UNIVERSIDAD DE EL SALVADOR. FACULTAD DE CIENCIAS AGRONOMICAS DIRECCION DE INVESTIGACION

NOMBRE DE LA INVESTIGACIÓN

AI_2106

Evaluación de diferentes densidades de siembra de tilapia (*Oreochromis niloticus*) en estanques artesanales de agua dulce en San Luis Talpa, La Paz.

TITULO A OBTENER: Ingeniero Agrónomo

AUTORES

Nombre y apellidos	Institución y dirección	Teléfono E-mail	Firma
Br. Amílcar	Cantón La Bermuda,	6309-7834	
Segundo Coreas	caserío Las	amilxmil@gmail.com	
Madrid	Américas, Suchitoto,		
	Cuscatlán		
Br. Josue Eduardo	Calle Antigua al	7292-1566	
Gutiérrez Salguero	Matazano, lote #214,	josue.edu_7@hotmail.com	
	contiguo al		
	restaurante El		
	Brasero, Soyapango,		
	San Salvador		
Ing. M. Sc. Efraín	Facultad de Ciencias	7318-0554	
Antonio Rodríguez	Agronómicas,	efrain.rodriguez@ues.edu.sv	
Urrutia	Departamento de		
	Desarrollo Rural		
Ing. M. Sc. Juan	Facultad de Ciencias	7887-5266	
Milton Flores	Agronómicas,	jflorestensos@yahoo.es	
Tensos	Departamento de	j	
	Química Agrícola		

Coordinadora General de Procesos de Graduación Ing. Ana Juana Elizabeth Valdés de Sánchez	del Departamento: Firma:
Director General de Procesos de Graduación de la l Ing. Enrique Alonso Alas García	Facultad: Firma:
Jefe del Departamento: Ing. Edgar Marroquín Mena	Firma:
	Sello:
	Ciudad Universitaria, octubre de 2021

Evaluación de diferentes densidades de siembra de tilapia (*Oreochromis niloticus*) en estanques artesanales de agua dulce en San Luis Talpa, La Paz.

Coreas-Madrid, AS¹(*); Gutiérrez-Salguero, JE¹(*); Rodríguez-Urrutia, EA²(**); Flores-Tensos, JM²(**).

Resumen

La investigación se realizó en la Estación Experimental y de Prácticas de la Facultad de Ciencias Agronómicas de la Universidad de El Salvador, ubicada en el cantón Tecualuya, municipio de San Luis Talpa, departamento de La Paz, en El Salvador, en el periodo de octubre 2019 a febrero 2020.

El objetivo fue evaluar diferentes densidades de siembra de tilapia (*Oreochromis niloticus*) en un estanque artesanal, que fue dividido en dos módulos y estos subdivididos en dos jaulas de 2.5 metros de ancho, 3 m de largo y 1.15 m de altura), en los que se distribuyeron los tratamientos.

El estudio se realizó bajo el diseño Completo al azar; los tratamientos fueron: testigo o tratamiento 0 (T0) en el cual se sembraron 5 tilapias/m³ y se colocaron en total 38 alevines; tratamiento 1 se sembraron 10 tilapias/m³, se colocaron 75 alevines; tratamiento 2 se sembraron 15 tilapias/m³ y se colocaron 113 alevines; y tratamiento 3 se sembraron 20 tilapias/m³, colocando 150 alevines en total. Cada tratamiento tenía 5 repeticiones. Los parámetros que se midieron fueron: peso y tamaño o talla de las tilapias. El intervalo de muestreo fue cada 14 días.

Los parámetros físicos (pH, temperatura, alcalinidad, dureza, turbidez, sólidos totales disueltos, oxígeno disuelto y conductividad eléctrica) y químicos (arsénico, hierro, plomo, cobre y zinc) se analizaron en el laboratorio de Química Agrícola de la Facultad de Ciencias Agronómicas de la Universidad de El Salvador, y los análisis microbiológicos se realizaron en el laboratorio de Control de Calidad Microbiológico de Alimentos, Medicamentos y Aguas del Centro de Investigación y Desarrollo en Salud (CENSALUD) de la Universidad de El Salvador.

El mejor peso promedio de los peces se obtuvo con una densidad de 5 tilapias/m³ (testigo o tratamiento 0) con 1,206 g (2.66 libras); el mayor crecimiento o talla promedio de los peces se obtuvo con las densidades de 5, 10 y 20 tilapias/m³ (testigo o tratamiento 0, tratamiento 1 y tratamiento 3, respectivamente) con 18 cm y el tratamiento 2 obtuvo menor crecimiento con 17 cm. Los resultados para análisis físicos, (Salinidad (1%), OD (12.29 mg/l), STD (129.50 mg/l), Conductividad E (292.33 μ s/cm), pH (7.70), Temperatura 30.73° C, Turbidez (35 cm). Metales pesados. El arsénico (0.7861 ppm), cobre (< 0.05 ppm), plomo (4.2312 ppm), zinc (0.8928 ppm), hierro (< 0.20 ppm) El análisis físico-químico demostró que el agua utilizada en la investigación era apta para la producción de tilapia.

Palabras clave: tilapia, *Oreochromis niloticus*, agua, estanque artesanal, alevines, densidad de siembra, El Salvador.

^{1(*)} Universidad de El Salvador, Facultad de Ciencias Agronómicas, Departamento de Desarrollo Rural, Estudiantes tesistas.

^{2(**)} Universidad de El Salvador, Facultad de Ciencias Agronómicas, Departamentos de Desarrollo Rural y Química Agrícola, Docentes Directores.

Evaluation of different stocking densities of tilapia (Oreochromis niloticus) in artisanal freshwater ponds in San Luis Talpa, La Paz.

Coreas-Madrid, AS¹(*); Gutiérrez-Salguero, JE¹(*); Rodríguez-Urrutia, EA²(**); Flores-Tensos, JM²(**).

ABSTRACT

The research was carried out at the Experimental and Practice Station of the Faculty of Agronomic Sciences of the University of El Salvador, located in the Tecualuya canton, municipality of San Luis Talpa, department of La Paz, in El Salvador, in the period of October 2019 to February 2020.

The objective was to evaluate different stocking densities of tilapia (Oreochromis niloticus) in an artisanal pond, which was divided into two modules and these were subdivided into two cages of 2.5 meters wide, 3 m long and 1.15 m high), in the that the treatments were distributed. The study was carried out under a randomized Complete design; The treatments were: control or treatment 0 (T0) in which 5 tilapia / m3 were sown and 38 fingerlings were placed in total; Treatment 1, 10 tilapia / m3 were sown, 75 fingerlings were placed; Treatment 2, 15 tilapia / m3 were sown and 113 fingerlings were placed; and treatment 3, 20 tilapia / m3 were planted, placing 150 fingerlings in total. Each treatment had 5 repetitions. The parameters that were measured were: weight and size or height of the tilapia. The sampling interval was every 14 days.

The physical parameters (pH, temperature, alkalinity, hardness, turbidity, total dissolved solids, dissolved oxygen and electrical conductivity) and chemical parameters (arsenic, iron, lead, copper and zinc) were analyzed in the Laboratory of Agricultural Chemistry of the Faculty of Sciences. Agronomics of the University of El Salvador, and the microbiological analyzes were carried out in the Laboratory of Microbiological Quality Control of Food, Drugs and Water of the Center for Research and Development in Health (CENSALUD) of the University of El Salvador.

The best average weight of the fish was obtained with a density of 5 tilapia / m3 (control or treatment 0) with 1,206 g (2.66 pounds); the highest growth or average size of the fish was obtained with the densities of 5, 10 and 20 tilapia / m3 (control or treatment 0, treatment 1 and treatment 3, respectively) with 18 cm and treatment 2 obtained less growth with 17 cm. The results for physical analysis, (Salinity (1%), OD (12.29 mg / l), STD (129.50 mg / l), Conductivity E (292.33 μ s / cm), pH (7.70), Temperature 30.73 ° C, Turbidity (35 cm) Heavy metals Arsenic (0.7861 ppm), copper (<0.05 ppm), lead (4.2312 ppm), zinc (0.8928 ppm), iron (<0.20 ppm) The physical-chemical analysis showed that the water used in the research was suitable for tilapia production.

Key words: tilapia, *Oreochromis niloticus*, water, artisanal pond, fingerlings, stocking density, El Salvador.

1(*) University of El Salvador, Faculty of Agronomic Sciences, Department of Rural Development, Thesis students. 2(**) University of El Salvador, Faculty of Agronomic Sciences, Departments of Rural Development and Agricultural Chemistry, Lecturers.

1. Introducción

La tilapia es un pez de aguas tropicales introducido en El Salvador a comienzos de los años setenta. En comparación con otros peces, posee extraordinarias cualidades para el cultivo como: crecimiento acelerado, tolerancia a altas densidades, adaptación a cautiverio, aceptación de una amplia gama de alimentos, alta resistencia a enfermedades; además de contar con algunos atributos para el mercado como: carne blanca de buena calidad, buen

sabor, poca espina, buena talla y precio accesible, que le confiere una preferencia y demanda comercial en la acuicultura mundial (CENDEPESCA y Misión Técnica Taiwán 2013).

En El Salvador, el cultivo de peces, en particular el de tilapia, ha cobrado interés durante los últimos años, ya que representa una alternativa para aprovechar el recurso acuático para producir pescado de atractivo valor comercial. La demanda de carne de tilapia está aumentando y se perfila una perspectiva interesante, en que la aplicación de una mejor tecnología como semilla mejorada, alimento de calidad, manejo del agua y una buena gestión de ventas, son claves para el éxito económico de este cultivo (MAG 2001).

La cantidad para sembrar es de 3 a 5 peces/m³ de espejo de agua; el incremento de la cantidad de alevines dependerá de la disponibilidad de agua de buena calidad (CENDEPESCA 2008).

Parámetros físico-químico para el pH el rango óptimo para crianza de tilapia es entre 6.5 a 9. La temperatura debe variar entre 28° C y 32° C (NICOVITA 2014). La alcalinidad y dureza es la concentración de carbonatos y bicarbonatos, los valores de alcalinidad y dureza son aproximadamente iguales con rangos óptimos entre 50-350 ppm; el agua para el cultivo debe tener una alcalinidad entre 100-200 ppm (NICOVITA 2014). La turbidez debe estar en rangos de 25 a 35 cm (Romero 1999). Según la concentración de sólidos disueltos, los estanques se clasifican en: estanques limpios con sólidos menores a 25 mg/l, estanques intermedios entre 25- 100 mg/l, estanques lodosos en sólidos mayores a 100 mg/l. La tilapia es capaz de sobrevivir en condiciones de oxígeno por encima de 2 mg/l (NICOVITA 2014). La conductividad eléctrica es un indicativo de las sales disueltas en el agua Ca²⁺, Mg²⁺, Na⁺. Las aguas que tienen altas concentraciones de conductividad son corrosivas (Montano y Vargas 2018, citado por Sierra 2011). Para los metales pesados el agua subterránea contiene niveles de arsénico de 0.05 a 0.2 ppm (Flores 2016, citado por Sager 2000). En el cobre el límite máximo permisible en el agua es de 2 mg/l; el límite máximo de plomo en el agua es de 10 µg/l; y el límite máximo permisible de zinc en el agua es de 2 mg/l (Calderón 2018, citado por Acuerdo Ministerial 2009).

En los coliformes fecales y *Escherichia coli* López *et al.* (2016) menciona que puede aceptarse la presencia de hasta 1,000 NMP (Numero Mas Probable) /100 ml de coliformes fecales en el agua. Según el Reglamento Técnico Salvadoreño RTS 13.02.01:14 2018, el límite máximo permisible de coliformes fecales en el agua es de <1.1 NMP/ml. Romero (1999) menciona que, el agua debe contener niveles máximos y mínimos permisibles de coliformes fecales en los estanques debe ser <1/100ml y <1.1 NMP para la producción de alimentos la cantidad de coliformes fecales en el agua debe ser menor a 100/100 ml. Para el RTS 13.02.01:14 2018, el límite máximo permisible para Escherichia Coli es de <1.1 NMP.

2. Materiales y métodos

2.1. Ubicación de la investigación

La investigación se realizó en la Estación Experimental y de Prácticas de la Facultad de Ciencias Agronómicas de la Universidad de El Salvador, ubicada en el cantón Tecualuya, municipio de San Luis Talpa, departamento de la Paz, a una elevación de 50 metros sobre el nivel del mar, una precipitación media anual de 1,700 mm, temperatura anual de 28° C, humedad relativa de 76% y una velocidad del viento de 8 km/h, en el periodo de octubre 2019 a febrero 2020, en un estanque artesanal de 10.50 metros de largo, 6.34 m de ancho y 1.30 m de profundidad.

2.2. Metodología de campo

El estanque fue desinfectado con 2.3 kilogramos de cal viva diluida en agua, con una escoba se removió el sedimento y el material acumulado en las paredes y en el fondo. El estanque se dejó expuesto al sol por una semana y luego se procedió al llenado con agua. Se construyeron las jaulas con tubo estructural de hierro de ¾ de pulgada, chapa 16 milímetros, se colocó una malla tipo gallinero con un tamaño de los orificios de una pulgada, y para evitar la salida y entrada en los primeros estadios de la tilapia se utilizó una malla de color blanco tipo cedazo. Las medidas de las jaulas fueron de 3 m de largo, 2.5 m de ancho y 1.15 m de altura, con una compuerta ubicada en la parte superior de cada jaula para el manejo de las tilapias (figura 1).

Figura 1. Limpieza del estanque y contrucción de las jaulas.

La compra de los alevines se realizó en la Estación Acuícola del Centro de Desarrollo de la Pesca y la Acuicultura (CENDEPESCA), del Ministerio de Agricultura y Ganadería (MAG), ubicada en el cantón Santa Cruz Porrillo, municipio de Tecoluca, departamento de San Vicente. En total se compraron 376 alevines de tilapia para establecer la investigación, a un costo de \$0.07 de dólar por unidad, haciendo un costo total de \$26.32, los cuales fueron transportados en las primeras horas de la mañana en bolsa plástica conteniendo 25% de agua, 50% de oxígeno y el otro 25% para el amarre de la bolsa.

Para la siembra las bolsas conteniendo los alevines se colocaron en el agua del estanque durante 15 minutos para aclimatarlos a la temperatura del agua, luego se distribuyeron de acuerdo a los tratamientos a evaluar. Para la alimentación de la tilapia se calculó la ración total del día y se dividió en 4 partes, se alimentó en horarios de 8:00 am, 10:00 am, 1:00 pm y 3:00 pm. En los primeros 40 días los peces se alimentaron con concentrado con 38% de proteína; del día 41 al 112 se alimentó con concentrado con 32% de proteína. La oxigenación se hizo dos veces al día a través de una caída de agua, para ello se construyó un sistema de distribución de agua con tubo PVC de 1 pulgada de grosor, que se extendía de un extremo del estanque al otro con perforaciones cada 20 cm, esta caída de agua era la que generaba la oxigenación.

2.2.1. Muestreo del agua para análisis físico y químico

Previo al establecimiento y después de la siembra se conocían los parámetros físicos y químicos (pH, Temperatura, Turbidez, Oxígeno Disuelto, Solidos Totales Disueltos) que contribuyen a la mejora de las condiciones del estudio para el desarrollo del cultivo, por otro lado se determinó en las muestras de agua el nivel de metales pesados como (arsénico, hierro, plomo, cobre y zinc) por el método de espectroscopia de absorción atómica en el laboratorio de Química Agrícola de la Facultad de Ciencias Agronómicas, los muestreos de agua se realizó cada mes con el fin de garantizar que la cosecha y carne del cultivo estén libre de estos contaminantes que son nocivos para la salud. Para la medición del pH se introdujo el electrodo del pH-metro (marca OAKTON pH tester 30) en el agua del estanque y se anotaba la lectura.

La temperatura se midió introduciendo el termómetro artesanal de mercurio en el agua del estanque. La turbidez del agua del estanque se midió con un disco Secchi. La medición del oxígeno disuelto (OD) y de los Sólidos Totales Disueltos (STD) se hizo cada tres semanas por el método Potenciométrico; para ello se utilizó una (Sonda Multi-parámetros marca HACH) se introducía el electrodo de la sonda en el agua de cada uno de los tratamientos, se hacían hasta tres lecturas para evitar errores y se anotaba la última lectura en los registros de campo. Utilizando recipientes de polietileno con capacidad de un litro, los cuales se introdujeron en el estanque con cuidado para evitar burbujeos o la introducción de hojarasca que pueda afectar el análisis, se identificaron y se colocaron en hieleras a temperatura de 4° C y se condujeron al laboratorio para su análisis. Muestreo para análisis microbiológico, el primer muestreo se tomó en la fuente de abastecimiento de agua del estanque en un frasco de polietileno de 1 litro de capacidad, se identificó y se colocó en una hielera a temperatura de 4° C para su traslado al laboratorio.

2.3. Metodología estadística

Se utilizó un diseño estadístico Completamente al Azar, los tratamientos que se evaluaron fueron:

- Testigo o Tratamiento 0 (T0): se establecieron 5 tilapias/m³, en total 38 alevines.
- Tratamiento 1 (T1): se sembraron 10 tilapias/m³, en total 75 peces.
- Tratamiento 2 (T2): se introdujeron 15 tilapias/m³, en total 113 alevines.
- Tratamiento 3 (T3): se colocaron 20 tilapias/m³, en total 150 peces.

Las variables dependientes que se midieron fueron el peso y el crecimiento o talla de las tilapias. La cantidad de unidades experimentales que se utilizaron por tratamiento se obtuvieron al multiplicar los 7.5 m² de espejo de agua que contenía cada jaula por la densidad de siembra correspondiente.

Se determinó realizarlos a los 112 días (3 meses con 22 días) después de la siembra

2.3.1. Toma de datos

Para el muestreo de los parámetros crecimiento y peso de las tilapias fueron ocho tomas de datos, se hicieron cada 14 días extrayendo al azar de cada jaula 5 grupos o bloques de tilapias, cada bloque estaba constituido por 7 individuos o unidades experimentales. El peso obtenido se dividió entre el total de tilapias por modulo para obtener el peso promedio de los tratamientos. Para la medición del crecimiento o talla de las tilapias se utilizó una regla graduada en centímetros, midiendo desde la boca hasta el inicio de la aleta caudal.

Para el ordenamiento y tabulación de los datos promedios de talla y peso se utilizó el programa Microsoft Excel® 2016, que es de aplicación general desarrollado bajo la plataforma Windows, el cual permitió la obtención de medias descriptivas y gráficos para el análisis exploratorio. A cada uno de los datos se les realizo una prueba de distribución normal (F); para comprobar la variación estadística se realizó una correlación entre las variables talla y peso versus densidades a través del programa estadístico INFOSTAT.

Con la prueba de Tukey se estableció la hipótesis que permitió despejar la duda sobre el supuesto de homogeneidad:

Ho = (Varianzas homogéneas) = Todos los tratamientos se comportan de igual manera.

Ha = (Varianzas heterogéneas) = Al menos uno de los tratamientos es diferente.

La regla de decisión para la hipótesis fue:

Si Fc > Ft, se rechaza la hipótesis nula (Varianzas heterogéneas).

Si Fc < Ft, se rechaza la hipótesis alterna (Varianzas homogéneas).

2.4. Metodología económica

Se realizó a través del presupuesto parcial, se calculó el costo de producción de las tilapias desarrolladas por tratamiento, tomando en cuenta los costos de la compra de los alevines y el alimento concentrado. Con estos datos se evaluó que tratamiento producía mejores beneficios. Los elementos básicos que se utilizaron para determinar el presupuesto parcial fueron: rendimientos medios, rendimientos ajustados, beneficio bruto de campo, costos que varían, total de los costos que varían y beneficios netos.

3. Resultados y discusión

3.1. Peso de los peces

Los resultados obtenidos en esta investigación se determinó realizarlos a los 112 días (3 meses con 22 días) después de la siembra; donde el mayor peso promedio obtenido fue en el tratamiento Testigo o Tratamiento 0 (5 tilapias/m³) con 1,206 g, seguido por el Tratamiento 1 (10 tilapias/m³) con 1,122 g, y por último el tratamiento 3 (20 tilapias/m³) con 1,073 g, y el tratamiento 2 (15 tilapias/m³) con 1,050 g, Los comportamientos de los incrementos en peso de cada uno de los tratamientos antes mencionados puede observarse mejor su comportamiento al observar la figura 1).

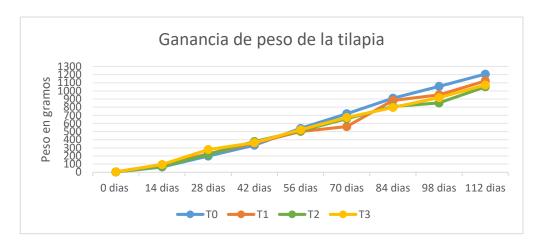


Figura 1. Peso promedio de las tilapias durante el ciclo productivo.

Por otro lado el análisis estadístico demostró que si existió una diferencia significativa al 5% entre los tratamientos evaluados. El análisis de varianza demostró un P-valor calculado de 0.0034 con una probabilidad p < 0.05 siendo menor, por lo tanto se acepta la hipótesis alterna (variables heterogéneas), es decir que los tratamientos se comportaron diferentes entre ellos (ver cuadro 1). Cárdenas (2012) encontró que las altas densidades de siembra de peces afecta directamente el desarrollo de los organismos en los sistemas de cultivo controlado.

	Cuadro 1. Ana	álisis de varian:	za.	
Fuente de	Suma	Grados de	f	P-Valor
Variación	de	Libertad		
	Cuadrados			
Modelo	71360.60	3	6.89	0.0034
Tratamientos	71360.60	3	6.89	0.0034

Error	55203.20	16
Total	126563.80	19

Para determinar que tratamiento producía efectos diferentes se realizó la prueba de Tukey (cuadro 2).

			,	
Tratamiento	Media	Unidad	Error	Nivel
		Experimental	Experimental	
0	1206.00	5	26.27	Α
1	1122.40	5	26.27	ΑВ
3	1072.80	5	26.27	В
2	1050.40	5	26.27	В

El tratamiento 0 produce mejores rendimientos de ganancia de peso (1,206 g) en el nivel (A) seguido por el tratamiento 1 (1,122.4 g) en los niveles de (AB) y los tratamientos 3 y 2 con promedios de 1073 g y 1050 g respectivamente en el nivel B, lo cual se atribuyó a que los tratamientos con mayores densidades afecta el desarrollo debido a la competencia, esto se demuestra por lo que reporto Ascencio *et al.* (2019) donde compararon el peso de la tilapia en tres densidades de siembra, el tratamiento que más ganancia de peso promedio tuvo fue el tratamiento 1 de menor densidad (50 peces/m³).

3.2. Tamaño o talla de los peces

El mayor tamaño promedio de los peces se obtuvo con el testigo o tratamiento 0 (5 tilapias/m³), el tratamiento 1 (10 tilapias/m³) y el tratamiento 3 (20 tilapias/m³) con 18 cm, y por último el tratamiento 2 (15 tilapias/m³) con 17 cm (figura 2).

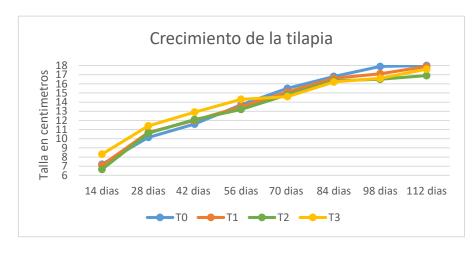


Figura 2. Tamaño promedio de las tilapias durante el ciclo productivo.

El análisis de varianza demostró un p-valor calculado de 0.0763, con una probabilidad p > 0.05 es mayor, por tanto se acepta la hipótesis nula (variables homogéneas), es decir, que los tratamientos se comportan de igual forma (cuadro 3).

Cuadro 3. Análisis de varianza.

Fuente de Variación	Sumatoria de Cuadrados	Grados de Libertad	f	P-Valor
Modelo	2.64	3	2.76	0.0763
Tratamientos	2.64	3	2.76	0.0763
Error	5.10	16		
Total	7.74	19		

Para comprobar que los tratamientos producían efectos similares se realizó la prueba de Tukey.

Cuadro 4. Prueba de Tukev.

Tratamiento	Media	Unidad	Error	Nivel
		Experimental	Experimental	
0	17.90	5	0.25	Α
1	17.60	5	0.25	Α
3	17.50	5	0.25	Α
2	16.90	5	0.25	Α

Todos los tratamientos producen efectos similares, por lo tanto se encuentran en el mismo nivel A.

Meyer y Mejía (1993) mencionan que para la alimentación de los peces en sus diferentes estadios de crecimiento se debe tener en cuenta el nivel de proteína con el que se obtiene el máximo crecimiento; y a medida que avanza el cultivo, este nivel de proteínas disminuye con el incremento del peso del pez.

3.3. Análisis físico y químico del agua

3.3.1. Salinidad

Durante el desarrollo de la investigación la salinidad del agua no presento variaciones significativas ya que al inicio y al final fue de 0.0% a la mitad del estudio fue de 0.1%. Lo cual puede deberse a la cantidad de sedimento depositado por el mismo alimento y al buen mantenimiento en los recambios del agua. De la Cruz (2012) menciona que a pesar de que las tilapias son peces de agua dulce, son capaces de adaptarse a vivir en aguas saladas, ya que son descendientes de una especie marina, las mismas, para un óptimo crecimiento y producción empiezan a decrecer cuando el equivalente del 50% excede en cuanto a la salinidad, cabe recalcar que las tilapias crecen, pero no se reproducen en aguas saladas.

3.3.2. Oxígeno disuelto

Al inicio de la investigación el agua tenía un valor de oxígeno disuelto de 5.32 mg/l y a medio ciclo productivo entre 7.88 mg/l a 12.29 mg/l. NICOVITA (2014) menciona que los niveles de oxígeno ideal estarán por encima de 2 mg/l. La tilapia es capaz de sobrevivir en aguas con concentración de oxígeno disuelto menor de 0.3 mg/l. Por lo cual el ensayo siempre tuvo disponibilidad de oxígeno en el agua para el desarrollo de los peces.

3.3.3. Solidos disueltos totales

Con referente a los resultados obtenidos a los STD estos estuvieron entre 124 y 125 mg/l al inicio de la investigación; a mitad del ciclo productivo fue entre 129.17 y 130.13 mg/l, y al final de la investigación entre 122.7 y 123.2 mg/l. Cuando los sólidos disueltos están por arriba de 100 mg/L la concentración de oxígeno disuelto disminuye y el fitoplancton hace que el agua sea dura con alta concentración de minerales y materia orgánica. NICOVITA (2014) en una investigación encontró que los sólidos ideales deben oscilar entre 25 y 100 mg/l, que son estangues intermedios para crianza de tilapia.

3.3.4. Conductividad eléctrica

Al inicio de la investigación el agua del estanque tenía 282 μs/cm de conductividad eléctrica; a mitad del ciclo productivo entre 292.33 y 294.67 μs/cm; y al final entre 283 y 285 μs/cm. Los resultados indican una alta concentración de sales presentes en el agua del estanque y que podria dañar el equipo de bombeo a periodos prolongados pero la salinidad estuvo por 0.0% y 0.1%. Montano y Vargas, citado por Sierra (2011), mencionan que la conductividad es un indicativo de las sales disueltas en el agua y mide la cantidad de iones especialmente de Ca²+, Mg²+, Na+, fosfatos, bicarbonatos, cloruros y sulfatos. Las aguas que tienen altas concentraciones de conductividad son corrosivas.

3.3.5. pH

El agua del estanque al inicio de la investigación tenía un pH entre 6.40 y 6.70; a medio ciclo productivo entre 7.38 y 7.70, y al final de la investigación entre 7.15 y 7.28.

FAO, citado por Ascencio *et al.* (2019) y NICOVITA (2014) mencionan que el rango óptimo de pH para crianza de tilapia debe estar entre 6.5 a 9. Valores por encima o por debajo causan cambios de comportamiento en los peces como letargia, inapetencia, retardan el crecimiento y retrasan la reproducción.

3.3.6. Temperatura

El agua del estanque al inicio de la investigación tenía temperaturas entre 29.40° C y 29.60° C, a medio ciclo productivo entre 30.37° C y 30.73° C, y al final de la investigación entre 30.20° C y 32.10° C.

Saavedra, citado por Ascencio *et al.* (2019), menciona que las temperaturas ideales para tilapia son entre 25° C y 32° C.

Colagrosso, citado por Ascencio *et al.* (2019) y NICOVITA (2014) mencionan que el rango óptimo de temperatura para la crianza de tilapia se encuentra en el rango entre 28° a 32° C. Los cambios de temperatura afectan directamente la tasa metabólica, lo cual significa mayor consumo de oxígeno.

3.3.7. Turbidez

La turbidez al inicio de la investigación no se registró Ya que el estanque estaba recién desinfectado sin presencia de fitoplancton en el estanque, a mitad del ciclo productivo tenía valores entre 30 y 35 cm, y al final de la investigación no se realizó ninguna lectura debido al exceso de turbidez por partículas de alimento, excretas, materia orgánica y fitoplancton. González y Mejía (2012) indican que la turbidez debe estar entre 25 a 35 cm de visibilidad, siempre que sea ocasionada por algas verdes no filamentosas y no por algas verde-azules ni lodo, es decir, el agua debe ser color verde esmeralda ocasionada por algas clorofíceas, principalmente.

3.3.8. Arsénico

El agua que abasteció al estanque era de fuentes subterráneas, y al inicio de la investigación tenía concentraciones de arsénico de 0.4778 ppm, a medio ciclo productivo de 0.1770 ppm y al final de la investigación 0.2580 ppm. Durante la investigación la concentración de arsénico en el testigo o tratamiento 0 fue de 0.9865 ppm, para el tratamiento 1 de 0.7586 ppm, en el tratamiento 2 de 0.7861 ppm y en el tratamiento 3 de 0.7281 ppm. Los análisis realizados demuestran que hubo un aumento en la concentración de arsénico durante el desarrollo de la investigación, debido al arrastre de arsénico producido por fuentes naturales de origen volcánico por las corrientes de agua. Flores (2016), citado por Sager (2000), menciona que el agua subterránea contiene niveles de arsénico más altos que el agua superficial con 0.05 ppm a 0.2 ppm; que el arsénico puede penetrar a los organismos vivos a través del aire al respirar, por alimentos y agua de bebida, y que los alimentos son la fuente principal de arsénico. Calderón (2018), citado por el Acuerdo Ministerial número 026-2009, menciona que el límite máximo permisible de arsénico en el agua es de 10 mg/l. Para las RTS. 2018. El límite máximo permisible es de 0.01 mg/l.

3.3.9. Cobre

La concentración de cobre durante la investigación se mantuvo en valores menores de 0.05 ppm. Según el Reglamento Técnico Salvadoreño de Agua Potable RTS 13.02.01:14 (2018), el nivel máximo permisible de cobre es de 2.0 mg/l.

3.3.10. Plomo

El agua que abastece al estanque al inicio de la investigación tenía concentraciones de plomo de 0.5988 ppm, a medio ciclo productivo de 0.9208 ppm y al final de la investigación 0.7978 ppm. Durante la investigación la concentración de plomo en el testigo o tratamiento 0 fue de 0.2296 ppm, en el tratamiento 1 de 3.5719 ppm, en el tratamiento 2 de 4.2312 ppm y en el tratamiento 3 de 0.1082 ppm. Variación de las concentraciones de plomo producto de la corrosión del metal utilizado para construcción de las jaulas, Calderón (2018), citado por el Acuerdo Ministerial número 026-2009, menciona que el límite máximo permisible de plomo en el agua es de 10 mg/l. Para las RTS 13.02.01:14 2018. El límite máximo permisible es de 0.01 mg/l.

3.3.11. Zinc

Durante la investigación la concentración de zinc en el testigo o tratamiento 0 fue de 0.1698 ppm, en el tratamiento 1 de 0.4231 ppm, tratamiento 2 de 0.8928 ppm y en el tratamiento 3 de 0.5811 ppm. Según el RTS 13.02.01:14 (2018) el límite máximo permisible es de 4.0 mg/l.

Calderón (2018), citado por el Acuerdo Ministerial número 026-2009, menciona que el límite máximo permisible de zinc en el agua es de 2 mg/l.

3.3.12. Hierro

La concentración de hierro durante la investigación se mantuvo en valores menores de 0.20 ppm. Según el RTS 13.02.01:14 (2018) el límite máximo permisible es de 0.3 mg/l. Martínez y Cano (2008), citado por CONACYT (1999), recomiendan valores de hierro entre 0.05 a 0.1 mg/l para el cultivo de tilapia.

3.4. Análisis microbiológico del agua

Los resultados de los análisis de la calidad del agua sobre las bacterias de Coliformes fecales demostraron que el agua poseía valores entre 5.1 a 23 NMP (Numero Mas Probable) /100 ml después de cada intervalo entre limpieza y recambio de agua pero que, si puede ser utilizada

para la crianza de la tilapia, y no para consumo humano sin un previo tratamiento de cloración y otras evaluaciones físicas y químicas para tal fin. López *et al.* (2016), mencionan que el agua para consumo humano no debe contener bacterias coliformes fecales, pero en el agua para uso recreativo puede aceptarse la presencia de hasta 1,000 NMP/100 ml. Para el RTS 13.02.01:14 2018. El límite máximo permisible es de <1.1 NMP/ml (ver figura A-1, A-2, A-3, A-4 Y A-5).

Los resultados de los análisis de agua para *Escherichia coli* mostraron contenidos entre menos de 1.1 a mayor de 23 NMP/100 ml, lo cual indica que el agua no es apta para el consumo humano, pero si para la producción de tilapia. Romero (1999) menciona que el agua apta para consumo humano debe contener concentraciones de *Escherichia coli* menor a 1/100 ml, y para la producción de alimentos debe ser menor a 100/100 ml. Para el RTS 13.02.01:14 2018. El límite máximo permisible de *Escherichia coli* es de <1.1 NMP/ml. López *et al.* (2016) menciona que el agua para consumo humano no debe contener *Escherichia coli*. Las bacterias coliformes se toman como indicadores de contaminación del agua porque provienen del tracto intestinal y materia fecal de las personas y los animales, sobreviven largo tiempo en el agua y son fáciles de detectar (ver figura A-1, A-2, A-3, A-4 Y A-5).

3.5. Presupuesto parcial

Los resultados de producción realizados en el estudio demostraron que el Tratamiento 0 se obtuvo una ganancia neta de \$5.45 dólares, el Tratamiento 2 de \$3.15 dólares; el Tratamiento 1 fue de \$0.71 dólares y en el Tratamiento 3 se obtuvo una pérdida de \$ -11.14 dólares. El cálculo de la inversión realizada durante la investigación en lo relacionado con el consumo de agua fue de (562.50\$), uso de estanque de (50\$) mano de obra de (1120\$ + 10\$). Haciendo un total de 1742.50 \$.

4. Conclusiones

El mejor peso promedio de los peces se obtuvo con una densidad de 5 tilapias/m³ (testigo o tratamiento 0) con 1,206 g (2.66 libras), seguido por el tratamiento 1 con 10 tilapias/m³ y un peso de 1,122 g (2.47 libras), a los 112 días (3 meses con 22 días) después de la siembra de los alevines.

El mayor crecimiento o talla promedio de los peces fue igual con las densidades de 5, 10 y 20 tilapias/m³ (testigo o tratamiento 0, tratamiento 1 y tratamiento 3, respectivamente) con 18 cm, seguido por el tratamiento 2 con 15 tilapias/m³ con 17 cm, a los 3 meses con 22 días después de la siembra de los alevines.

El análisis físico, químico y microbiológico demostró que el agua utilizada en la investigación es apta para la producción de tilapia.

Con el testigo o tratamiento 0 (5 tilapias/m³) se obtuvo una ganancia de \$5.45 dólares, seguido por el tratamiento 2 (15 tilapias/m³) con \$3.15 dólares y por el tratamiento 1 (10 tilapias/m³) con \$0.71 dólares; con el tratamiento 3 (20 tilapias/m³) se obtuvo pérdidas de \$ -11.14 dólares.

Por la alta capacidad de adaptación a diferentes condiciones climáticas las tilapias pueden ser producidas por los productores de las zonas costeras del país.

Por el dimorfismo sexual presente en las tilapias los machos crecen más que las hembras en un mismo periodo productivo.

5. Recomendaciones

En estanques artesanales utilizar densidades de siembra de 5 tilapias/m³ para mejorar los rendimientos del cultivo, ya que la tilapia tiene menos competencia de espacio y de alimento.

La compra de los alevines de tilapia se debe realizar en las primeras horas de la mañana para reducir el estrés y lograr el mayor porcentaje de supervivencia a la hora de efectuar la siembra.

Para la producción y comercialización de tilapia se debe utilizar de preferencia tilapia supermacho porque garantiza que la población de individuos se mantenga y desarrolle mejor.

Para que el alimento concentrado sea mejor aprovechado por las tilapias se debe de proporcionar en cuatro raciones al día en horarios de 7:00 am, 10:00 am, 1:00 pm y 4:00 pm.

Los análisis físico-químicos y microbiológicos del agua de los estanques para crianza de tilapia se deben realizar periódicamente, para controlar la calidad y tomar las medidas correctivas en su momento para una saludable y mayor producción del cultivo.

La tilapia gris (*Oreochromis niloticus*) es la especie que se debe de utilizar en El Salvador para la producción y comercialización por su carne nutritiva y su fácil adaptación a las condiciones ambientales para su desarrollo.

Realizar investigaciones en otras zonas y condiciones climáticas para la producción de tilapia.

Hacer análisis bromatológico en la carne de la tilapia para conocer su valor nutricional.

Utilizar diferentes mecanismos de oxigenación del agua para el desarrollo de otras investigaciones en tilapia.

6. Bibliografías

Acuerdo Ministerial No. 026-2009. 2009. Programa de control y monitoreo de contaminantes microbiológicos, substancias químicas y características físicas del agua a ser utilizada en establecimientos de productos hidrobiológicos. Guatemala: Ministerio de Agricultura, Ganadería y Alimentación, Unidad de normas y regulaciones. 10 p.

Ascencio Q, SV; Del Valle C, GE; Velásquez A, GA. 2019. Evaluación de un modelo de Acuaponía en la producción de biomasa de tilapia (*Oreochromis niloticus*) y lechuga (*Lactuca sativa*) en El Salvador. Tesis Ing. San Salvador. El Salvador. Universidad de El Salvador (en línea). Consultado el 16 abril de 2018. Disponible en: http://ri.ues.edu.sv/id/eprint/19029/1/13101681.pdf

CENDEPESCA (Centro de Desarrollo de la Pesca y la Acuicultura, El Salvador). 2008. Manual sobre reproducción y cultivo de tilapia. El Salvador (en línea). Consultado el 15 de marzo de 2018. Disponible en:

http://www.transparencia.gob.sv/institutions/mag/documents/119824/download.

CENDEPESCA (Centro de Desarrollo de la Pesca y la Acuicultura, El Salvador); Misión Técnica Taiwán. 2013. Manual de Procedimientos Técnicos Operativos y Respuesta a Emergencias sobre el Manejo de Alevines Reversados de Tilapia. Atiocoyo, El Salvador 22 p.

- CONACYT (Consejo Nacional de Ciencia y Tecnología, El Salvador). 1999. Norma Salvadoreña de calidad del agua envasada. El Salvador. Agua: Agua Embazada. p 7.
- De la Cruz P, PA. 2012. Estudio de pre-factibilidad para la producción de tilapia roja y su comercialización en Quito. Tesis de grado. Ingeniería de empresas. Facultad de Ciencias Económicas y Negocios. Universidad Tecnológica Equinoccial. Ecuador (en línea). Consultado el 8 de febrero de 2021. Disponible en: www.http://repositorio.ute.edu.ec/bitstream/123456789/1/45656_1.pdf.
- López Sardi, EM; García, B; Reynoso, Y; González, P; Larroudé, V. 2016. Calidad del agua para usos recreativos desde la perspectiva de la seguridad e higiene laboral y la salud pública. Universidad de Palermo. Italia (en línea). Consultado el 20 marzo de 2018. Disponible en: http://www.palermo.edu/ingenieria/investigacion-desarrollo/pdf/Trabajo_Completo_Lopez_Sardi_Estela_Monicav3.pdf.
- MAG (Ministerio de Agricultura y Ganadería, El Salvador). 2001. Guía para el cultivo de tilapia en estanques (en línea) Consultado el 04 de marzo 2018. Disponible en: http://www.tilapiasdelsur.com.ar/downloads/GuiaTecnicaTilapiadeElSalvador.pdf
- Meyer, D; Mejía, S. 1993. Utilización de cuatro fuentes de nutrientes en el cultivo de la tilapia (*Oreochromis niloticus*). Actas del Simposio de Investigación Acuícola en Latinoamérica. Pradepesca. Universidad Nacional de Heredia de Costa Rica. 28p.
- NICOVITA Alicorp. 2014. Manual de crianza de tilapia. Condiciones y parámetros de cultivo. 3, 6-15 p. Lima, Perú (en línea). Consultado el 11 de marzo. Disponible en: http://www.industriaacuicola.com/biblioteca/Tilapia/Manual%20de%20crianza%20de%20til apia.pdf.
- RTS. OSARTEC (Organismo Salvadoreño de Reglamentación Técnica, El Salvador). 2018. Reglamento Técnico Salvadoreño RTS 13.02.01:14. Agua. Agua de consumo humano. Requisito de calidad e inocuidad. El Salvador. Diario Oficial No. 60, Tomo No. 419. 6 p.
- Romero R, JA. 1999. Calidad del agua, análisis físico, químico y microbiológico del agua, Editorial Escuela Colombiana de Ingeniería, grupo editor alfa y omega México, 2^{da} edición, México D. F. p 61-156.
- Sager, RL. 2000. Agua para bebida para bovinos. INTA E.E.A San Luis. Reedición de la Serie Técnica Nº 126. Argentina (en línea). Consultado el 7 febrero. 2021. Disponible en http://www.produccion-animal.com.ar.
- Sierra, CA. 2011. Calidad del agua, evaluación y diagnóstico. Ed. LD López. Bogotá, Colombia. Digiprint. 457 p.

7. ANEXOS

Figura A-1. Resultados de los análisis microbiológicos de la fuente de agua de abastecimiento del estanque.

LABORATORIO DE CONTROL DE CALIDAD MICROBIOLOGICO

Ciudad Universitaria, Final 25 Avenida Norte, San Salvador, El Salvador. Teléfono No. (503) 2511-2028

INFORME DE ANÁLISIS

ombre de la muestra: AGUA DE POZO			Código:	20190225-03	
Punto de muestreo: Fuente de abastecimiento (caída al estar		(caida al estanque	9)		
Procedencia: San	Luis Talpa	is Talpa, La Paz			
Determinac		tiérrez Salguero ormes Fecales y E. o			
Solicitante: Josué E Determinac Método: (NMP) Fecha de Muestreo:	ón de Colifo			l Número	

DETERMINACIÓN	RESULTADOS	ESPECIFICACIONES*
Bacterias coliformes fecales	5.1 NMP / 100 mL	< 1.1 NMP / 100 mL
Escherichia coli	< 1.1 NMP / 100 mL	< 1.1 NMP / 100 mL

NMP: Número más Probable; UFC: Unidades formadoras de Colonias; mL: millitro(s) de muestra OBSERVACIONES:

* Especificaciones basadas en la Norma NSO 13.07.01:08 "Agua. Agua Potable".

El informe corresponde únicamente a la muestra remitida y ensayada el 25/02/2019.

MSc. Amy Elieth Morán Rodríguez QUIMICO-FARMACEUTICA

Fecha de análisis: 25-02-2019

Figura A-2. Resultados de los análisis microbiológicos del agua al final del ciclo productivo en el testigo o tratamiento 0.

LABORATORIO DE CONTROL DE CALIDAD MICROBIOLOGICO

Ciudad Universitaria, Final 25 Avenida Norte, San Salvador, El Salvador, Teléfono No. (503) 2511-2028

INFORME DE ANÁLISIS

Nombre de la muestra: AGUA DE ESTANQUE (5T/m2) Código: 20190619-02

Punto de muestreo: Estanque

Procedencia: San Luis Talpa, La Paz

Solicitante: Josué Eduardo Gutiérrez Salguero Fecha de emisión: 03-07-2019
Determinación de Coliformes Totales, Fecales y E coli por el Método del Número más
Método: Probable (NMP).

Fecha de Muestreo: 18-06-2019 Hora de Muestreo: 2:00 pm

Persona que tomó la muestra: Amilcar Eduardo Guitérrez Salguero

Descripción: Líquido incoloro, con residuos, sin olor.

DETERMINACIÓN	RESULTADOS	ESPECIFICACIONES*
Bacterias coliformes fecales	> 23 NMP / 100 mL	< 1.1 NMP / 100 mL
Escherichia coli	> 23 NMP / 100 mL	< 1.1 NMP / 100 mL

NMP: Número más Probable; UFC: Unidades formadoras de Colonias; mL: millilitro(s) de muestra OBSERVACIONES:

* Especificaciones basadas en la Norma NSO 13.07,01:08 "Agua. Agua Potable".

- El informe corresponde únicamente a la muestra remitida y ensayada el 19/06/2019.

MSc. Amy Elieth Morán Rodríguez
QUIMICO-FARMACEUTICA

Figura A-3. Resultados de los análisis microbiológicos del agua al final del ciclo productivo en el tratamiento 1.

LABORATORIO DE CONTROL DE CALIDAD MICROBIOLOGICO

Ciudad Universitaria, Final 25 Avenida Norte, San Salvador, El Salvador. Teléfono No. (503) 2511-2028

INFORME DE ANÁLISIS

Nombre de la muestra: AGUA DE ESTANQUE (10T/m2) Código: 20190619-01 Punto de muestreo: Estanque Procedencia: San Luis Talpa, La Paz Solicitante: Josué Eduardo Gutiérrez Salguero Fecha de emisión: 03-07-2019 Determinación de Coliformes Totales, Fecales y E. coli por el Método del Número más Método: Probable (NMP), Fecha de Muestreo: 18-06-2019 Hora de Muestreo: 2:00 pm Persona que tomó la muestra: Amilcar Eduardo Guitérrez Salguero Descripción: Líquido incoloro, con residuos, sin olor.

DETERMINACIÓN	RESULTADOS	ESPECIFICACIONES'
Bacterias coliformes fecales	> 23 NMP / 100 mL	< 1.1 NMP / 100 mL
Escherichia coli	> 23 NMP / 100 mL	< 1.1 NMP / 100 mL

NMP: Número más Probable; UFC: Unidades formadoras de Colonias; mL: mililitro(s) de muestra OBSERVACIONES:

* Especificaciones basadas en la Norma NSO 13.07.01:08 'Agua. Agua Potable'.

El informe corresponde unicamente a la muestra remitida y ensayada el 19/06/2019.

MSc. Arny Elieth Morán Rodríguez
QUIMICO-FARMACEUTICA

Figura A-4. Resultados de los análisis microbiológicos del agua al final del ciclo productivo en el tratamiento 2.

LABORATORIO DE CONTROL DE CALIDAD MICROBIOLOGICO

Ciudad Universitaria, Final 25 Avenida Norte, San Salvador, El Salvador. Teléfono No. (503) 2511-2028

INFORME DE ANÁLISIS

Nombre de la muestra: AGUA DE ESTANQUE (15T/m2) Código: 20190619-03 Punto de muestreo: Estanque Procedencia: San Luis Talpa, La Paz Solicitante: Josué Eduardo Gutiérrez Salguero Fecha de emisión: 03-07-2019 Determinación de Coliformes Totales, Fecales y E. coli por el Método del Número más Método: Probable (NMP), 18-06-2019 Hora de Muestreo: 2:00 pm Fecha de Muestreo: Persona que tomó la muestra: Amilcar Eduardo Guitérrez Salguero Descripción: Líquido incoloro, con residuos, sin olor

DETERMINACIÓN	RESULTADOS	ESPECIFICACIONES'
Bacterias coliformes fecales	> 23 NMP / 100 mL	< 1.1 NMP / 100 mL
Escherichia coli	> 16 NMP / 100 mL	< 1.1 NMP / 100 mL

NMP: Número más Probable, UFC: Unidades formadoras de Colonias; mL: mililitro(s) de muestra OBSERVACIONES:

* Especificaciones basadas en la Norma NSO 13.07.01:08 "Agua. Agua Potable".

El informe corresponde únicamente a la muestra remitida y ensayada el 19/06/2019.

MSc. Amy Elieth Morán Rodríguez QUIMICO-FARMACEUTICA

Figura A-5. Resultados de los análisis microbiológicos del agua al final del ciclo productivo en el tratamiento 3.

LABORATORIO DE CONTROL DE CALIDAD MICROBIOLOGICO

Ciudad Universitaria, Final 25 Avenida Norte, San Salvador, El Salvador. Teléfono No. (503) 2511-2028

INFORME DE ANÁLISIS

Nombre de la mues	dra: AGUA DE ESTANQUE (2	OT/m2) Código:	20190619-04
Punto de muestreo:	Estanque		
Procedencia: Sar	n Luis Talpa, La Paz		
Determinad	Eduardo Gutiérrez Salguero ción de Coliformes Totales, Fecales	y E coli por el Método de	
Método: Probable (f	NMP),		
Metodo: Probable (I Fecha de Muestreo		Hora de Muestreo:	2:00 pm

DETERMINACIÓN	RESULTADOS	ESPECIFICACIONES*
Bacterias coliformes fecales	> 23 NMP / 100 mL	< 1.1 NMP / 100 mL
Escherichia coli	> 16 NMP / 100 mL	< 1.1 NMP / 100 mL

NMP: Número más Probable; UFC: Unidades formadoras de Colonias; mL: mililitro(s) de muestra **OBSERVACIONES:**

* Especificaciones basadas en la Norma NSO 13.07.01:08 "Agua. Agua Potable".
 - El informe corresponde únicamente a la muestra remitida y ensayada el 19/06/2019.

MSc. Amy Elieth Morán Rodríguez QUIMICO-FARMACEUTICA