un impacto en la cargabilidad de dicho transformador. Se utilizan los resultados de la metodología de distribución de luminarias en función de los postes de baja tensión asociados a cada transformador de distribución y la carga de alumbrado público registrada a cada municipio a partir de los censos de alumbrado público.

$$Dem_{prom}AP \ i = \frac{FR \ AP \times kWh \ AP \ diario}{FP}$$
 Ecuación 9.

Donde:

- FR AP: Factores de responsabilidad horaria tarifa alumbrado público.
- kWh AP diario⁵: Consumo de energía diaria promedio de AP [kWh]
- FP: Factor de potencia (Se ha normalizado utilizar el valor de 0.9)
- i: Hora del día (24 puntos de la curva de demanda promedio)
- *Dem_{prom}AP i*: Demanda promedio de Alumbrado Público en la hora i.
- 3) kWh diario = Consumo de energía diaria promedio [kWh]

kWh diario =
$$\frac{kWh \ mensual}{24*dias_mes}$$
 Ecuación 10.

- kWh mensual⁶: Consumo de energía mensual [kWh]
- días_mes: cantidad de días del mes correspondiente.
- 4) kWh AP diario = Consumo de energía diaria promedio de alumbrado público [kWh]

kWh AP diario =
$$\frac{kWh \ AP \ mensual}{24*dias_mes}$$
 Ecuación 11.

- kWh AP mensual⁷ = Consumo de energía mensual de alumbrado público [kWh]

⁵ A partir del resultado de la metodología de distribución de luminarias en función de los postes de baja tensión.

⁶ A partir de la tabla FACTURACIÓN.

⁷ A partir del resultado de la metodología de distribución de luminarias en función de los postes de baja tensión.

- días mes = cantidad de días del mes correspondiente.

4.3 CLASIFICACIÓN DE LOS TRANSFORMADORES ESTUDIADOS.

De acuerdo al nivel de aprovechamiento de la potencia nominal de un transformador, podemos distinguir 3 clasificaciones.

- Transformador Sobredimensionado:
 - Transformador cuyo porcentaje de cargabilidad se encuentra entre 0% y 30%.
- Transformador Correctamente Dimensionado:
 Se ha definido como aquel que posee un nivel de cargabilidad en el rango de 31% al 100%.
- Transformador Sub-dimensionado:
 Es aquel cuyo nivel de cargabilidad es mayor al 100% en la mayor parte de las horas del día.

De acuerdo al tipo de servicio, los transformadores se pueden clasificar en⁸:

- Transformador Urbano: es aquel ubicado en una zona con densidad de carga alta o la demanda de energía eléctrica de los usuarios es al menos 250kW.
- Transformador Rural: es aquel que está ubicado en una zona con densidad de carga baja o la demanda de los usuarios es menor que 250kW.

La muestra de transformadores estudiados corresponde a algunas de las empresas distribuidoras del país, vale aclarar que aquellos transformadores que poseen usuarios con tarifas definidas como gran demanda, fueron excluidos del análisis, esto con el fin de únicamente delimitar el estudio a los transformadores clasificados con demanda de usuarios residenciales.

La muestra de transformadores se compone de la siguiente forma:

- Distribuidora A: 13,187 Transformadores.
- Distribuidora B: 10,736 Transformadores.
- Distribuidora C: 4,233 Transformadores.
- Distribuidora D: 2,586 Transformadores.

Obteniéndose una muestra total de 30,742 Transformadores procesados.

Del estadístico de cargabilidad por tipo de servicio de los transformadores, ya sea Rural o Urbano, se obtienen los siguientes resultados:

⁸ Clasificaciones descritas en las Normas de Calidad del Servicio de los Sistemas de Distribución, SIGET, Anexo B: Metodología de Control de Calidad Servicio Técnico.

Distribuidora A:

- Transformadores Urbanos

Transformadores Sobredimensionados	4298
Transformadores Correctamente Dimensionados	3442
Transformadores Subdimensionados	33

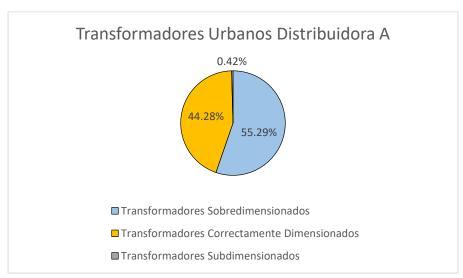
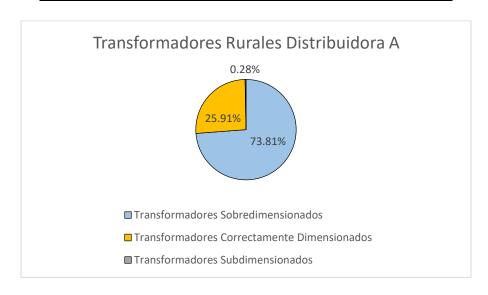



Ilustración 5. Muestra de Transformadores Urbanos – Distribuidora A.

- Transformadores Rurales:

Transformadores Sobredimensionados	3996
Transformadores Correctamente Dimensionados	1403
Transformadores Subdimensionados	15

Distribuidora B:

- Transformadores Urbanos

Transformadores Sobredimensionados	1817
Transformadores Correctamente Dimensionados	2104
Transformadores Subdimensionados	48

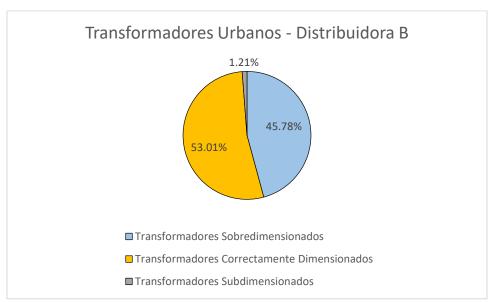


Ilustración 7. Muestra de Transformadores Urbanos – Distribuidora B.

- Transformadores Rurales

Transformadores Sobredimensionados	4856
Transformadores Correctamente Dimensionados	1880
Transformadores Subdimensionados	31

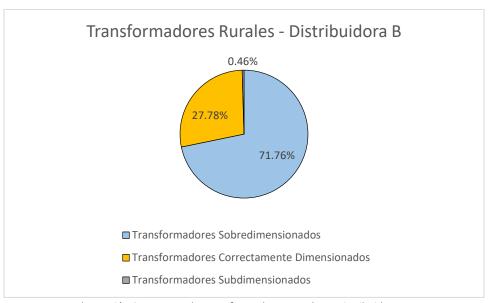


Ilustración 8. Muestra de Transformadores Rurales – Distribuidora B.

- Transformadores Urbanos

Transformadores Sobredimensionados	635
Transformadores Correctamente Dimensionados	665
Transformadores Subdimensionados	0

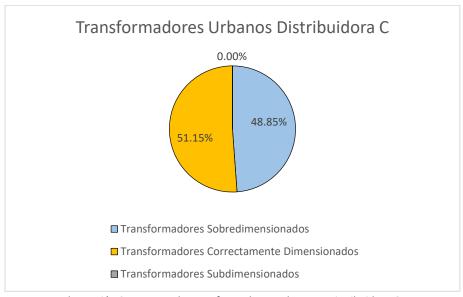


Ilustración 9. Muestra de Transformadores Urbanos – Distribuidora C.

- Transformadores Rurales

Transformadores Sobredimensionados	2235
------------------------------------	------

Transformadores Correctamente Dimensionados	695
Transformadores Subdimensionados	3

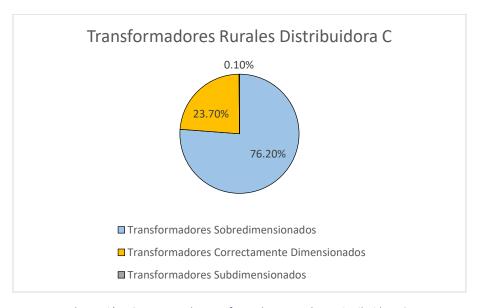


Ilustración 10. Muestra de Transformadores Rurales – Distribuidora C.

Distribuidora D:

- Transformadores Urbanos

Transformadores Sobredimensionados	98
Transformadores Correctamente Dimensionados	373
Transformadores Subdimensionados	6

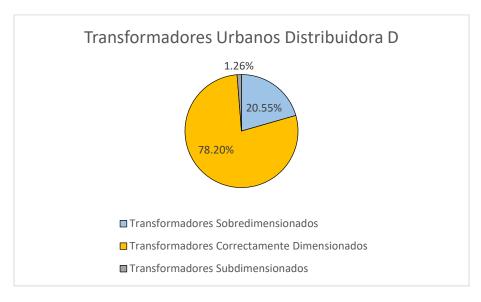


Ilustración 11. Muestra de Transformadores Urbanos – Distribuidora D.

- Transformadores Rurales

Transformadores Sobredimensionados	1502
Transformadores Correctamente Dimensionados	605
Transformadores Subdimensionados	2

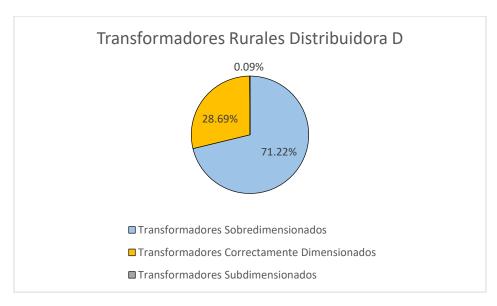


Ilustración 12. Muestra de Transformadores Rurales - Distribuidora D.

Totales:

- Transformadores Urbanos

Transformadores Sobredimensionados	6848
Transformadores Correctamente Dimensionados	6584
Transformadores Subdimensionados	87

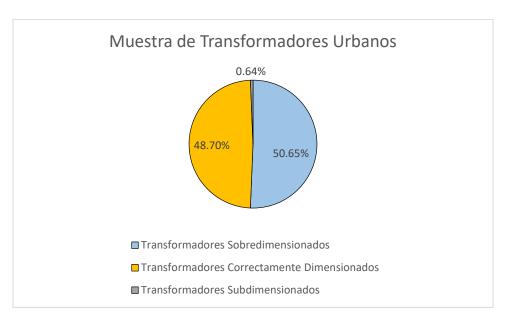


Ilustración 13. Muestra total de Transformadores Urbanos.

- Transformadores Rurales

Transformadores Sobredimensionados	12589
Transformadores Correctamente Dimensionados	4583
Transformadores Subdimensionados	51

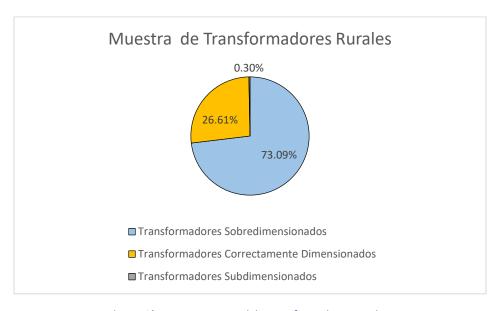


Ilustración 14. Muestra total de Transformadores Rurales.

- Total Muestra de Transformadores:

Transformadores Sobredimensionados	19437
Transformadores Correctamente Dimensionados	11167
Transformadores Subdimensionados	138

Ilustración 15. Muestra total de Transformadores.

Del gráfico anterior, se puede observar que el sobredimensionamiento de transformadores o bajo nivel de aprovechamiento de los mismos, es un problema significativo tanto en el área urbana como en el área rural. Apenas un 36.32% de la muestra de Transformadores están óptimamente dimensionados, mientras que un 63.23% están sobredimensionados.

CAPITULO 5

MÉTODO PROPUESTO PARA EL CÁLCULO DE TRANSFORMADORES DE DISTRIBUCIÓN

5.1 DESCRIPCIÓN DEL MÉTODO PROPUESTO

Para estimar la capacidad de un transformador de distribución para un proyecto residencial se propone realizar con la fórmula siguiente:

$$T = \frac{1}{fp} [D_{RES} + D_{AL} + D_{ESP}]$$
 Ecuación 12.

Donde:

T: Capacidad calculada del transformador en kVA

fp: Factor de potencia de 0.9

D_{RES}: Demanda máxima calculada en kW del proyecto residencial mediante la ecuación 13:

$$D_{RES} = n \cdot D_{max} \cdot f_{cre} \cdot f_{sim}$$
 Ecuación 13.

Donde:

n: Número de viviendas del proyecto

D_{max}: Demanda máxima a la hora pico que se presenta en la noche

f_{cre}: Factor de crecimiento del 125%

f_{sim}: Factor de simultaneidad, que puede ser de 0.5 a 1.0

Se ha supuesto que la demanda máxima se presenta en la noche.

D_{AL}: Demanda de alumbrado público, la cual afecta principalmente en la demanda pico de la noche, calculada con la ecuación 14:

$$D_{AL} = n_l \cdot P_l$$
 Ecuación 14.

Donde:

D_{AL}: Demanda de la lámpara

n_I: Número de lámparas de alumbrado público a instalar. El número máximo de lámparas asociadas a un transformador depende del grado de urbanización de la zona y la extensión del proyecto. En zonas de baja utilización se pueden contemplar de tres a cinco lámparas; mientras en zonas de mayor urbanización pueden ser de 7 a 12.

P₁: Potencia de la lámpara que se determina de acuerdo al tipo a instalar. En municipios con enfoque de uso eficiente de energía se seleccionan lámparas LED.

D_{ESP}: Demanda que considera la alimentación de carga especial como bombas de agua, la cual se calcula de 0.75 kW por cada HP.

5.2 TABLAS A UTILIZAR EN EL MÉTODO PROPUESTO

A continuación, se detallan tablas las cuales complementan los datos a utilizar en las ecuaciones antes descritas.

Potencias demandadas clasificadas por tipo de usuario y por distribuidora:

Distribuidora	Demanda máxima Urbana (W)	Demanda máxima Rural (W)
CAESS	296	218
CLESA	256	195
EEO	232	178
DEUSEM	230	178

Tabla 18. Demanda máxima para viviendas en zonas rurales calculadas en base a los consumos reales y caracterización de la carga en forma horaria.

Luminarias utilizadas para Alumbrado Público por tipo de tecnología:

Tipo de luminaria	Capacidades (W)
Lámparas incandescentes	25, 40, 60, 100, 200, 300
Lámparas fluorescentes	20, 32, 40, 55, 65, 2x40,
	4x40
Lámparas de vapor de mercurio	175, 250, 400
Lámparas LED	80, 120, 180

Tabla 19. Capacidades usuales de lámparas de alumbrado público.

Cantidad de luminarias por tipo de zona:

Cobertura del alumbrado público	Urbano	Rural
Bajo	5	3
Medio – Alto	10	6

Tabla 20. Cantidad de lámparas asociadas a un transformador de distribución.

Factores de Simultaneidad:

Número de viviendas	Electrificación mínima y media	Electrificación alta
2 a 4	1	0.8
5 a 15	0.8	0.7
16 a 25	0.6	0.5
> 25	0.5	0.4

Tabla 21. Factores de simultaneidad según la Asociación Electrotécnica Argentina (AEA).

5.3 DISEÑO DE HERRAMIENTA EN EXCEL PARA EL DISEÑO Y ESTUDIO DE CARGABILIDAD DE UN TRANSFORMADOR DE DISTRIBUCION

Utilizando el método antes descrito y haciendo uso completo de los diferentes insumos requeridos, se diseñó una hoja de cálculo en la cual se puede conocer con mayor detalle el perfil de carga de un transformador a lo largo de las 24 horas del día, su nivel de aprovechamiento, las demandas máximas y promedio.

Para el desarrollo de esta herramienta se utilizó la siguiente información:

Factores de Responsabilidad Horaria.

Mediante acuerdo SIGET No. 664-E-2013, se aprueban las tablas definidas como los Factores de Responsabilidad Horaria para cada una de las empresas distribuidoras, los cuales permiten convertir el valor en consumo de energía mensual de un usuario a demanda horaria en un transformador de distribución. Dichas tablas se agregan en el Anexo 3 del presente trabajo.

A partir de estas tablas, se obtuvo una nueva tabla definida como factores de responsabilidad horaria ajustados, ya que es necesario estandarizar un perfil de consumo de los usuarios que se conectarán a un nuevo transformador de distribución y, a partir de estos, se construye la curva diaria de carga de un transformador.

Dichos factores ajustados se muestran en la siguiente tabla.

	FACTORES DE RESPONSABILIDAD HORARIA AJUSTADOS			
Hora	А	В	С	D
0	0.67095	0.67165	0.8611	0.74375
1	0.6111	0.646875	0.817025	0.7125
2	0.57725	0.6287	0.794775	0.69355
3	0.5618	0.6201	0.761975	0.68115
4	0.5727	0.642325	0.767675	0.715
5	0.662575	0.72605	0.82265	0.80535
6	0.780875	0.846375	0.837975	0.8607
7	0.82875	0.888425	0.860225	0.911375
8	0.95825	0.99625	0.96525	0.9962
9	1.0696	1.103875	1.00745	1.035925
10	1.1357	1.120125	1.0317	1.074325
11	1.171325	1.14575	1.063975	1.087875
12	1.219425	1.142825	1.0682	1.110425
13	1.207475	1.129025	1.072875	1.118
14	1.217875	1.131175	1.074375	1.11595
15	1.212475	1.12165	1.0756	1.109075
16	1.199775	1.134875	1.036925	1.08745
17	1.178175	1.14975	1.054275	1.0786
18	1.324375	1.359075	1.247475	1.3062

19	1.424	1.4753	1.392075	1.505125
20	1.38075	1.4246	1.3214	1.3769
21	1.24935	1.218275	1.15625	1.1467
22	1.00195	0.9253	1.003925	0.922625
23	0.78335	0.751625	0.9048	0.8052

Tabla 22. Factores de responsabilidad horaria ajustados por empresa distribuidora.

Para convertir el valor de energía mensual de un usuario a demanda horaria, se utiliza la Ecuación 7 definida en el capítulo 4.

Número de usuarios conectados al transformador.

Es necesario conocer el número de usuarios que se conectarán a un transformador de distribución, para conocer el comportamiento de la demanda horaria en el mismo.

Empresa distribuidora a la cual se conectarán dichos usuarios.

De acuerdo al estudio realizado, se observa que el comportamiento de los consumos de energía de los usuarios varía de acuerdo a la empresa a la cual se va a conectar.

Tipo de clientes (Urbanos o Rurales).

El diferenciar el perfil de un usuario urbano de uno rural, ayuda a una mejor obtención de las demandas horarios en el transformador, ya que los consumos de energía mensuales en la zona urbana son mayores a los de la zona rural.

Número de luminarias de Alumbrado Público que se conectarán al transformador.

En algunos transformadores de distribución se realiza la conexión de cierta cantidad de luminarias de alumbrado público, con diferente tecnología y, por ende, diferentes valores de demanda. En el anexo 3 se detallan los Factores de Responsabilidad Horaria de Alumbrado Público por empresa distribuidora a utilizar.

Tablas de energía promedio mensual de acuerdo al tipo de usuario.

De acuerdo al estudio de las tablas de facturación de energía del mes de Julio 2017 de cada una de las empresas distribuidoras del Grupo AES, se obtuvieron las siguientes tablas:

Distribuidora	Energía Cliente Residencial Estimada (kWh-Mes)
Α	110
В	95
С	90
D	85

Tabla 23. Energías mensuales promedio para usuarios rurales.

Distribuidora	Energía Cliente Residencial Estimada (kWh-Mes)
Α	150
В	125
С	120
D	110

Tabla 24. Energías mensuales promedio para usuarios urbanos.

Con los parámetros descritos, se procede a la elaboración de una herramienta automatizada en Excel que devuelva resultados óptimos de cargabilidad de un transformador, así como una gráfica que permita conocer el comportamiento de la demanda horaria en el mismo.

El modelo consta de 3 partes importantes:

1- Los datos de entrada: son los parámetros que el usuario define para el dimensionamiento de un nuevo transformador de distribución a instalar.

Tipo de Transformador	U	
Distribuidora	A	
Numero de Luminarias de Alumbrado Público	5	
Tecnología de Luminarias	Led	
Potencia de La Luminaria	100 W	
Potencia de la cummaria	100	vv
Numero de Usuarios Trafo	45	
Factor de potencia asumido	0.9	

Ilustración 16. Datos de entrada en el modelo diseñado.

- Ingresar el tipo de transformador a dimensionar, ya sea Urbano o Rural.
- En la casilla Distribuidora se debe seleccionar la Distribuidora para la cual se desea dimensionar el transformador nuevo a instalar
- En la celda de Numero de Luminarias de AP se debe ingresar la cantidad de luminarias que se conectaran al transformador.
- En la tecnología de luminarias seleccionar el tipo de luminarias a conectar al transformador.
- Se debe seleccionar la potencia (en Watts) de la tecnología de luminarias seleccionada.
- En número de usuarios se debe ingresar la cantidad de usuarios que se conectaran al transformador que se está dimensionando.
- Definir el factor de potencia (FP) del sistema.

2- Los datos de salida: son el resultado del procesamiento de los datos de entrada haciendo uso de cada uno de los insumos antes descritos y de las ecuaciones detalladas.

Demanda Promedio en el Trafo	3.36 kVA	
Demanda Prom. con Factor de Crecimiento del 25%	4.2	kVA
Máxima demanda Horaria Estimada	4.78 kVA	
Capacidad del Transformador a Instalar	15 kVA	
Porcentaje de Cargabilidad en el Trafo Seleccionado	32%	

Ilustración 17. Datos de salida.

3- Gráfico de demanda horaria: El aspecto más importante del modelo, ya que, a partir de él, se visualiza el comportamiento esperado en la demanda del transformador a instalar.

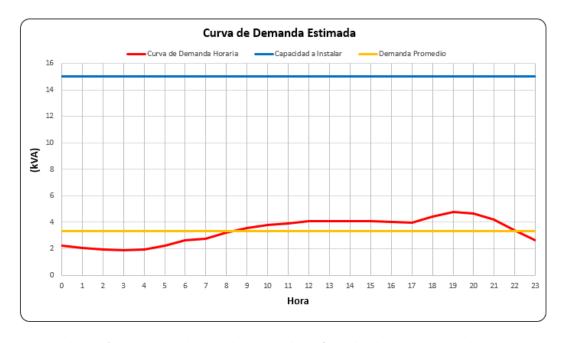


Ilustración 18. Curva de demanda horaria en el transformador obtenida en el modelo.

5.4 COMPARATIVA ENTRE LAS DEMANDAS MAXIMAS REALES Y EL USO DEL MODELO PROPUESTO.

A partir de los cálculos desarrollados en la herramienta propuesta, es posible comparar las demandas máximas horarias obtenidas.

Esta comparativa se desarrolla con el fin de conocer el grado de estimación del método propuesto, para determinar el correcto dimensionamiento de un transformador de distribución de acuerdo al número de usuarios y el tipo de usuarios. En estas tablas no se incluyen los agregados de luminarias de alumbrado público, ya que se considera que estas no aumentan significativamente la cargabilidad del transformador.

En la siguiente tabla se detallan los parámetros de interés, tales como el código del Transformador, el número de usuarios conectados, la máxima demanda registrada (real) y la máxima demanda que estima la herramienta diseñada en Excel. Se muestra una tabla resumen correspondiente a la Distribuidora A, estas tablas se ampliarán en el Anexo 2 del presente trabajo.

DISTRIBUIDORA A

Trafo	Núm. Usuario s	Max Demanda Registrad a	Max Demanda Método Propuest o	Capacida d Trafo	% Cargabilida d Registro	% Cargabilida d Método Prop	Diferenci a Demanda s	Tipo Traf o
T10000	47	11.45	14.99	50	23%	30%	-3.54	U
T10000 5	10	2.06	3.19	25	8%	13%	-1.13	U
T10001 5	51	12.90	16.27	50	26%	33%	-3.37	U
T10005	71	26.53	22.65	50	53%	45%	3.88	U
T10005 0	1	0.60	0.23	45	1%	1%	0.36	R
T10007 0	3	0.65	0.70	10	6%	7%	-0.05	R
T10007 5	22	2.67	5.15	25	11%	21%	-2.48	R
T10009 0	4	0.43	0.94	10	4%	9%	-0.51	R
T10010	110	30.72	35.09	75	41%	47%	-4.37	U
T10013	43	7.11	10.06	25	28%	40%	-2.95	R
T10015	98	26.83	31.26	50	54%	63%	-4.43	U
T10016 0	4	0.22	0.94	10	2%	9%	-0.72	R
T10016 5	8	0.52	2.55	10	5%	26%	-2.04	U
T10018 5	55	10.20	12.87	50	20%	26%	-2.67	R
T10020	12	2.15	3.83	75	3%	5%	-1.68	U

Tabla 25. Resumen de comparativas entre demandas reales y demandas estimadas.

A continuación, se describen las columnas que conforman la tabla:

- Columna Trafo:

Es la que contiene el código del transformador de distribución con el cual se encuentra registrado en la empresa distribuidora.

- Número de Usuarios:

Detalla el número de usuarios conectados al transformador.

- Max Demanda Registrada:

Corresponde a la demanda máxima real en el trasformador de distribución.

- Max Demanda Método Propuesto:

Contiene el valor de demanda máxima obtenido haciendo uso de la herramienta diseñada en Excel.

- Capacidad Trafo:

Es la capacidad nominal del transformador.

- Porcentaje de Cargabilidad Registro:

Cociente entre la Máxima Demanda Registrada y la Capacidad Trafo.

- Porcentaje de Cargabilidad Método Propuesto

Cociente entre la Máxima Demanda Método Propuesto y la Capacidad Trafo.

Diferencia Demandas:

Resultado de la resta entre la Máxima Demanda Registrada menos la Máxima Demanda Método Propuesto. Se tienen 2 casos:

- Si el resultado es Mayor que 0, la demanda real es mayor que la demanda estimada
- Si el resultado es Menor que 0, la demanda estimada es mayor que la demanda real

- Tipo Trafo:

Corresponde al tipo de usuarios que sirve el transformador, si es U sirve a usuarios Urbanos, si es R sirve a usuarios de la zona Rural.

Como se puede observar, los resultados obtenidos haciendo uso de la herramienta en Excel no difieren significativamente de las demandas máximas reales, por lo que se puede concluir que los resultados que se obtendrán para el dimensionamiento de nuevos transformadores de distribución, serán óptimos.

Es de mencionar, que los porcentajes de cargabilidad mostrados en las tablas están calculados en base a la capacidad real instalada, razón por la cual, existen porcentajes abajo del valor considerado como óptimo, con el uso de la herramienta en Excel, se obtienen capacidades nominales de transformadores que cumplen con la condición de un transformador correctamente dimensionado.

5.5 EFECTIVIDAD DEL METODO PROPUESTO.

Para conocer el porcentaje de efectividad del método propuesto, es necesario comparar las capacidades reales instaladas y las capacidades recomendadas mediante el uso del método antes descrito.

En la siguiente tabla se muestra un resumen de las comparativas:

Trafo	Núm. Usuarios	Max Demanda Registrada	Max Demanda Método Propuesto	Capacidad Trafo	% Cargabilidad Registro	% Cargabilidad Método Prop	Diferencia Demandas	Tipo Trafo	Capacidad Recomendada Método Prop	Cargabilidad Capacidad Recom	Comparativa Capacidades
T10000	47	11.45	14.99	50	22.90%	29.99%	-3.54	U	15	99.95%	0
T100005	10	2.06	3.19	25	8.25%	12.76%	-1.13	U	10	31.90%	0
T100010	3	0.13	0.70	25	0.53%	2.81%	-0.57	R	10	7.02%	0
T100015	51	12.90	16.27	50	25.80%	32.54%	-3.37	U	25	65.08%	0
T100020	34	5.67	10.85	38	14.92%	28.54%	-5.18	U	15	72.31%	0
T100025	46	7.04	14.67	38	18.52%	38.62%	-7.64	U	15	97.83%	0
T100030	27	1.46	8.61	500	0.29%	1.72%	-7.15	U	10	86.13%	0
T100035	28	4.63	8.93	500	0.93%	1.79%	-4.30	U	10	89.32%	0
T100045	3	0.01	0.70	25	0.02%	2.81%	-0.70	R	10	7.02%	0
T10005	71	26.53	22.65	50	53.06%	45.30%	3.88	U	25	90.59%	0
T100050	1	0.60	0.23	45	1.32%	0.52%	0.36	R	10	2.34%	0
T100070	3	0.65	0.70	10	6.47%	7.02%	-0.05	R	10	7.02%	1
T100075	22	2.67	5.15	25	10.66%	20.59%	-2.48	R	10	51.46%	0
T100090	4	0.43	0.94	10	4.27%	9.36%	-0.51	R	10	9.36%	1
T10010	110	30.72	35.09	75	40.96%	46.79%	-4.37	U	38	92.34%	0
T100120	1	0.00	0.23	25	0.00%	0.94%	-0.23	R	10	2.34%	0
T100135	43	7.11	10.06	25	28.45%	40.24%	-2.95	R	15	67.06%	0
T10015	98	26.83	31.26	50	53.66%	62.52%	-4.43	U	38	82.27%	0
T100150	3	0.05	0.70	10	0.48%	7.02%	-0.65	R	10	7.02%	1
T100155	3	0.02	0.70	10	0.23%	7.02%	-0.68	R	10	7.02%	1

Tabla 26. Comparativa de Capacidades Instaladas Reales versus Capacidades Recomendadas por el Método Propuesto.

De la columna Comparativa Capacidades de la tabla anterior, se tienen 2 casos:

- Igual a 0: Si las capacidades Real y Recomendada son diferentes.
- Igual a 1: Si las capacidades Real y Recomendada son iguales.

Para conocer el porcentaje de efectividad del método, se realiza un promedio de la columna Comparativa Capacidades. Se hace la diferencia de 1 - Promedio y ese valor corresponde al porcentaje de efectividad del método, el cual corresponde a un 92.64% de efectividad.

En el Anexo 4 del presente documento se amplían las comparativas realizadas por distribuidora.

La metodología resumida se describe en el Anexo 5.

CONCLUSIONES

- El perfil de consumo de energía mensual un usuario Urbano es 26 % mayor magnitud al de un usuario rural, eso se debe a factores tales como la capacidad económica, la localización geográfica, la diversidad de carga instalada, etc. Esta poca diferencia puede explicarse en el amplio comportamiento rural de la demanda. No obstante existen en el área metropolitana de San Salvador, sectores de mayor consumo en los que los factores de demanda son más altos.
- La metodología que se usa actualmente en nuestro país, ha provocado un 66.4 % de sobredimensionamiento apreciable en los transformadores de distribución instalados en la red eléctrica, debido al uso de algunas técnicas empíricas al momento de instalar servicios nuevos o a la ruralidad de país en donde se ha utilizado transformadores de 15 kVA para alimentar un número reducido de familias.
- Se revisó el método de cálculo del NEC el cual generalmente producirá un sobredimensionamiento de los transformadores, debido a que el patrón de consumo en El Salvador es diferente con factores de demanda más bajos. Además, se revisó el método de dimensionamiento de transformadores de Colombia, España y otros países a fin de considerar sus criterios y hacer un estudio comparativo, encontrándose diferencias en el patrón de consumo y factores de demanda, siempre mayores que los reales de nuestro país.
- De los perfiles de carga de transformadores residenciales se observa que la demanda pico se encuentra en horas nocturnas (18 a las 21 horas). Esto se debe al mayor consumo que existe a esas horas, ya que es cuando la mayoría de la población retorna a sus hogares y hace uso de las luminarias y sus electrodomésticos.
- Los factores identificados que influyen en la cargabilidad de los transformadores de distribución son: tipo de usuario al que sirve, localización geográfica, la capacidad nominal instalada, uso de luminarias de alumbrado público y cargas especiales como bombeo. En la investigación con la empresa distribuidora no se encontró un impacto relevante por efecto de carga armónica en la demanda máxima, incluso cuando el transformador de distribución alimenta iluminación LED y equipos electrónicos.
- La optimización del diseño de las redes eléctricas del país utilizando el método propuesto tiene un porcentaje de eficiencia de 92.6% respecto a los transformadores reales que fueron analizados en el presente estudio.
- La comparación entre los resultados obtenidos con el método actualmente utilizado en nuestro país con el método propuesto, nos muestra que el nivel de acoplamiento de la demanda real en el área residencial es mayor con el método propuesto un 92.6%.

RECOMENDACIONES

La implementación de la metodología propuesta brinda resultados más ajustados a la realidad salvadoreña, ya que se realizaron estudios de casos para el desarrollo del método. Para el diseño de nuevos sistemas de distribución deben considerarse los cálculos obtenidos con el método propuesto, esto con el fin de evitar el sobredimensionamiento de los elementos del mismo y reducir las pérdidas eléctricas.

La clasificación de los usuarios residenciales es de suma importancia para obtener resultados óptimos, ya que los hábitos de consumo son diferentes.

Proponer la utilización de transformadores de 5 kVA y 10 kVA, para zonas donde la demanda es demasiada pequeña (1 a 5 Usuarios), principalmente en áreas rurales del país.

Realizar estudios complementarios que incluyan el análisis de los armónicos a los que está expuesto el transformador, aunque al analizar estudios realizados por las distribuidoras los niveles de distorsión armónicas en los transformadores de distribución, incluyendo sectores de mayor consumo de San Salvador y que alimentan iluminación LED, están dentro del rango tolerable por la normativa de Calidad de SIGET. No obstante, pueden presentarse problemas de calentamiento y pérdidas eléctricas por la circulación de corrientes de tercer armónico por arriba de la capacidad de transformadores de tierra y/o transformadores de potencia que pueden acortar la vida de este equipamiento; dichos niveles de distorsión armónica a nivel residencial deben ser mitigado.

BIBLIOGRAFIA

- 1- SIGET, (2014). Normas de Calidad del Servicio de los Sistemas de Distribución
- 2- NFPA, (2008), Código Nacional Eléctrico versión español.
- 3- Campoverde, Darwin y Sánchez, Juan, (2012). Determinación de la demanda en Transformadores, para los servicios de Comercialización en base a los usos de energía, en la empresa eléctrica regional CENTROSUR para la ciudad de Cuenca.
- 4- SIGET, (2014). Anexo A Metodología de Control Calidad Servicio Comercial.
- 5- SIGET, (2014). Anexo B Metodología de Control Calidad Servicio Técnico.
- 6- SIGET, (2014). Anexo C Metodología de Control Calidad Producto Técnico R.
- 7- Bases de datos de 4 Distribuidoras Eléctricas de El Salvador.

ANEXOS.

ANEXO 1.
TABLAS DE DIMENSIONAMIENTOS DE TRANSFORMADORES NORMA
CODENSA". (NTC - 2050 COLOMBIA)

	E	S	T	R A	Т	0	1								
Carga Servicios Comunes por cliente [KVA]		0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1	1.1	1.2	1.3	1.4
TRANSFORMADORES [KVA]					Núr	nero (de Cli	entes	del Pr	royect	0				
15	50	38	31	26	22	19	17	15	14	12	-11	-11	10	9	9
30	101	75	60	49	42	36	32	29	26	24	22	20	19	18	16
45	150	116	94	78	67	58	52	46	42	38	35	33	30	28	27
75	245	185	146	121	103	89	79	71	64	59	54	50	47	44	41
112,5	361	282	230	193	165	143	127	114	103	94	87	80	75	70	66
150	477	374	305	257	221	194	172	155	140	128	118	110	102	96	90
225	691	514	407	337	287	250	221	198	179	164	151	140	130	122	115
300	797	593	470	389	331	288	255	229	207	189	174	162	151	141	132
400	1227	969	797	674	582	511	455	410	373	341	314	291	271	254	238
500	1525	1206	992	840	726	633	560	503	456	416	384	355	331	310	291
630	1904	1509	1243	1053	911	801	714	643	585	536	495	459	428	401	377
750	2324	1794	1479	1253	1084	953	850	766	696	638	589	546	510	477	449

	E	3 T	R	Α	ТС	<u> </u>	1							
Carga Servicios Comunes por cliente [KVA]	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8
TRANSFORMADORES [KVA]					Númer	o de	Client	es del	Proye	ecto				
15	8	8	7	7	6	6	6	6	5	5	5	5	5	4
30	15	15	14	13	13	12	- 11	11	- 11	10	10	9	9	9
45	25	24	23	21	20	19	19	18	17	16	16	15	15	14
75	39	37	35	33	31	30	29	27	26	25	24	24	23	22
112,5	62	59	56	53	51	48	46	44	43	41	39	38	37	36
150	85	80	76	72	69	66	63	60	58	56	54	52	50	49
225	108	102	97	92	88	84	81	77	74	71	69	66	64	62
300	125	118	112	107	102	97	93	89	86	83	80	77	74	72
400	225	213	202	192	183	175	168	161	155	149	143	138	134	129
500	275	260	247	235	224	214	205	197	189	182	175	169	163	158
630	356	337	320	304	290	277	266	255	245	236	227	219	212	205
750	423	401	381	362	345	330	316	303	291	281	270	261	252	244

		_												-
	Е	S T	R	Α	T C)	1							
Carga Servicios Comunes por cliente [KVA]	7.9	3	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2
TRANSFORMADORES [KVA]					Númei	o de	Client	es del	Proy	ecto				
15	4	4	4	4	4	4	3	3	3	3	3	3	3	3
30	8	8	8	8	7	7	7	7	7	6	6	6	6	6
45	14	13	13	13	12	12	11	11	- 11	- 11	10	10	10	10
75	21	21	20	19	19	18	18	17	17	16	16	16	15	15
112,5	34	33	32	31	30	30	29	28	27	27	26	25	25	24
150	47	46	44	43	42	40	39	38	37	36	36	35	34	24 33
225	60	58	56	55	53	52	50	49	48	47	46	44	43	
300	69	67	65	63	62	60	58	57	55	54	53	51	50	49
400	125	121	118	114	111	108	105	102	100	97	95	93	91	89
500	153	148	144	140	136	132	129	125	122	119	116	113	111	108
630	198	192	186	181	176	171	167	162	158	154	151	147	144	140
750	236	229	222	216	210	204	198	193	188	184	179	175	171	167

														$\overline{}$
	E	s T	R	Α	T C)	1							
Carga Servicios Comunes por cliente [KVA]		4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6
TRANSFORMADORES [KVA]					Númei	ro de	Client	es de	Proy	ecto				
15	3	3	3	3	3	2	2	2	2	2	2	2	2	2
30	6	6	5	5	5	5	5	5	5	5	5	4	4	4
45	9	9	9	9	9	8	8	8	8	8	8	7	7	7
75	15	14	14	14	13	13	13	13	12	12	12	12	- 11	11
112,5	24	23	23	22	22	21	21	20	20	20	19	19	19	18
150	32	32	31	30	30	29	29	28	27	27	26	26	26	25
225	41	41	40	39	38	37	37	36	35	35	34	33	33	32
300	48	47	46	45	44	43	42	42	41	40	39	39	38	37
400	87	85	83	81	80	78	76	75	74	72	71	70	68	67
500	106	104	101	99	97	95	94	92	90	88	87	85	84	82
630	137	134	131	129	126	124	121	119	117	115	112	110	109	107
750	163	160	157	153	150	147	144	142	139	136	134	132	129	127

	F	S T	R	Δ	т с	<u> </u>	1							
Carga Servicios Comunes por cliente (KVA)	5.7	5.8	5.9	6	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7
TRANSFORMADORES [KVA]					Númei	ro de	Client	es del	Proye	ecto				
15	2	2	2	2	2	2	2	2	2	2	2	2	2	2
30	4	4	4	4	4	4	4	4	4	4	4	3	3	3
45	7	7	7	7	7	6	6	6	6	6	6	6	6	6
75	11	11	11	11	10	10	10	10	10	10	9	9	9	9
112,5	18	18	17	17	17	17	16	16	16	16	15	15	15	15
150	25	24	24	23	23	23	22	22	22	21	21	21	20	20
225	32	31	31	30	30	29	29	28	28	27	27	27	26	26
300	37	36	35	35	34	34	33	33	32	32	31	31	30	30
400	66	65	64	63	62	61	60	59	58	57	57	56	55	54
500	81	80	78	77	76	75	73	72	71	70	69	68	67	66
630	105	103	101	100	98	97	95	94	92	91	90	88	87	86
750	125	123	121	119	117	115	113	112	110	108	107	105	104	102

	E \$	S T	R	Α	TC)	1							
Carga Servicios Comunes por cliente [KVA]	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	8.1	8.2	8.3	8.4
TRANSFORMADORES [KVA]					Númei	ro de	Client	es del	Proy	ecto				
15	2	2	1	1	1	1	1	1	1	1	- 1	1	1	1
30	3	3	3	3	3	3	3	3	3	3	3	3	3	3
45	6	6	5	5	5	5	5	5	5	5	5	5	5	5
75	9	9	9	8	8	8	8	8	8	8	8	8	8	7
112,5	14	14	14	14	14	14	13	13	13	13	13	13	12	12
150	20	20	19	19	19	19	18	18	18	18	17	17	17	17
225	26	25	25	24	24	24	24	23	23	23	22	22	22	22 25
300	30	29	29	28	28	28	27	27	27	26	26	26	25	25
400	53	53	52	51	51	50	49	49	48	48	47	46	46	45
500	65	65	64	63	62	61	60	60	59	58	58	57	56	56 72
630	85	84	83	81	80	79	78	77	76	75	75	74	73	72
750	101	100	98	97	96	95	93	92	91	90	89	88	87	86

ANEXO 2.
TABLAS COMPARATIVAS POR DISTRIBUIDORA ENTRE LAS DEMANDAS MAXIMAS REALES Y ESTIMADAS.
DISTRIBUIDORA A.

Trafo	Núm. Usuarios	Max Demanda Registrada	Max Demanda Método Propuesto	Capacidad Trafo	% Cargabilidad Registro	% Cargabilidad Método Prop	Diferencia Demandas	Tipo Trafo
T10000	47	11.45	14.99	50	23%	30%	-3.54	U
T100005	10	2.06	3.19	25	8%	13%	-1.13	U
T100015	51	12.90	16.27	50	26%	33%	-3.37	U
T10005	71	26.53	22.65	50	53%	45%	3.88	U
T100050	1	0.60	0.23	45	1%	1%	0.36	R
T100070	3	0.65	0.70	10	6%	7%	-0.05	R
T100075	22	2.67	5.15	25	11%	21%	-2.48	R
T100090	4	0.43	0.94	10	4%	9%	-0.51	R
T10010	110	30.72	35.09	75	41%	47%	-4.37	U
T100135	43	7.11	10.06	25	28%	40%	-2.95	R
T10015	98	26.83	31.26	50	54%	63%	-4.43	U
T100160	4	0.22	0.94	10	2%	9%	-0.72	R
T100165	8	0.52	2.55	10	5%	26%	-2.04	U
T100185	55	10.20	12.87	50	20%	26%	-2.67	R
T10020	12	2.15	3.83	75	3%	5%	-1.68	U
T100220	21	4.02	4.91	15	27%	33%	-0.89	R
T100225	6	0.28	1.40	15	2%	9%	-1.12	R
T100240	17	2.90	5.42	25	12%	22%	-2.52	U
T100245	7	1.17	2.23	25	5%	9%	-1.06	U
T10025	38	13.58	12.12	50	27%	24%	1.46	U
T100255	3	0.42	0.96	50	1%	2%	-0.54	U
T100260	9	0.68	2.87	50	1%	6%	-2.19	U

1 1		i i	1	I	I	1	I	1 1
T100270	80	21.93	18.71	50	44%	37%	3.21	R
T100280	16	2.69	3.74	15	18%	25%	-1.05	R
T100285	19	2.58	4.44	25	10%	18%	-1.87	R
T100290	8	1.30	2.55	15	9%	17%	-1.25	U
T100295	3	0.51	0.96	15	3%	6%	-0.45	U
T10030	32	11.22	10.21	50	22%	20%	1.01	U
T100310	18	3.22	4.21	50	6%	8%	-0.99	R
T100330	3	0.29	0.70	15	2%	5%	-0.41	R
T100375	9	1.91	2.11	25	8%	8%	-0.19	R
T100425	4	0.26	0.94	10	3%	9%	-0.67	R
T10045	17	5.44	5.42	38	14%	14%	0.02	U
T100455	3	0.34	0.70	10	3%	7%	-0.36	R
T100460	4	0.27	0.94	10	3%	9%	-0.66	R
T100480	5	0.73	1.17	25	3%	5%	-0.44	R
T100495	38	7.58	8.89	50	15%	18%	-1.30	R
T10050	60	20.51	19.14	50	41%	38%	1.37	U
T10055	60	16.36	19.14	75	22%	26%	-2.78	U
T10065	5	0.48	1.17	15	3%	8%	-0.69	R
T10075	50	14.13	15.95	50	28%	32%	-1.82	U
T10080	11	0.89	2.57	15	6%	17%	-1.68	R
T10085	18	6.50	5.74	60	11%	10%	0.76	U
T10090	19	2.20	4.44	15	15%	30%	-2.25	R
T1010	17	3.09	3.98	15	21%	27%	-0.88	R
T101025	10	0.80	3.19	25	3%	13%	-2.39	U
T10115	24	12.34	7.66	38	32%	20%	4.68	U
T10120	24	10.86	7.66	38	29%	20%	3.21	U
T10130	13	8.48	4.15	50	17%	8%	4.33	U
T10135	3	0.42	0.70	15	3%	5%	-0.28	R

T10145	27	9.44	8.61	25	38%	34%	0.82	U
T10150	49	19.62	15.63	50	39%	31%	3.99	U
T10155	4	0.71	0.94	15	5%	6%	-0.23	R
T101645	22	2.18	7.02	38	6%	18%	-4.84	U
T101655	2	0.28	0.47	15	2%	3%	-0.19	R
T101685	2	2.37	0.64	25	9%	3%	1.73	U
T10170	37	10.60	11.80	25	42%	47%	-1.20	U
T101700	2	0.30	0.47	15	2%	3%	-0.17	R
T101725	40	9.96	12.76	50	20%	26%	-2.80	U
T101730	22	4.67	5.15	38	12%	14%	-0.47	R
T10175	40	13.01	12.76	38	34%	34%	0.25	U
T101750	21	4.47	4.91	50	9%	10%	-0.44	R
T101755	14	2.09	4.47	15	14%	30%	-2.37	U
T101770	15	2.00	3.51	15	13%	23%	-1.51	R
T101775	18	2.81	5.74	15	19%	38%	-2.93	U
T101780	31	5.41	9.89	25	22%	40%	-4.48	U
T101785	5	0.58	1.17	10	6%	12%	-0.59	R
T10180	61	18.42	19.46	50	37%	39%	-1.04	U
T101800	37	7.94	11.80	50	16%	24%	-3.86	U
T101815	49	11.10	15.63	75	15%	21%	-4.53	U
T101830	12	2.08	3.83	15	14%	26%	-1.75	U
T101840	7	0.79	2.23	50	2%	4%	-1.44	U
T101845	3	2.42	0.70	25	10%	3%	1.72	R
T10185	57	16.17	18.18	60	27%	30%	-2.01	U
T101850	1	0.32	0.23	15	2%	2%	0.08	R
T101865	3	0.22	0.70	50	0%	1%	-0.48	R
T101870	2	1.03	0.47	25	4%	2%	0.56	R
T101875	1	0.21	0.23	15	1%	2%	-0.02	R

T101895	1	0.39	0.23	38	1%	1%	0.16	R
T10190	31	11.01	9.89	50	22%	20%	1.12	U
T101905	2	0.84	0.47	25	3%	2%	0.37	R
T101910	1	0.51	0.23	38	1%	1%	0.28	R
T101915	1	0.23	0.23	25	1%	1%	0.00	R
T101920	1	0.42	0.23	25	2%	1%	0.19	R
T101930	1	2.00	0.23	38	5%	1%	1.76	R
T10195	13	1.19	3.04	15	8%	20%	-1.86	R
T101965	2	1.80	0.47	25	7%	2%	1.33	R
T101975	1	0.27	0.23	15	2%	2%	0.04	R
T10200	37	11.46	11.80	50	23%	24%	-0.34	U
T102000	5	0.68	1.17	15	5%	8%	-0.49	R
T102010	20	2.41	4.68	25	10%	19%	-2.27	R
T102015	45	7.54	10.53	50	15%	21%	-2.99	R
T102020	56	9.17	13.10	38	24%	34%	-3.93	R
T102035	6	0.85	1.40	15	6%	9%	-0.55	R
T10205	36	15.21	11.48	25	61%	46%	3.73	U
T102055	11	2.78	3.51	38	7%	9%	-0.72	U
T102060	4	0.53	0.94	38	1%	2%	-0.40	R
T102070	7	0.78	1.64	38	2%	4%	-0.86	R
T102090	2	0.42	0.47	15	3%	3%	-0.05	R
T102115	6	0.50	1.40	25	2%	6%	-0.90	R
T102120	13	2.87	3.04	25	11%	12%	-0.18	R
T102130	6	4.19	1.40	50	8%	3%	2.79	R
T10220	50	13.60	15.95	50	27%	32%	-2.35	U
T10225	42	12.27	13.40	50	25%	27%	-1.13	U
T10230	23	7.80	7.34	50	16%	15%	0.46	U
T10235	37	15.05	11.80	50	30%	24%	3.25	U

T10240	16	6.73	5.10	50	13%	10%	1.62	U
T10245	51	17.76	16.27	50	36%	33%	1.49	U
T10250	23	10.88	7.34	25	44%	29%	3.55	U
T10255	97	30.06	30.94	75	40%	41%	-0.88	U
T10260	29	12.54	9.25	63	20%	15%	3.29	U
T10275	42	10.73	13.40	75	14%	18%	-2.67	U
T10280	5	2.78	1.59	10	28%	16%	1.19	U
T10290	1	1.21	0.23	25	5%	1%	0.98	R
T10295	32	13.35	10.21	50	27%	20%	3.14	U
T10310	34	12.65	10.85	38	33%	29%	1.81	U
T10315	48	10.32	15.31	25	41%	61%	-5.00	U
T10320	27	9.43	8.61	50	19%	17%	0.81	U
T10335	23	5.51	7.34	25	22%	29%	-1.82	U
T10360	25	4.28	7.97	25	17%	32%	-3.70	U
T10370	8	2.49	2.55	25	10%	10%	-0.06	U
T10375	84	23.50	26.80	75	31%	36%	-3.30	U
T10390	12	5.65	3.83	25	23%	15%	1.82	U
T10395	74	21.38	23.61	75	29%	31%	-2.22	U
T1040	1	2.25	0.32	75	3%	0%	1.93	U
T10400	9	3.27	2.87	25	13%	11%	0.40	U
T10415	11	1.90	3.51	55	3%	6%	-1.61	U
T10430	40	16.10	12.76	50	32%	26%	3.34	U

DISTRIBUIDORA B.

Trafo	Núm. Usuarios	Max Demanda Registrada	Max Demanda Método Propuesto	Capacidad Trafo	% Cargabilidad Registro	% Cargabilidad Método Prop	Diferencia Demandas	Tipo Trafo
T10003	39	7.78	9.45	25	31%	38%	-1.67	R
T10008	39	12.57	9.45	38	33%	25%	3.12	R
T10013	62	16.33	15.03	45	36%	33%	1.30	R
T10018	86	18.31	20.84	38	48%	55%	-2.53	R
T10023	44	9.23	10.66	25	37%	43%	-1.44	R
T10028	40	8.55	9.69	25	34%	39%	-1.14	R
T1003	13	1.90	3.15	15	13%	21%	-1.25	R
T10033	2	4.10	0.48	25	16%	2%	3.61	R
T10043	25	6.75	6.06	50	13%	12%	0.69	R
T10048	72	17.10	17.45	50	34%	35%	-0.35	R
T10063	62	15.21	15.03	38	40%	40%	0.18	R
T10068	37	6.69	8.97	38	18%	24%	-2.27	R
T10073	108	22.48	26.17	38	59%	69%	-3.69	R
T1008	17	0.85	4.12	15	6%	27%	-3.28	R
T10083	79	21.50	19.15	45	48%	43%	2.35	R
T10088	57	9.04	13.81	25	36%	55%	-4.78	R
T10093	55	8.58	13.33	15	57%	89%	-4.75	R
T10098	75	17.00	18.18	38	45%	48%	-1.18	R
T10103	51	14.42	12.36	38	38%	33%	2.06	R
T10113	44	9.77	10.66	38	26%	28%	-0.89	R
T10118	3	1.04	0.73	40	3%	2%	0.31	R
T10123	41	12.42	9.94	38	33%	26%	2.48	R
T10128	51	10.81	12.36	25	43%	49%	-1.55	R

T1013	15	3.05	3.64	38	8%	10%	-0.58	R
T10138	58	10.12	14.06	50	20%	28%	-3.94	R
T10143	35	7.02	8.48	15	47%	57%	-1.46	R
T10148	58	11.32	14.06	25	45%	56%	-2.74	R
T10153	16	2.24	3.88	10	22%	39%	-1.64	R
T10158	22	3.70	5.33	15	25%	36%	-1.63	R
T10163	9	1.53	2.18	10	15%	22%	-0.65	R
T10168	2	0.36	0.48	10	4%	5%	-0.13	R
T10173	2	0.55	0.48	15	4%	3%	0.07	R
T10178	19	1.72	4.60	10	17%	46%	-2.88	R
T1018	54	13.68	17.85	50	27%	36%	-4.16	U
T10188	1	0.35	0.24	15	2%	2%	0.11	R
T10193	7	1.54	1.70	15	10%	11%	-0.15	R
T10198	22	2.60	5.33	25	10%	21%	-2.73	R
T10203	61	11.53	14.78	25	46%	59%	-3.25	R
T10208	51	12.71	12.36	75	17%	16%	0.35	R
T10213	14	4.77	3.39	50	10%	7%	1.38	R
T10218	42	13.60	10.18	50	27%	20%	3.42	R
T10223	36	7.90	8.72	50	16%	17%	-0.82	R
T10228	62	13.91	15.03	50	28%	30%	-1.11	R
T1023	21	2.91	5.09	15	19%	34%	-2.18	R
T10233	50	13.16	12.12	75	18%	16%	1.04	R
T10238	61	13.03	14.78	15	87%	99%	-1.76	R
T10243	50	9.35	12.12	15	62%	81%	-2.77	R
T10253	46	10.94	11.15	15	73%	74%	-0.21	R
T10293	2	2.82	0.48	50	6%	1%	2.33	R
T10308	6	2.25	1.98	25	9%	8%	0.26	U
T10313	37	11.78	12.23	75	16%	16%	-0.44	U

T10318	44	18.52	14.54	50	37%	29%	3.98	U
T1033	29	4.85	9.58	38	13%	25%	-4.73	U
T10353	49	17.97	16.19	75	24%	22%	1.78	U
T10358	41	15.30	13.55	75	20%	18%	1.75	U
T10363	51	15.23	16.85	75	20%	22%	-1.63	U
T10373	33	10.41	10.91	45	23%	24%	-0.50	U
T10383	49	12.33	16.19	75	16%	22%	-3.86	U
T10403	5	4.27	1.65	25	17%	7%	2.62	U
T10443	3	2.69	0.99	75	4%	1%	1.70	U
T10463	2	0.26	0.48	15	2%	3%	-0.23	R
T10468	21	1.92	5.09	15	13%	34%	-3.17	R
T10473	14	1.45	3.39	15	10%	23%	-1.95	R
T1048	31	4.40	7.51	38	12%	20%	-3.11	R
T10488	3	2.94	0.99	38	8%	3%	1.95	U
T10493	1	2.68	0.33	50	5%	1%	2.35	U
T10498	82	22.81	27.10	75	30%	36%	-4.29	U
T10508	24	6.80	7.93	38	18%	21%	-1.13	U
T10523	4	0.86	0.97	15	6%	6%	-0.11	R
T1053	1	0.25	0.24	10	2%	2%	0.01	R
T10533	12	1.21	2.91	10	12%	29%	-1.70	R
T10538	8	1.24	1.94	15	8%	13%	-0.70	R
T10543	25	3.73	6.06	25	15%	24%	-2.33	R
T10548	2	0.44	0.48	15	3%	3%	-0.04	R
T10558	1	2.59	0.24	10	26%	2%	2.35	R
T10563	7	0.45	1.70	25	2%	7%	-1.24	R
T10573	26	3.22	6.30	15	21%	42%	-3.08	R
T10588	10	1.00	2.42	15	7%	16%	-1.43	R
T10593	44	9.92	10.66	25	40%	43%	-0.74	R

T10598	48	7.59	11.63	15	51%	78%	-4.04	R
T10603	54	13.32	13.09	25	53%	52%	0.24	R
T10613	40	8.93	9.69	38	23%	26%	-0.77	R
T10618	58	11.32	14.06	38	30%	37%	-2.73	R
T10623	23	4.02	5.57	25	16%	22%	-1.55	R
T10628	12	3.21	2.91	25	13%	12%	0.30	R
T10633	73	20.68	17.69	50	41%	35%	2.99	R
T10638	14	6.88	3.39	38	18%	9%	3.49	R
T10643	19	5.74	4.60	38	15%	12%	1.14	R
T10648	95	26.36	23.02	75	35%	31%	3.34	R
T10653	104	21.99	25.21	50	44%	50%	-3.22	R
T10658	103	21.49	24.96	75	29%	33%	-3.48	R
T10668	39	7.55	9.45	50	15%	19%	-1.91	R
T10673	19	3.23	4.60	25	13%	18%	-1.38	R
T10678	45	7.38	10.91	38	19%	29%	-3.52	R
T10683	34	6.90	8.24	50	14%	16%	-1.34	R
T10688	46	7.48	11.15	38	20%	29%	-3.67	R
T10693	46	9.27	11.15	38	24%	29%	-1.88	R
T10698	47	9.76	11.39	38	26%	30%	-1.64	R
T10703	57	11.08	13.81	38	29%	36%	-2.73	R
T10708	42	7.81	10.18	38	21%	27%	-2.36	R
T10713	33	6.30	8.00	38	17%	21%	-1.69	R
T10718	36	5.60	8.72	38	15%	23%	-3.13	R
T10723	2	0.89	0.48	25	4%	2%	0.41	R
T1073	15	1.91	3.64	15	13%	24%	-1.73	R
T10733	28	6.22	6.79	38	16%	18%	-0.57	R
T10738	50	7.90	12.12	38	21%	32%	-4.22	R
T10743	24	4.11	5.82	25	16%	23%	-1.71	R

T10748	21	3.30	5.09	25	13%	20%	-1.79	R
T10753	8	1.42	1.94	25	6%	8%	-0.51	R
T10758	50	7.86	12.12	25	31%	48%	-4.25	R
T10763	14	1.69	3.39	38	4%	9%	-1.70	R
T10773	32	4.64	7.76	25	19%	31%	-3.12	R
T10778	14	3.19	3.39	50	6%	7%	-0.20	R
T1078	4	0.50	0.97	15	3%	6%	-0.47	R
T10783	9	6.69	2.18	50	13%	4%	4.51	R
T10788	3	1.36	0.73	15	9%	5%	0.63	R
T10793	3	1.84	0.73	50	4%	1%	1.11	R
T10803	36	6.13	8.72	35	18%	25%	-2.59	R
T10808	40	5.68	9.69	25	23%	39%	-4.01	R
T10813	31	3.87	7.51	25	15%	30%	-3.65	R
T10818	17	1.30	4.12	10	13%	41%	-2.82	R
T10823	12	1.38	2.91	10	14%	29%	-1.53	R
T10828	10	0.68	2.42	10	7%	24%	-1.74	R
T1083	27	3.42	6.54	15	23%	44%	-3.12	R
T10833	15	1.02	3.64	25	4%	15%	-2.62	R
T10838	6	0.57	1.45	15	4%	10%	-0.89	R
T10843	3	0.33	0.73	15	2%	5%	-0.40	R
T10848	2	0.29	0.48	15	2%	3%	-0.19	R
T10853	19	2.91	4.60	15	19%	31%	-1.70	R
T10858	17	2.59	4.12	10	26%	41%	-1.53	R

DISTRIBUIDORA C.

Trafo	Núm. Usuarios	Max Demanda Registrada	Max Demanda Método Propuesto	Capacidad Trafo	% Cargabilidad Registro	% Cargabilidad Método Prop	Diferencia Demandas	Tipo Trafo
T100006	1	4.05	0.23	15	27%	2%	3.82	R
T10006	14	0.53	3.20	15	4%	21%	-2.67	R
T100071	11	0.20	2.52	25	1%	10%	-2.31	R
T100086	2	0.66	0.46	25	3%	2%	0.21	R
T100156	1	2.26	0.31	15	15%	2%	1.95	U
T100176	7	0.24	1.60	38	1%	4%	-1.37	R
T100301	2	0.21	0.46	10	2%	5%	-0.25	R
T100326	22	0.23	5.03	38	1%	13%	-4.80	R
T100346	13	0.77	2.97	25	3%	12%	-2.20	R
T100356	16	0.67	4.99	25	3%	20%	-4.32	U
T100371	14	0.60	4.37	25	2%	17%	-3.77	U
T100386	2	0.49	0.46	25	2%	2%	0.03	R
T100401	13	0.25	2.97	15	2%	20%	-2.72	R
T100406	1	1.59	0.31	50	3%	1%	1.27	U
T100466	2	1.08	0.46	25	4%	2%	0.62	R
T100471	1	0.28	0.23	15	2%	2%	0.05	R
T100486	13	0.25	2.97	25	1%	12%	-2.72	R
T100511	1	3.70	0.23	15	25%	2%	3.48	R
T10056	22	0.61	5.03	25	2%	20%	-4.42	R
T100656	1	0.22	0.23	15	1%	2%	-0.01	R
T100701	14	0.37	3.20	25	1%	13%	-2.83	R
T100736	1	0.21	0.23	10	2%	2%	-0.02	R
T100756	16	0.29	3.66	25	1%	15%	-3.37	R

T100876	6	0.28	1.37	10	3%	14%	-1.09	R
T100886	7	0.20	1.60	15	1%	11%	-1.40	R
T101016	3	0.29	0.69	25	1%	3%	-0.40	R
T101106	6	0.25	1.37	15	2%	9%	-1.12	R
T101126	13	0.70	2.97	25	3%	12%	-2.27	R
T101131	12	0.24	2.74	25	1%	11%	-2.51	R
T10121	19	0.95	4.35	15	6%	29%	-3.39	R
T101361	25	6.67	7.80	75	9%	10%	-1.13	U
T101376	10	0.47	2.29	15	3%	15%	-1.82	R
T101406	17	2.01	3.89	50	4%	8%	-1.88	R
T101436	10	0.35	2.29	25	1%	9%	-1.93	R
T101446	24	0.89	5.49	25	4%	22%	-4.60	R
T101456	5	0.29	1.14	25	1%	5%	-0.85	R
T101546	3	0.29	0.69	25	1%	3%	-0.39	R
T10156	1	4.21	0.23	15	28%	2%	3.98	R
T10171	10	0.53	2.29	15	4%	15%	-1.76	R
T10181	5	1.75	1.14	38	5%	3%	0.61	R
T10186	17	0.90	3.89	25	4%	16%	-2.99	R
T10201	22	0.54	5.03	25	2%	20%	-4.49	R
T10251	21	0.64	4.80	15	4%	32%	-4.16	R
T10276	3	0.24	0.69	15	2%	5%	-0.45	R
T103001	4	0.43	0.91	38	1%	2%	-0.49	R
T103006	2	2.01	0.46	75	3%	1%	1.55	R
T10301	22	0.40	5.03	15	3%	34%	-4.63	R
T10306	12	0.24	2.74	15	2%	18%	-2.50	R
T103091	3	0.32	0.69	15	2%	5%	-0.37	R
T10316	6	0.70	1.37	15	5%	9%	-0.67	R
T103161	19	0.98	5.93	25	4%	24%	-4.94	U

T10326	6	0.34	1.37	25	1%	5%	-1.04	R
T10336	16	0.37	3.66	38	1%	10%	-3.29	R
T10341	6	0.26	1.37	25	1%	5%	-1.11	R
T10346	13	0.81	2.97	15	5%	20%	-2.16	R
T10371	20	0.29	4.57	25	1%	18%	-4.28	R
T10376	20	0.62	4.57	15	4%	30%	-3.95	R
T10386	9	0.21	2.06	10	2%	21%	-1.85	R
T10396	19	0.48	4.35	15	3%	29%	-3.86	R
T10401	17	0.40	3.89	15	3%	26%	-3.49	R
T1041	20	2.88	6.24	35	8%	18%	-3.36	U
T10421	9	0.29	2.06	15	2%	14%	-1.77	R
T10441	12	0.31	2.74	15	2%	18%	-2.44	R
T10461	20	0.21	4.57	15	1%	30%	-4.36	R
T10471	10	0.34	2.29	15	2%	15%	-1.95	R
T10481	18	0.21	4.12	15	1%	27%	-3.91	R
T10486	18	0.33	4.12	25	1%	16%	-3.79	R
T10491	14	0.33	3.20	25	1%	13%	-2.87	R
T1051	2	1.40	0.62	75	2%	1%	0.77	U
T10526	16	1.05	3.66	25	4%	15%	-2.60	R
T10531	22	0.71	5.03	15	5%	34%	-4.32	R
T10536	19	0.52	4.35	25	2%	17%	-3.83	R
T10546	17	0.43	3.89	15	3%	26%	-3.46	R
T1056	1	3.12	0.31	50	6%	1%	2.81	U
T1061	2	1.89	0.46	50	4%	1%	1.43	R
T1066	10	4.37	3.12	25	17%	12%	1.25	U
T10671	19	0.21	4.35	15	1%	29%	-4.13	R
T10681	14	0.23	3.20	15	2%	21%	-2.97	R
T10686	14	0.37	3.20	15	2%	21%	-2.83	R

T10701	15	0.27	3.43	25	1%	14%	-3.16	R
T10736	14	0.23	3.20	15	2%	21%	-2.97	R
T10741	20	0.26	4.57	15	2%	30%	-4.32	R
T10801	23	0.50	5.26	25	2%	21%	-4.76	R
T10821	3	0.21	0.69	15	1%	5%	-0.48	R
T10826	15	0.24	3.43	15	2%	23%	-3.19	R
T10876	23	0.44	5.26	15	3%	35%	-4.82	R
T10896	15	0.76	3.43	25	3%	14%	-2.67	R
T10901	21	0.36	4.80	15	2%	32%	-4.45	R
T10906	11	0.20	2.52	15	1%	17%	-2.31	R
T10916	12	1.12	2.74	15	7%	18%	-1.63	R
T10971	21	0.59	4.80	15	4%	32%	-4.22	R
T11026	16	0.22	3.66	15	1%	24%	-3.44	R
T11076	16	0.60	3.66	10	6%	37%	-3.05	R
T11081	14	0.21	3.20	15	1%	21%	-3.00	R
T11086	10	0.25	2.29	10	3%	23%	-2.04	R
T11096	18	0.25	4.12	10	3%	41%	-3.87	R
T1111	2	1.20	0.62	25	5%	2%	0.57	U
T11121	2	0.34	0.62	25	1%	2%	-0.28	U
T11136	18	0.57	4.12	15	4%	27%	-3.54	R
T11141	14	0.38	3.20	10	4%	32%	-2.83	R
T11176	14	1.53	4.37	50	3%	9%	-2.83	U
T11201	14	0.35	3.20	25	1%	13%	-2.85	R
T11206	17	0.21	3.89	15	1%	26%	-3.68	R
T11246	14	0.24	3.20	15	2%	21%	-2.96	R
T11276	10	0.25	2.29	15	2%	15%	-2.04	R
T11286	4	0.27	0.91	38	1%	2%	-0.65	R
T11296	25	0.82	5.72	15	5%	38%	-4.89	R

T11476	6	0.39	1.87	38	1%	5%	-1.48	U
T11521	17	0.33	3.89	15	2%	26%	-3.56	R
T11606	14	0.35	3.20	15	2%	21%	-2.85	R
T11611	23	0.44	5.26	25	2%	21%	-4.82	R
T11616	9	0.26	2.06	10	3%	21%	-1.80	R
T11621	17	0.89	3.89	15	6%	26%	-3.00	R
T11631	53	16.14	12.12	38	42%	32%	4.02	R
T11646	11	0.21	2.52	15	1%	17%	-2.30	R
T11656	27	1.96	6.17	25	8%	25%	-4.22	R
T11676	16	0.27	3.66	15	2%	24%	-3.39	R
T11686	20	0.26	4.57	15	2%	30%	-4.31	R
T11691	15	0.33	3.43	15	2%	23%	-3.10	R
T11716	13	0.32	2.97	25	1%	12%	-2.65	R
T11741	28	1.43	6.40	15	10%	43%	-4.97	R
T11781	22	0.85	5.03	25	3%	20%	-4.18	R
T11791	16	0.24	3.66	15	2%	24%	-3.42	R
T11926	14	1.20	4.37	38	3%	11%	-3.17	U
T11931	5	0.95	1.56	50	2%	3%	-0.61	U
T11976	4	0.78	1.25	25	3%	5%	-0.47	U
T11981	12	1.07	2.74	25	4%	11%	-1.68	R
T11986	9	1.87	2.06	38	5%	5%	-0.18	R
T11991	17	0.57	3.89	25	2%	16%	-3.32	R
T11996	10	3.47	2.29	25	14%	9%	1.19	R

DISTRIBUIDORA D.

DISTRIBUIDORA D.									
Trafo	Núm. Usuarios	Max Demanda Registrada	Max Demanda Método Propuesto	Capacidad Trafo	% Cargabilidad Registro	% Cargabilidad Método Prop	Diferencia Demandas	Tipo Trafo	
T10007	19	2.43	4.70	15	16%	31%	-2.27	R	
T10017	12	2.03	2.97	15	14%	20%	-0.93	R	
T10027	8	1.53	1.98	15	10%	13%	-0.45	R	
T10032	21	3.55	5.19	25	14%	21%	-1.64	R	
T10042	100	20.96	24.73	25	84%	99%	-3.76	R	
T10052	15	2.91	3.71	15	19%	25%	-0.80	R	
T10057	18	1.38	4.45	25	6%	18%	-3.07	R	
T10062	10	1.17	2.47	15	8%	16%	-1.30	R	
T10067	49	9.37	12.12	25	37%	48%	-2.75	R	
T10072	10	1.29	2.47	15	9%	16%	-1.18	R	
T10077	32	10.02	7.91	25	40%	32%	2.10	R	
T10087	31	3.12	7.66	15	21%	51%	-4.54	R	
T10097	21	7.39	5.19	38	19%	14%	2.20	R	
T10102	47	16.15	11.62	25	65%	46%	4.53	R	
T10107	16	2.84	3.96	15	19%	26%	-1.12	R	
T10112	10	1.84	2.47	50	4%	5%	-0.64	R	
T10117	40	10.63	9.89	50	21%	20%	0.74	R	
T10122	42	8.27	10.38	25	33%	42%	-2.12	R	
T10127	34	4.57	8.41	25	18%	34%	-3.83	R	
T10137	4	1.00	0.99	15	7%	7%	0.01	R	
T10142	17	2.09	4.20	25	8%	17%	-2.11	R	
T10162	21	3.08	5.19	15	21%	35%	-2.11	R	
T10172	5	0.29	1.24	25	1%	5%	-0.95	R	
T10177	17	2.70	4.20	38	7%	11%	-1.51	R	

T10187	27	4.76	6.68	15	32%	45%	-1.91	R
T10192	12	2.39	2.97	15	16%	20%	-0.57	R
T10197	19	3.57	4.70	15	24%	31%	-1.13	R
T10202	39	9.75	13.15	25	39%	53%	-3.40	U
T10207	32	4.59	7.91	38	12%	21%	-3.32	R
T10227	22	2.39	5.44	15	16%	36%	-3.05	R
T10232	17	2.57	4.20	15	17%	28%	-1.63	R
T10237	5	0.93	1.24	15	6%	8%	-0.30	R
T10242	4	0.47	0.99	25	2%	4%	-0.52	R
T10247	67	11.99	16.57	25	48%	66%	-4.58	R
T10252	41	6.86	10.14	25	27%	41%	-3.28	R
T10262	44	7.41	10.88	25	30%	44%	-3.47	R
T10267	22	3.52	5.44	25	14%	22%	-1.92	R
T10272	31	3.26	7.66	15	22%	51%	-4.40	R
T10277	13	1.56	3.21	25	6%	13%	-1.66	R
T10287	7	1.39	1.73	15	9%	12%	-0.34	R
T10292	14	1.96	3.46	15	13%	23%	-1.51	R
T10297	15	2.25	3.71	15	15%	25%	-1.46	R
T10302	8	1.74	1.98	15	12%	13%	-0.24	R
T10307	26	4.61	6.43	15	31%	43%	-1.82	R
T10312	10	1.82	2.47	15	12%	16%	-0.65	R
T10317	28	4.15	6.92	15	28%	46%	-2.77	R
T10327	37	6.52	9.15	15	43%	61%	-2.63	R
T10332	34	7.90	8.41	25	32%	34%	-0.50	R
T10337	35	4.70	8.65	25	19%	35%	-3.95	R
T10347	7	1.26	1.73	15	8%	12%	-0.47	R
T10352	12	1.30	2.97	15	9%	20%	-1.67	R
T10357	24	2.31	5.93	15	15%	40%	-3.63	R

T10362	8	1.49	2.70	15	10%	18%	-1.21	U
T10367	7	1.35	1.73	15	9%	12%	-0.38	R
T10372	5	0.61	1.24	15	4%	8%	-0.62	R
T10377	17	2.35	4.20	15	16%	28%	-1.85	R
T10382	18	2.55	4.45	15	17%	30%	-1.90	R
T10402	17	1.78	4.20	15	12%	28%	-2.43	R
T10407	10	1.45	2.47	15	10%	16%	-1.02	R
T10412	2	0.47	0.49	15	3%	3%	-0.02	R
T10417	33	4.89	8.16	25	20%	33%	-3.27	R
T10422	31	7.30	7.66	15	49%	51%	-0.36	R
T10427	14	1.64	3.46	15	11%	23%	-1.83	R
T10432	19	3.10	4.70	15	21%	31%	-1.60	R
T10437	16	1.46	3.96	15	10%	26%	-2.50	R
T10442	11	2.57	2.72	15	17%	18%	-0.15	R
T10447	36	8.30	8.90	15	55%	59%	-0.60	R
T10457	3	1.29	0.74	15	9%	5%	0.55	R
T10467	15	1.86	3.71	15	12%	25%	-1.85	R
T10477	15	2.48	3.71	15	17%	25%	-1.22	R
T10482	73	15.10	18.05	55	27%	33%	-2.95	R
T10487	16	2.87	3.96	25	11%	16%	-1.09	R
T10492	24	5.85	5.93	15	39%	40%	-0.08	R
T10497	25	5.18	6.18	15	35%	41%	-1.00	R
T10507	35	6.04	8.65	25	24%	35%	-2.62	R
T10517	1	3.70	0.25	25	15%	1%	3.45	R
T1052	80	27.35	26.97	50	55%	54%	0.38	U
T10522	60	10.29	14.84	25	41%	59%	-4.54	R
T10527	32	4.99	7.91	25	20%	32%	-2.93	R
T10532	43	7.90	10.63	15	53%	71%	-2.73	R

T10537	3	0.77	0.74	15	5%	5%	0.03	R
T10542	6	0.75	1.48	15	5%	10%	-0.74	R
T10547	5	0.85	1.24	15	6%	8%	-0.39	R
T10552	11	1.66	2.72	15	11%	18%	-1.06	R
T10567	1	0.66	0.25	40	2%	1%	0.42	R
T10572	10	1.61	3.37	15	11%	22%	-1.76	U
T10582	12	4.11	2.97	38	11%	8%	1.14	R
T10587	17	8.89	5.73	38	23%	15%	3.16	U
T10592	46	14.39	15.51	25	58%	62%	-1.12	U
T10607	4	0.98	1.35	15	7%	9%	-0.37	U
T10612	58	17.12	19.56	50	34%	39%	-2.44	U
T10617	20	4.64	6.74	25	19%	27%	-2.10	U
T10637	28	5.32	6.92	15	35%	46%	-1.60	R
T10642	26	4.83	6.43	25	19%	26%	-1.60	R
T10647	10	1.16	2.47	10	12%	25%	-1.31	R
T10652	15	1.16	3.71	15	8%	25%	-2.55	R
T10657	11	1.51	2.72	15	10%	18%	-1.21	R
T10667	11	1.41	2.72	15	9%	18%	-1.31	R
T10672	3	0.33	0.74	15	2%	5%	-0.41	R
T10682	15	1.94	3.71	15	13%	25%	-1.77	R
T10687	18	2.48	4.45	15	17%	30%	-1.97	R
T10692	9	0.80	2.23	15	5%	15%	-1.42	R
T10697	4	0.55	0.99	15	4%	7%	-0.44	R
T10707	30	5.87	7.42	50	12%	15%	-1.55	R
T10717	11	1.80	2.72	25	7%	11%	-0.91	R
T10722	32	6.00	7.91	25	24%	32%	-1.92	R
T10727	24	3.12	5.93	15	21%	40%	-2.81	R
T10732	25	3.50	6.18	15	23%	41%	-2.68	R

T10737	9	1.45	2.23	15	10%	15%	-0.78	R
T10742	15	1.67	3.71	15	11%	25%	-2.04	R
T10747	26	3.60	6.43	15	24%	43%	-2.83	R
T10752	12	2.62	2.97	15	17%	20%	-0.35	R
T10757	11	2.39	2.72	25	10%	11%	-0.33	R
T10762	18	3.27	4.45	15	22%	30%	-1.18	R
T10767	12	1.13	2.97	15	8%	20%	-1.84	R
T10772	25	3.86	6.18	15	26%	41%	-2.32	R
T10777	18	3.98	4.45	15	27%	30%	-0.47	R
T10782	22	4.33	5.44	15	29%	36%	-1.11	R
T10787	39	6.90	9.64	15	46%	64%	-2.74	R
T10792	13	1.69	3.21	15	11%	21%	-1.53	R
T10797	10	1.32	2.47	15	9%	16%	-1.16	R
T10802	11	1.60	2.72	15	11%	18%	-1.12	R
T10807	37	6.30	9.15	25	25%	37%	-2.85	R
T10812	22	4.12	5.44	25	16%	22%	-1.32	R
T10817	17	3.21	4.20	15	21%	28%	-0.99	R
T1082	69	20.86	23.26	75	28%	31%	-2.41	U
T10822	28	3.40	6.92	15	23%	46%	-3.52	R
T10827	12	1.69	2.97	15	11%	20%	-1.28	R
T10832	19	3.16	4.70	15	21%	31%	-1.54	R
T10837	17	2.44	4.20	25	10%	17%	-1.77	R

ANEXO 3.
FACTORES DE RESPONSABILIDAD HORARIA POR DISTRIBUIDORA Y CATEGORIA TARIFARIA.

	CTOILES D	S TELEST OF US	ABILIDAD		AESS		0.112001	**** *******	
		FACTO	RES DE RESPO	NSABILIDAD I	HORARIA POR	CATEGORÍA T	ARIFARIA		
Hora	R1	R2	R3	G	AP	MDBT	GDBT	MDMT	GDMT
00:00	0.6498	0.7446	0.7459	0.5435	1.9200	0.5966	0.6810	0.5049	0.7359
01:00	0.5739	0.6602	0.6839	0.5264	1.9200	0.5787	0.6579	0.4739	0.7125
02:00	0.5327	0.6194	0.6426	0.5143	1.9200	0.5967	0.6494	0.4739	0.7135
03:00	0.5267	0.5914	0.6294	0.4997	1.9200	0.5870	0.6475	0.4802	0.7100
04:00	0.5754	0.5925	0.6185	0.5044	1.9200	0.5736	0.6516	0.4863	0.7091
05:00	0.7097	0.6934	0.7212	0.5260	1.9200	0.5818	0.6726	0.5079	0.7162
06:00	0.8387	0.8651	0.8591	0.5606	1.3440	0.4970	0.7040	0.5808	0.7804
07:00	0.8240	0.8375	0.9203	0.7332	0.5760	0.6466	0.8869	0.7912	0.9507
08:00	0.8560	0.8366	1.0334	1.1070	0.0000	1.0468	1.1551	1.1586	1.1394
09:00	0.8877	0.8835	1.0889	1.4183	0.0000	1.3795	1.3011	1.3778	1.2472
10:00	0.8972	0.9488	1.1332	1.5636	0.0000	1.5798	1.3784	1.5481	1.3099
11:00	0.9092	0.9825	1.1747	1.6189	0.0000	1.6557	1.4226	1.6132	1.3563
12:00	1.0402	1.0854	1.2109	1.5412	0.0000	1.6017	1.3614	1.5843	1.3324
13:00	1.0820	1.1305	1.1354	1.4820	0.0000	1.5299	1.3497	1.5371	1.3222
14:00	1.0376	1.0926	1.1926	1.5487	0.0000	1.6118	1.4060	1.6386	1.3372
15:00	1.0110	1.0721	1.1958	1.5710	0.0000	1.6280	1.3931	1.5928	1.3304
16:00	1.0067	1.0707	1.1962	1.5255	0.0000	1.5050	1.3423	1.4725	1.2429
17:00	1.1221	1.1177	1.1569	1.3160	0.0000	1.2306	1.2061	1.2643	1.1150
18:00	1.5501	1.4019	1.2314	1.1141	0.9600	0.9126	1.0550	1.0627	1.0345
19:00	1.8801	1.5733	1.2840	0.9586	1.9200	0.8456	0.9336	0.9675	0.9669
20:00	1.8617	1.5957	1.2254	0.8402	1.9200	0.7708	0.8595	0.8631	0.8719
21:00	1.6430	1.4953	1.1130	0.7461	1.9200	0.7263	0.7991	0.7750	0.8240
22:00	1.1703	1.2130	0.9706	0.6539	1.9200	0.6796	0.7590	0.6760	0.7837
23:00	0.8140	0.8964	0.8364	0.5866	1.9200	0.6382	0.7273	0.5694	0.7577

				С	LESA				
		FACTO	DRES DE RESPO	NSABILIDAD I	HORARIA POR	CATEGORÍA TA	ARIFARIA		
Hora	R1	R2	R3	G	AP	MDBT	GDBT	MDMT	GDMT
00:00	0.6122	0.7139	0.7510	0.6095	2.0339	0.4531	0.2762	0.6352	0.7827
01:00	0.5619	0.7086	0.7340	0.5830	2.0339	0.4386	0.2602	0.6160	0.7781
02:00	0.5554	0.6758	0.7021	0.5815	2.0339	0.4297	0.2510	0.6041	0.7868
03:00	0.5587	0.6493	0.6880	0.5844	2.0339	0.4378	0.2477	0.5812	0.7932
04:00	0.6130	0.6608	0.7002	0.5953	2.0339	0.4975	0.2469	0.5762	0.8011
05:00	0.7257	0.7203	0.7669	0.6913	2.0339	0.5303	0.2680	0.7622	0.8294
06:00	0.8677	0.8070	0.8908	0.8200	1.0169	0.5414	0.2777	0.7619	0.8580
07:00	0.8865	0.8435	0.9379	0.8858	0.6102	0.6574	0.5682	0.6764	0.9861
08:00	0.8486	0.9235	1.0627	1.1502	0.0000	1.1454	1.2303	1.0279	1.1294
09:00	0.8631	0.9999	1.2264	1.3261	0.0000	1.4674	1.6382	1.2348	1.1931
10:00	0.8445	1.0233	1.2087	1.4040	0.0000	1.6106	1.9993	1.3875	1.2380
11:00	0.9226	1.0289	1.2093	1.4222	0.0000	1.7175	2.1035	1.4871	1.2654
12:00	1.0849	1.0730	1.1228	1.2906	0.0000	1.7099	2.0363	1.4672	1.2278
13:00	1.1165	1.1012	1.0746	1.2238	0.0000	1.6271	2.0892	1.4222	1.2320
14:00	1.0310	1.0825	1.0856	1.3256	0.0000	1.6707	2.1340	1.5223	1.2588
15:00	0.9784	1.0828	1.0819	1.3435	0.0000	1.7206	2.0782	1.4455	1.2408
16:00	0.9852	1.0787	1.1365	1.3391	0.0000	1.6107	1.7231	1.2892	1.1700
17:00	1.1203	1.1210	1.1015	1.2562	0.0000	1.3029	1.4240	1.0507	1.0405
18:00	1.6295	1.3767	1.2568	1.1733	0.0000	1.0857	1.0988	1.0568	0.9650
19:00	2.0159	1.5375	1.2565	1.0913	2.0339	0.9247	0.6848	1.1343	0.9534
20:00	1.9519	1.5346	1.2180	0.9939	2.0339	0.7616	0.4133	1.0554	0.9358
21:00	1.5196	1.3844	1.0810	0.8881	2.0339	0.6421	0.3510	0.8313	0.9016
22:00	0.9937	1.0457	0.9055	0.7563	2.0339	0.5431	0.3133	0.7115	0.8408
23:00	0.7131	0.8272	0.8012	0.6650	2.0339	0.4743	0.2869	0.6631	0.7923

				DE	USEM				
		FACTO	DRES DE RESPO	NSABILIDAD I	HORARIA POR	CATEGORÍA T <i>A</i>	RIFARIA		
Hora	R1	R2	R3	G	AP	MDBT	GDBT	MDMT	GDMT
00:00	0.7457	0.7664	0.8461	0.6168	2.0000	0.2705	0.3136	0.4781	0.5140
01:00	0.7156	0.7388	0.7991	0.5965	2.0000	0.2566	0.3137	0.4784	0.5054
02:00	0.7066	0.7064	0.7749	0.5863	2.0000	0.2460	0.3141	0.4875	0.5135
03:00	0.7040	0.6850	0.7535	0.5821	2.0000	0.2725	0.3148	0.5262	0.5234
04:00	0.7752	0.7441	0.7332	0.6075	2.0000	0.2584	0.3162	0.6191	0.5522
05:00	0.9257	0.8489	0.7407	0.7061	2.0000	0.2772	0.3229	0.8251	0.6519
06:00	0.9227	0.8657	0.8375	0.8169	0.0000	0.4147	0.3643	0.9694	0.7490
07:00	0.7956	0.9177	0.9386	0.9936	0.0000	0.6402	1.0567	1.1399	0.9546
08:00	0.7596	0.9279	0.9845	1.3128	0.0000	1.3884	2.0216	1.3929	1.2188
09:00	0.7705	0.8876	1.0249	1.4607	0.0000	1.8841	2.1528	1.5629	1.3694
10:00	0.7840	0.9144	1.0767	1.5222	0.0000	2.0717	2.0628	1.6037	1.4470
11:00	0.8308	0.9264	1.0890	1.5053	0.0000	2.1309	1.9804	1.6091	1.5030
12:00	0.9313	0.9682	1.1200	1.4222	0.0000	1.9955	1.7043	1.5434	1.5146
13:00	0.9756	0.9921	1.1285	1.3758	0.0000	2.0185	2.3124	1.5142	1.5123
14:00	0.9195	0.9903	1.1554	1.3986	0.0000	2.1055	2.3543	1.5384	1.4915
15:00	0.8993	1.0074	1.1309	1.3987	0.0000	2.0347	2.2721	1.5078	1.4545
16:00	0.9381	1.0515	1.1034	1.2568	0.0000	1.7443	1.3673	1.3017	1.3560
17:00	1.0883	1.1185	1.0553	1.0523	0.0000	1.1777	0.5478	1.0441	1.2250
18:00	1.6568	1.4775	1.1468	0.9437	2.0000	0.7500	0.3249	0.8648	1.1274
19:00	2.1454	1.7489	1.2346	0.8916	2.0000	0.5992	0.3143	0.7453	1.0346
20:00	1.8930	1.5706	1.2061	0.8379	2.0000	0.4714	0.3154	0.6721	0.9095
21:00	1.3628	1.2947	1.1588	0.7705	2.0000	0.3760	0.3188	0.5774	0.7510
22:00	0.9599	0.9995	1.0352	0.6959	2.0000	0.3276	0.3180	0.5152	0.5954
23:00	0.7939	0.8516	0.9263	0.6490	2.0000	0.2886	0.3162	0.4831	0.5259

					EO				
		FACTO	DRES DE RESPO	NSABILIDAD I	HORARIA POR	CATEGORÍA T <i>A</i>	ARIFARIA		
Hora	R1	R2	R3	G	AP	MDBT	GDBT	MDMT	GDMT
00:00	0.6786	0.8469	1.2278	0.6911	2.0000	0.4702	0.7890	0.5463	0.5678
01:00	0.6478	0.8157	1.1371	0.6675	2.0000	0.4546	0.7575	0.5442	0.5519
02:00	0.6420	0.8202	1.0731	0.6438	2.0000	0.4441	0.7196	0.5454	0.5457
03:00	0.6386	0.8191	0.9523	0.6379	2.0000	0.4363	0.6855	0.5636	0.5560
04:00	0.7165	0.8249	0.8826	0.6467	2.0000	0.4409	0.6646	0.6115	0.5867
05:00	0.9092	0.8757	0.8300	0.6757	1.4000	0.4701	0.6632	0.7630	0.6234
06:00	0.9366	0.8665	0.7913	0.7575	0.8000	0.5062	0.7204	0.9680	0.7036
07:00	0.8469	0.8690	0.7585	0.9665	0.8000	0.7872	0.7526	1.2398	0.9652
08:00	0.8461	0.9411	0.7961	1.2777	0.0000	1.4737	0.8553	1.4961	1.2494
09:00	0.8644	0.8963	0.8417	1.4274	0.0000	1.6988	0.9915	1.5574	1.4134
10:00	0.9069	0.9121	0.8463	1.4615	0.0000	1.7631	1.0298	1.5742	1.5023
11:00	0.9613	0.9705	0.8702	1.4539	0.0000	1.7748	1.1464	1.5819	1.5382
12:00	1.0248	0.9884	0.9164	1.3432	0.0000	1.7201	1.2971	1.4896	1.5069
13:00	1.0164	0.9971	0.9503	1.3277	0.0000	1.7061	1.3176	1.4545	1.4880
14:00	0.9998	0.9904	0.9642	1.3431	0.0000	1.7858	1.3064	1.4970	1.4963
15:00	1.0123	0.9878	0.9734	1.3289	0.0000	1.7493	1.2438	1.4766	1.4666
16:00	1.0300	0.9920	0.8977	1.2280	0.0000	1.3631	1.1292	1.2322	1.3683
17:00	1.1417	1.0961	0.9059	1.0734	0.0000	1.0077	1.0541	0.9758	1.2354
18:00	1.6349	1.3493	1.0325	0.9732	1.0000	0.8514	1.2621	0.8213	1.0350
19:00	1.9504	1.5081	1.1818	0.9280	2.0000	0.7709	1.3563	0.7265	0.8776
20:00	1.6880	1.4391	1.2997	0.8588	2.0000	0.6861	1.2841	0.6621	0.7912
21:00	1.2327	1.2396	1.3361	0.8166	2.0000	0.6072	1.1415	0.5925	0.7105
22:00	0.9116	1.0442	1.3055	0.7544	2.0000	0.5357	0.9780	0.5409	0.6308
23:00	0.7625	0.9100	1.2292	0.7175	2.0000	0.4966	0.8543	0.5398	0.5896

ANEXO 4.

RESUMEN DEL PORCENTAJE DE EFECTIVIDAD DEL METODO PROPUESTO POR DISTRIBUIDORA.

DISTRIBUIDORA A

Trafo	Núm. Usuarios	Max Demanda Registrada	Max Demanda Método Propuesto	Capacidad Trafo	% Cargabilidad Registro	% Cargabilidad Método Prop	Diferencia Demandas	Tipo Trafo	Capacidad Recomendada Método Prop	Cargabilidad Capacidad Recom	Comparativa Capacidades
T10000	47	11.45	14.99	50	23%	30%	-3.54	U	15	100%	0
T100005	10	2.06	3.19	25	8%	13%	-1.13	J	10	32%	0
T100010	3	0.13	0.70	25	1%	3%	-0.57	R	10	7%	0
T100015	51	12.90	16.27	50	26%	33%	-3.37	J	25	65%	0
T100020	34	5.67	10.85	38	15%	29%	-5.18	J	15	72%	0
T100025	46	7.04	14.67	38	19%	39%	-7.64	U	15	98%	0
T100030	27	1.46	8.61	500	0%	2%	-7.15	U	10	86%	0
T100035	28	4.63	8.93	500	1%	2%	-4.30	U	10	89%	0
T100045	3	0.01	0.70	25	0%	3%	-0.70	R	10	7%	0
T10005	71	26.53	22.65	50	53%	45%	3.88	U	25	91%	0
T100050	1	0.60	0.23	45	1%	1%	0.36	R	10	2%	0
T100070	3	0.65	0.70	10	6%	7%	-0.05	R	10	7%	1
T100075	22	2.67	5.15	25	11%	21%	-2.48	R	10	51%	0
T100090	4	0.43	0.94	10	4%	9%	-0.51	R	10	9%	1
T10010	110	30.72	35.09	75	41%	47%	-4.37	U	38	92%	0
T100120	1	0.00	0.23	25	0%	1%	-0.23	R	10	2%	0
T100135	43	7.11	10.06	25	28%	40%	-2.95	R	15	67%	0
T10015	98	26.83	31.26	50	54%	63%	-4.43	U	38	82%	0
T100150	3	0.05	0.70	10	0%	7%	-0.65	R	10	7%	1
T100155	3	0.02	0.70	10	0%	7%	-0.68	R	10	7%	1
T100160	4	0.22	0.94	10	2%	9%	-0.72	R	10	9%	1
T100165	8	0.52	2.55	10	5%	26%	-2.04	U	10	26%	1
T100185	55	10.20	12.87	50	20%	26%	-2.67	R	15	86%	0
T100195	4	0.15	0.94	15	1%	6%	-0.78	R	10	9%	0

T10020	12	2.15	3.83	75	3%	5%	-1.68	U	10	38%	0
T100220	21	4.02	4.91	15	27%	33%	-0.89	R	10	49%	0
T100225	6	0.28	1.40	15	2%	9%	-1.12	R	10	14%	0
T100230	39	6.91	12.44	38	18%	33%	-5.53	U	15	83%	0
T100240	17	2.90	5.42	25	12%	22%	-2.52	U	10	54%	0
T100245	7	1.17	2.23	25	5%	9%	-1.06	U	10	22%	0
T10025	38	13.58	12.12	50	27%	24%	1.46	U	15	81%	0
T100250	1	0.11	0.23	15	1%	2%	-0.12	R	10	2%	0
T100255	3	0.42	0.96	50	1%	2%	-0.54	U	10	10%	0
T100260	9	0.68	2.87	50	1%	6%	-2.19	U	10	29%	0
T100265	1	0.15	0.23	38	0%	1%	-0.09	R	10	2%	0
T100270	80	21.93	18.71	50	44%	37%	3.21	R	25	75%	0
T100280	16	2.69	3.74	15	18%	25%	-1.05	R	10	37%	0
T100285	19	2.58	4.44	25	10%	18%	-1.87	R	10	44%	0
T100290	8	1.30	2.55	15	9%	17%	-1.25	U	10	26%	0
T100295	3	0.51	0.96	15	3%	6%	-0.45	U	10	10%	0
T10030	32	11.22	10.21	50	22%	20%	1.01	U	15	68%	0
T100300	1	0.12	0.23	15	1%	2%	-0.12	R	10	2%	0
T100305	11	0.27	3.51	167	0%	2%	-3.24	U	10	35%	0
T100310	18	3.22	4.21	50	6%	8%	-0.99	R	10	42%	0
T100325	3	0.18	0.70	15	1%	5%	-0.52	R	10	7%	0
T100330	3	0.29	0.70	15	2%	5%	-0.41	R	10	7%	0
T10035	74	32.11	23.61	75	43%	31%	8.51	U	25	94%	0
T100360	1	0.00	0.23	15	0%	2%	-0.23	R	10	2%	0
T100375	9	1.91	2.11	25	8%	8%	-0.19	R	10	21%	0
T100410	1	0.15	0.23	15	1%	2%	-0.09	R	10	2%	0
T100415	2	0.01	0.47	10	0%	5%	-0.46	R	10	5%	1
T100425	4	0.26	0.94	10	3%	9%	-0.67	R	10	9%	1
T100430	1	0.17	0.23	15	1%	2%	-0.06	R	10	2%	0
T100435	4	0.02	0.94	10	0%	9%	-0.92	R	10	9%	1

T100445	2	0.16	0.47	10	2%	5%	-0.30	R	10	5%	1
T10045	17	5.44	5.42	38	14%	14%	0.02	U	10	54%	0
T100455	3	0.34	0.70	10	3%	7%	-0.36	R	10	7%	1
T100460	4	0.27	0.94	10	3%	9%	-0.66	R	10	9%	1
T100465	3	0.04	0.70	10	0%	7%	-0.66	R	10	7%	1
T100480	5	0.73	1.17	25	3%	5%	-0.44	R	10	12%	0
T100485	17	11.14	5.42	144	8%	4%	5.72	U	10	54%	0
T100495	38	7.58	8.89	50	15%	18%	-1.30	R	10	89%	0
T10050	60	20.51	19.14	50	41%	38%	1.37	U	25	77%	0
T10055	60	16.36	19.14	75	22%	26%	-2.78	U	25	77%	0
T10060	74	17.40	23.61	50	35%	47%	-6.21	U	25	94%	0
T10065	5	0.48	1.17	15	3%	8%	-0.69	R	10	12%	0
T10070	78	17.51	24.88	50	35%	50%	-7.37	U	25	100%	0
T10075	50	14.13	15.95	50	28%	32%	-1.82	U	25	64%	0
T10080	11	0.89	2.57	15	6%	17%	-1.68	R	10	26%	0
T10085	18	6.50	5.74	60	11%	10%	0.76	U	10	57%	0
T10090	19	2.20	4.44	15	15%	30%	-2.25	R	10	44%	0
T1010	17	3.09	3.98	15	21%	27%	-0.88	R	10	40%	0
T10100	39	20.20	12.44	100	20%	12%	7.76	U	15	83%	0
T101025	10	0.80	3.19	25	3%	13%	-2.39	U	10	32%	0
T101040	2	0.06	0.47	10	1%	5%	-0.41	R	10	5%	1
T10110	42	20.39	13.40	75	27%	18%	6.99	U	15	89%	0

DISTRIBUIDORA B.

					~ _	MDCIDORI					
Trafo	Num Usuarios	Max Demanda Registrada	Max Demanda Metodo Propuesto	Capacidad Trafo	% Cargabilidad Registro	% Cargabilidad Metodo Prop	Diferencia Demandas	Tipo Trafo	Capacidad Recomendada Metodo Prop	Cargabilidad Capacidad Recom	Comparativa Capacidades
T10003	39	7.78	9.45	25	31%	38%	-1.67	R	10	95%	0
T10008	39	12.57	9.45	38	33%	25%	3.12	R	10	95%	0
T10013	62	16.33	15.03	45	36%	33%	1.30	R	25	60%	0
T10018	86	18.31	20.84	38	48%	55%	-2.53	R	25	83%	0
T10023	44	9.23	10.66	25	37%	43%	-1.44	R	15	71%	0
T10028	40	8.55	9.69	25	34%	39%	-1.14	R	10	97%	0
T1003	13	1.90	3.15	15	13%	21%	-1.25	R	10	32%	0
T10033	2	4.10	0.48	25	16%	2%	3.61	R	10	5%	0
T10038	162	40.40	39.26	114	35%	34%	1.14	R	50	79%	0
T10043	25	6.75	6.06	50	13%	12%	0.69	R	10	61%	0
T10048	72	17.10	17.45	50	34%	35%	-0.35	R	25	70%	0
T10058	81	28.45	19.63	75	38%	26%	8.82	R	25	79%	0
T10063	62	15.21	15.03	38	40%	40%	0.18	R	25	60%	0
T10068	37	6.69	8.97	38	18%	24%	-2.27	R	10	90%	0
T10073	108	22.48	26.17	38	59%	69%	-3.69	R	38	69%	1
T10078	95	16.56	23.02	38	44%	61%	-6.46	R	25	92%	0
T1008	17	0.85	4.12	15	6%	27%	-3.28	R	10	41%	0
T10083	79	21.50	19.15	45	48%	43%	2.35	R	25	77%	0
T10088	57	9.04	13.81	25	36%	55%	-4.78	R	15	92%	0
T10093	55	8.58	13.33	15	57%	89%	-4.75	R	15	89%	1
T10098	75	17.00	18.18	38	45%	48%	-1.18	R	25	73%	0
T10103	51	14.42	12.36	38	38%	33%	2.06	R	15	82%	0
T10113	44	9.77	10.66	38	26%	28%	-0.89	R	15	71%	0
T10118	3	1.04	0.73	40	3%	2%	0.31	R	10	7%	0
T10123	41	12.42	9.94	38	33%	26%	2.48	R	10	99%	0

T10128	51	10.81	12.36	25	43%	49%	-1.55	R	15	82%	0
T1013	15	3.05	3.64	38	8%	10%	-0.58	R	10	36%	0
T10138	58	10.12	14.06	50	20%	28%	-3.94	R	15	94%	0
T10143	35	7.02	8.48	15	47%	57%	-1.46	R	10	85%	0
T10148	58	11.32	14.06	25	45%	56%	-2.74	R	15	94%	0
T10153	16	2.24	3.88	10	22%	39%	-1.64	R	10	39%	1
T10158	22	3.70	5.33	15	25%	36%	-1.63	R	10	53%	0
T10163	9	1.53	2.18	10	15%	22%	-0.65	R	10	22%	1
T10168	2	0.36	0.48	10	4%	5%	-0.13	R	10	5%	1
T10173	2	0.55	0.48	15	4%	3%	0.07	R	10	5%	0
T10178	19	1.72	4.60	10	17%	46%	-2.88	R	10	46%	1
T1018	54	13.68	17.85	50	27%	36%	-4.16	U	25	71%	0
T10188	1	0.35	0.24	15	2%	2%	0.11	R	10	2%	0
T10193	7	1.54	1.70	15	10%	11%	-0.15	R	10	17%	0
T10198	22	2.60	5.33	25	10%	21%	-2.73	R	10	53%	0
T10203	61	11.53	14.78	25	46%	59%	-3.25	R	15	99%	0
T10208	51	12.71	12.36	75	17%	16%	0.35	R	15	82%	0
T10213	14	4.77	3.39	50	10%	7%	1.38	R	10	34%	0
T10218	42	13.60	10.18	50	27%	20%	3.42	R	15	68%	0
T10223	36	7.90	8.72	50	16%	17%	-0.82	R	10	87%	0
T10228	62	13.91	15.03	50	28%	30%	-1.11	R	25	60%	0
T1023	21	2.91	5.09	15	19%	34%	-2.18	R	10	51%	0
T10233	50	13.16	12.12	75	18%	16%	1.04	R	15	81%	0
T10238	61	13.03	14.78	15	87%	99%	-1.76	R	15	99%	1
T10243	50	9.35	12.12	15	62%	81%	-2.77	R	15	81%	1
T10253	46	10.94	11.15	15	73%	74%	-0.21	R	15	74%	1
T10258	1	0.51	0.24	150	0%	0%	0.27	R	10	2%	0
T10293	2	2.82	0.48	50	6%	1%	2.33	R	10	5%	0
T10298	106	31.15	25.69	75	42%	34%	5.46	R	38	68%	0

T10308	6	2.25	1.98	25	9%	8%	0.26	U	10	20%	0
T10313	37	11.78	12.23	75	16%	16%	-0.44	U	15	82%	0
T10318	44	18.52	14.54	50	37%	29%	3.98	U	15	97%	0
T1033	29	4.85	9.58	38	13%	25%	-4.73	U	10	96%	0
T10353	49	17.97	16.19	75	24%	22%	1.78	U	25	65%	0
T10358	41	15.30	13.55	75	20%	18%	1.75	U	15	90%	0
T10363	51	15.23	16.85	75	20%	22%	-1.63	U	25	67%	0
T10368	90	22.22	29.74	114	19%	26%	-7.53	U	38	78%	0
T10373	33	10.41	10.91	45	23%	24%	-0.50	U	15	73%	0
T10378	61	14.26	20.16	50	29%	40%	-5.90	U	25	81%	0
T1038	58	12.18	19.17	38	32%	50%	-6.99	U	25	77%	0
T10383	49	12.33	16.19	75	16%	22%	-3.86	U	25	65%	0
T10388	88	38.28	29.08	75	51%	39%	9.20	U	38	77%	0
T10393	1	6.01	0.33	50	12%	1%	5.68	U	10	3%	0
T10398	72	18.20	23.80	50	36%	48%	-5.59	U	25	95%	0
T10403	5	4.27	1.65	25	17%	7%	2.62	U	10	17%	0
T10418	16	8.37	5.29	126	7%	4%	3.08	U	10	53%	0
T10428	54	21.93	17.85	113	19%	16%	4.08	U	25	71%	0
T10443	3	2.69	0.99	75	4%	1%	1.70	U	10	10%	0
T10448	31	16.29	10.25	150	11%	7%	6.04	U	15	68%	0
T10453	54	16.98	17.85	150	11%	12%	-0.86	U	25	71%	0
T10463	2	0.26	0.48	15	2%	3%	-0.23	R	10	5%	0

DISTRIBUIDORA C.

	1					%					=
Trafo	Núm. Usuarios	Max Demanda Registrada	Max Demanda Método Propuesto	Capacidad Trafo	% Cargabilidad Registro	Cargabilidad Método	Diferencia Demandas	Tipo Trafo	Capacidad Recomendada Método Prop	Cargabilidad Capacidad Recom	Comparativa Capacidades
			·			Prop			•		
T100006	1	4.05	0.23	15	27%	2%	3.82	R	10	2%	0
T100026	12	0.17	2.74	15	1%	18%	-2.57	R	10	27%	0
T100056	1	0.04	0.23	10	0%	2%	-0.19	R	10	2%	1
T10006	14	0.53	3.20	15	4%	21%	-2.67	R	10	32%	0
T100066	2	0.13	0.46	15	1%	3%	-0.33	R	10	5%	0
T100071	11	0.20	2.52	25	1%	10%	-2.31	R	10	25%	0
T100076	1	0.03	0.23	15	0%	2%	-0.20	R	10	2%	0
T100086	2	0.66	0.46	25	3%	2%	0.21	R	10	5%	0
T100096	5	0.15	1.14	15	1%	8%	-0.99	R	10	11%	0
T100116	1	0.09	0.23	15	1%	2%	-0.14	R	10	2%	0
T100121	1	0.01	0.23	15	0%	2%	-0.22	R	10	2%	0
T100141	4	0.06	0.91	15	0%	6%	-0.85	R	10	9%	0
T100146	1	0.01	0.23	15	0%	2%	-0.22	R	10	2%	0
T100151	1	0.13	0.23	15	1%	2%	-0.10	R	10	2%	0
T100156	1	2.26	0.31	15	15%	2%	1.95	U	10	3%	0
T100161	1	0.06	0.23	15	0%	2%	-0.17	R	10	2%	0
T100166	1	0.03	0.23	15	0%	2%	-0.20	R	10	2%	0
T100176	7	0.24	1.60	38	1%	4%	-1.37	R	10	16%	0
T100186	2	0.00	0.46	50	0%	1%	-0.45	R	10	5%	0
T100191	3	0.15	0.69	15	1%	5%	-0.53	R	10	7%	0
T100206	1	0.03	0.23	10	0%	2%	-0.20	R	10	2%	1
T100211	3	0.05	0.69	15	0%	5%	-0.63	R	10	7%	0
T100231	1	0.09	0.23	15	1%	2%	-0.14	R	10	2%	0
T100251	3	0.10	0.69	10	1%	7%	-0.59	R	10	7%	1
T100261	8	0.12	1.83	10	1%	18%	-1.71	R	10	18%	1

T100266	10	0.02	2.29	10	0%	23%	-2.26	R	10	23%	1
T100271	4	0.08	0.91	10	1%	9%	-0.83	R	10	9%	1
T100276	10	0.12	2.29	15	1%	15%	-2.16	R	10	23%	0
T100286	3	0.03	0.69	10	0%	7%	-0.66	R	10	7%	1
T100291	1	0.00	0.23	10	0%	2%	-0.23	R	10	2%	1
T100296	1	0.09	0.23	10	1%	2%	-0.14	R	10	2%	1
T100301	2	0.21	0.46	10	2%	5%	-0.25	R	10	5%	1
T100306	2	0.00	0.46	10	0%	5%	-0.45	R	10	5%	1
T100326	22	0.23	5.03	38	1%	13%	-4.80	R	10	50%	0
T100331	35	0.60	8.00	38	2%	21%	-7.40	R	10	80%	0
T100336	29	0.34	6.63	38	1%	17%	-6.29	R	10	66%	0
T100346	13	0.77	2.97	25	3%	12%	-2.20	R	10	30%	0
T100356	16	0.67	4.99	25	3%	20%	-4.32	U	10	50%	0
T100361	22	1.57	6.86	25	6%	27%	-5.29	U	10	69%	0
T100366	21	0.44	6.55	25	2%	26%	-6.11	C	10	65%	0
T100371	14	0.60	4.37	25	2%	17%	-3.77	U	10	44%	0
T100386	2	0.49	0.46	25	2%	2%	0.03	R	10	5%	0
T100396	2	0.07	0.46	15	0%	3%	-0.39	R	10	5%	0
T100401	13	0.25	2.97	15	2%	20%	-2.72	R	10	30%	0
T100406	1	1.59	0.31	50	3%	1%	1.27	U	10	3%	0
T100411	1	0.07	0.23	15	0%	2%	-0.15	R	10	2%	0
T100416	2	0.03	0.46	15	0%	3%	-0.42	R	10	5%	0
T100431	1	0.04	0.23	15	0%	2%	-0.19	R	10	2%	0
T100456	2	0.01	0.46	15	0%	3%	-0.45	R	10	5%	0
T100461	1	0.00	0.31	25	0%	1%	-0.31	U	10	3%	0
T100466	2	1.08	0.46	25	4%	2%	0.62	R	10	5%	0
T100471	1	0.28	0.23	15	2%	2%	0.05	R	10	2%	0
T100476	2	0.19	0.46	100	0%	0%	-0.27	R	10	5%	0
T100481	1	0.01	0.23	25	0%	1%	-0.22	R	10	2%	0

T100486	13	0.25	2.97	25	1%	12%	-2.72	R	10	30%	0
T100491	2	0.13	0.46	15	1%	3%	-0.32	R	10	5%	0
T100511	1	3.70	0.23	15	25%	2%	3.48	R	10	2%	0
T100541	1	0.15	0.23	15	1%	2%	-0.08	R	10	2%	0
T10056	22	0.61	5.03	25	2%	20%	-4.42	R	10	50%	0
T100581	4	0.05	0.91	10	0%	9%	-0.87	R	10	9%	1
T100586	5	0.01	1.14	10	0%	11%	-1.14	R	10	11%	1
T100591	4	0.01	0.91	10	0%	9%	-0.91	R	10	9%	1
T100596	2	0.02	0.46	10	0%	5%	-0.44	R	10	5%	1
T1006	16	12.50	4.99	48	26%	10%	7.51	U	10	50%	0
T100601	4	0.01	0.91	10	0%	9%	-0.91	R	10	9%	1
T100621	4	0.17	0.91	10	2%	9%	-0.74	R	10	9%	1
T100626	3	0.02	0.69	10	0%	7%	-0.67	R	10	7%	1
T100631	9	0.07	2.06	10	1%	21%	-1.99	R	10	21%	1
T100636	4	0.07	0.91	10	1%	9%	-0.84	R	10	9%	1
T100641	5	0.13	1.14	10	1%	11%	-1.01	R	10	11%	1
T100646	4	0.01	0.91	10	0%	9%	-0.90	R	10	9%	1
T100656	1	0.22	0.23	15	1%	2%	-0.01	R	10	2%	0
T100676	4	1.93	0.91	100	2%	1%	1.01	R	10	9%	0
T100696	32	0.38	7.32	38	1%	19%	-6.94	R	10	73%	0
T100701	14	0.37	3.20	25	1%	13%	-2.83	R	10	32%	0
T100706	36	1.09	8.23	38	3%	22%	-7.14	R	10	82%	0

DISTRIBUIDORA D.

Trafo	Núm. Usuarios	Max Demanda Registrada	Max Demanda Método Propuesto	Capacidad Trafo	% Cargabilidad Registro	% Cargabilidad Método Prop	Diferencia Demandas	Tipo Trafo	Capacidad Recomendada Método Prop	Cargabilidad Capacidad Recom	Comparativa Capacidades
T10007	19	2.43	4.70	15	16%	31%	-2.27	R	10	47%	0
T10017	12	2.03	2.97	15	14%	20%	-0.93	R	10	30%	0
T1002	34	17.50	11.46	50	35%	23%	6.03	U	15	76%	0
T10022	61	11.60	20.57	15	77%	137%	-8.97	U	25	82%	0
T10027	8	1.53	1.98	15	10%	13%	-0.45	R	10	20%	0
T10032	21	3.55	5.19	25	14%	21%	-1.64	R	10	52%	0
T10042	100	20.96	24.73	25	84%	99%	-3.76	R	25	99%	1
T10052	15	2.91	3.71	15	19%	25%	-0.80	R	10	37%	0
T10057	18	1.38	4.45	25	6%	18%	-3.07	R	10	45%	0
T10062	10	1.17	2.47	15	8%	16%	-1.30	R	10	25%	0
T10067	49	9.37	12.12	25	37%	48%	-2.75	R	15	81%	0
T10072	10	1.29	2.47	15	9%	16%	-1.18	R	10	25%	0
T10077	32	10.02	7.91	25	40%	32%	2.10	R	10	79%	0
T10082	1	0.00	0.25	10	0%	2%	-0.25	R	10	2%	1
T10087	31	3.12	7.66	15	21%	51%	-4.54	R	10	77%	0
T10097	21	7.39	5.19	38	19%	14%	2.20	R	10	52%	0
T10102	47	16.15	11.62	25	65%	46%	4.53	R	15	77%	0
T10107	16	2.84	3.96	15	19%	26%	-1.12	R	10	40%	0
T10112	10	1.84	2.47	50	4%	5%	-0.64	R	10	25%	0
T10117	40	10.63	9.89	50	21%	20%	0.74	R	10	99%	0
T10122	42	8.27	10.38	25	33%	42%	-2.12	R	15	69%	0
T10127	34	4.57	8.41	25	18%	34%	-3.83	R	10	84%	0
T10137	4	1.00	0.99	15	7%	7%	0.01	R	10	10%	0
T10142	17	2.09	4.20	25	8%	17%	-2.11	R	10	42%	0
T10162	21	3.08	5.19	15	21%	35%	-2.11	R	10	52%	0

T1017	9	13.00	3.03	75	17%	4%	9.96	U	10	30%	0
T10172	5	0.29	1.24	25	1%	5%	-0.95	R	10	12%	0
T10177	17	2.70	4.20	38	7%	11%	-1.51	R	10	42%	0
T10182	67	14.38	22.59	25	58%	90%	-8.21	U	25	90%	1
T10187	27	4.76	6.68	15	32%	45%	-1.91	R	10	67%	0
T10192	12	2.39	2.97	15	16%	20%	-0.57	R	10	30%	0
T10197	19	3.57	4.70	15	24%	31%	-1.13	R	10	47%	0
T10202	39	9.75	13.15	25	39%	53%	-3.40	U	15	88%	0
T10207	32	4.59	7.91	38	12%	21%	-3.32	R	10	79%	0
T10222	57	12.37	19.22	25	49%	77%	-6.85	U	25	77%	1
T10227	22	2.39	5.44	15	16%	36%	-3.05	R	10	54%	0
T10232	17	2.57	4.20	15	17%	28%	-1.63	R	10	42%	0
T10237	5	0.93	1.24	15	6%	8%	-0.30	R	10	12%	0
T10242	4	0.47	0.99	25	2%	4%	-0.52	R	10	10%	0
T10247	67	11.99	16.57	25	48%	66%	-4.58	R	25	66%	1
T10252	41	6.86	10.14	25	27%	41%	-3.28	R	15	68%	0
T10257	87	14.07	21.51	25	56%	86%	-7.44	R	25	86%	1
T10262	44	7.41	10.88	25	30%	44%	-3.47	R	15	73%	0
T10267	22	3.52	5.44	25	14%	22%	-1.92	R	10	54%	0
T10272	31	3.26	7.66	15	22%	51%	-4.40	R	10	77%	0
T10277	13	1.56	3.21	25	6%	13%	-1.66	R	10	32%	0
T10287	7	1.39	1.73	15	9%	12%	-0.34	R	10	17%	0
T10292	14	1.96	3.46	15	13%	23%	-1.51	R	10	35%	0
T10297	15	2.25	3.71	15	15%	25%	-1.46	R	10	37%	0
T10302	8	1.74	1.98	15	12%	13%	-0.24	R	10	20%	0
T10307	26	4.61	6.43	15	31%	43%	-1.82	R	10	64%	0
T10312	10	1.82	2.47	15	12%	16%	-0.65	R	10	25%	0
T10317	28	4.15	6.92	15	28%	46%	-2.77	R	10	69%	0
T10327	37	6.52	9.15	15	43%	61%	-2.63	R	10	91%	0

T10332	34	7.90	8.41	25	32%	34%	-0.50	R	10	84%	0
T10337	35	4.70	8.65	25	19%	35%	-3.95	R	10	87%	0
T10342	93	15.23	22.99	50	30%	46%	-7.77	R	25	92%	0
T10347	7	1.26	1.73	15	8%	12%	-0.47	R	10	17%	0
T10352	12	1.30	2.97	15	9%	20%	-1.67	R	10	30%	0
T10357	24	2.31	5.93	15	15%	40%	-3.63	R	10	59%	0
T10362	8	1.49	2.70	15	10%	18%	-1.21	U	10	27%	0
T10367	7	1.35	1.73	15	9%	12%	-0.38	R	10	17%	0
T10372	5	0.61	1.24	15	4%	8%	-0.62	R	10	12%	0
T10377	17	2.35	4.20	15	16%	28%	-1.85	R	10	42%	0
T10382	18	2.55	4.45	15	17%	30%	-1.90	R	10	45%	0
T10402	17	1.78	4.20	15	12%	28%	-2.43	R	10	42%	0
T10407	10	1.45	2.47	15	10%	16%	-1.02	R	10	25%	0
T10412	2	0.47	0.49	15	3%	3%	-0.02	R	10	5%	0
T10417	33	4.89	8.16	25	20%	33%	-3.27	R	10	82%	0
T10422	31	7.30	7.66	15	49%	51%	-0.36	R	10	77%	0
T10427	14	1.64	3.46	15	11%	23%	-1.83	R	10	35%	0
T10432	19	3.10	4.70	15	21%	31%	-1.60	R	10	47%	0
T10437	16	1.46	3.96	15	10%	26%	-2.50	R	10	40%	0
T10442	11	2.57	2.72	15	17%	18%	-0.15	R	10	27%	0
T10447	36	8.30	8.90	15	55%	59%	-0.60	R	10	89%	0
T10457	3	1.29	0.74	15	9%	5%	0.55	R	10	7%	0

ANEXO 5. RESUMEN DEL METODO PROPUESTO.

Capacidad del Transformador a Instalar:

$$T=rac{1}{fp}[D_{RES}+D_{AL}+D_{ESP}]$$
 Ecuación 12.
$$D_{AL}=n_l\cdot P_l$$
 Ecuación 14.
$$D_{RES}=n\cdot D_{max}\cdot f_{cre}\cdot f_{sim}$$
 Ecuación 13.

 D_{ESP} : Demanda que considera la alimentación de carga especial como bombas de agua, la cual se calcula de 0.75~kW por cada HP.

Tablas:

Potencias demandadas clasificadas por tipo de usuario y por distribuidora:

Distribuidora	Demanda máxima Urbana (W)	Demanda máxima Rural (W)
A	296	218
В	256	195
С	232	178
D	230	178

Luminarias utilizadas para Alumbrado Público por tipo de tecnología:

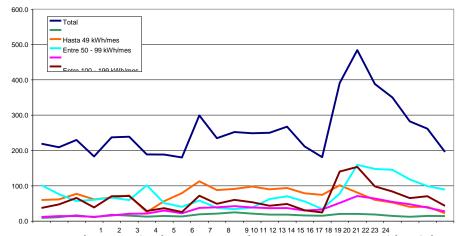
Tipo de luminaria	Capacidades (W)
Lámparas incandescentes	25, 40, 60, 100, 200, 300
Lámparas fluorescentes	20, 32, 40, 55, 65, 2x40, 4x40
Lámparas de vapor de mercurio	175, 250, 400
Lámparas LED	80, 120, 180

Cantidad de luminarias por tipo de zona:

Cobertura del alumbrado público	Urbano	Rural
Bajo	5	3
Medio – Alto	10	6

Factores de Simultaneidad:

Número de viviendas	Electrificación mínima y media	Electrificación alta
2 a 4	1	0.8
5 a 15	0.8	0.7
17 a 25	0.6	0.5
> 25	0.5	0.4


ANEXO 6.

RESULTADOS DE LA CAMPAÑA DE CARACTERIZACION DE LAS CARGAS

Para energía eléctrica se utilizó el consumo total 2009 que publica la SIGET en su página web y fue distribuido en Industria, Comercio y Servicios, en base a los resultados de la encuesta y de las mediciones realizadas. El consumo de Alumbrado Público y Construcción se tomó tal cual lo presenta la SIGET.

La grafica siguiente muestra el perfil de carga total del sector Residencial de El Salvador caracterizado por rangos de consumo. La demanda máxima ocurre a las 7:00 p.m. y la mayor responsabilidad de esta demanda es debida a los rangos de consumo entre 100-199 kWh/mes, y mayor a 300 kWh/mes. La demanda máxima de clientes en el rango hasta 49 kWh/mes ocurre a las 12:00 horas y en el caso del rango entre 50-99 kWh/mes, el pico ocurre a las 10:00 a.m.

Curva Caracterizada por Rango de Consumo,

Curva Total caracterizada por rangos de consumo, sector Residencial.

Principales Usos	Rangos en kWh/mes									
Timerpales Usos	Hasta 49	Entre 50 - 99	Entre 100 - 199	Entre 200 - 300	Mayor a 300	Total				
Iluminación	32.2%	9.2%	7.9%	9.9%	7.2%	8.8%				
Refrigeración	16.4%1	53.0%	43.7%	25.8%	34.4%	37.5%				
Aire Acondicionado	0.0%	0.0%	0.0%	2.4%	9.8%	3.7%				
Abanico	4.7%	1.7%	2.8%	2.9%	3.0%	2.8%				
Plancha	12.3%	10.4%	19.3%	15.1%	8.3%	13.5%				
Televisor	25.1%	17.3%	16.7%	26%	16.3%	18.8%				
Computadora	4.5%	4.4%	5.6%	14.6%	13.2%	9.8%				
Otros	4.8%	4.0%	4.1%	3.3%	7.8%	5.1%				
	100.00%	100.00%	100.10%	100.00%	100.00%	100.00%				

Participación usos finales principales, sector Residencial por rango de consumo

Con respecto al uso de la Iluminación, la tecnología utilizada es mayoritariamente iluminación ahorradora representando un 48 % del total, para los sectores hasta 49 kWh/mes y entre 200 – 300 kWh/mes el porcentaje de la iluminación incandescente es mayor. Si bien la iluminación ahorradora (fluorescentes compactas) representa la mayor parte del consumo, aún se tiene un consumo importante debido a iluminación incandescente.

Participación por tipo de	Rangos en kWh/mes							
Iluminación	Hasta 49	Entre 50 - 99	Entre 100 - 199	Entre 200 - 300	Mayor a 301	Total		
Luces Incandescentes	75.4%	29.3%	29.0%	54.6%	23.2%	37.2%		
Fluorescentes Lineales	9.7%	18.2%	19.2%	4.2%	19.6%	14.8%		
Fluorescentes Compactas	14.9%	52.4%	51.8%	41.2%	57.2%	48.0%		

Tabla 2. Participación de la Iluminación, sector Residencial