UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA ORIENTAL DEPARTAMENTO DE INGENIERIA Y ARQUITECTURA

TRABAJO DE GRADUACIÓN:

ELABORACIÓN DE UN DIAGNÓSTICO AMBIENTAL PARA LA FACULTAD MULTIDISCIPLINARIA ORIENTAL DE LA UNIVERSIDAD DE EL SALVADOR

PRESENTADO POR:

BR. ESPINOZA REYES, VÍCTOR GUSTAVO
BR. HERNÁNDEZ GUEVARA, RONALD EDGARDO
BR. PERALTA MUÑOZ, CARLOS RAFAEL
BR. REYES MALDONADO, ROGER MANFREDY

PARA OPTAR AL TÍTULO DE:

INGENIERO CIVIL

DOCENTE DIRECTOR:

ING. FRANCISCO AGUIRRE GALLO

CIUDAD UNIVERSITARIA ORIENTAL, MARZO DE 2022

SAN MIGUEL EL SALVADOR CENTRO AMÉRICA

UNIVERSIDAD DE EL SALVADOR AUTORIDADES

MSC. ROGER ARMANDO ARIAS

RECTOR

PHD. RAÚL ERNESTO AZCÚNAGA LÓPEZ

VICE-RECTOR ACADÉMICO

MSC. FRANCISCO ANTONIO ALARCÓN SANDOVAL

SECRETARIO GENERAL

LIC. RAFAEL HUMBERTO PEÑA MARÍN

FISCAL GENERAL

FACULTAD MULTIDISCIPLINARIA ORIENTAL AUTORIDADES

LIC. CRISTÓBAL HERNÁN RÍOS BENÍTEZ **DECANO**

LIC. ÓSCAR VILLALOBOS

VICE-DECANO

LIC. ISRAEL LÓPEZ MIRANDA

SECRETARIO INTERINO

DEPARTAMENTO DE INGENIERÍA Y ARQUITECTURA AUTORIDADES

ING. RIGOBERTO LÓPEZ JEFE DEL DEPARTAMENTO DE INGENIERÍA Y ARQUITECTURA

ING. GUILLERMO MOYA TURCIOS

COORDINADOR DE CARRERA INGENIERÍA CIVIL

ING. MILAGRO DE MARÍA ROMERO DE GARCÍA

COORDINADORA DE PROCESOS DE GRADUACIÓN

ING. FRANCISCO AGUIRRE GALLO

DOCENTE DIRECTOR

UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA ORIENTAL DEPARTAMENTO DE INGENIERIA Y ARQUITECTURA

TRABAJO DE GRADUACIÓN:

ELABORACIÓN DE UN DIAGNÓSTICO AMBIENTAL PARA LA FACULTAD MULTIDISCIPLINARIA ORIENTAL DE LA UNIVERSIDAD DE EL SALVADOR

PRESENTADO POR:

BR. ESPINOZA REYES, VÍCTOR GUSTAVO
BR. HERNÁNDEZ GUEVARA, RONALD EDGARDO
BR. PERALTA MUÑOZ, CARLOS RAFAEL
BR. REYES MALDONADO, ROGER MANFREDY

PARA OPTAR AL TÍTULO DE:

INGENIERO CIVIL

TRABAJO DE GRADUACIÓN APROBADO POR: COORDINADORA DE PROCESOS DE GRADUACIÓN:

ING. MILAGRO DE MARÍA ROMERO DE GARCÍA

DOCENTE DIRECTOR:

ING. FRANCISCO AGUIRRE GALLO

CIUDAD UNIVERSITARIA ORIENTAL MARZO DE 2022

SAN MIGUEL EL SALVADOR CENTRO AMÉRICA

TRABAJO DE GRADUACIÓN APROBADO POR:
DOCENTE DIRECTOR:
ING. FRANCISCO AGUIRRE GALLO
COORDINADORA DE PROCESOS DE GRADUACIÓN:

ING. MILAGRO DE MARÍA ROMERO DE GARCÍA

TRIBUNAL CALIFICADOR DEL TRABAJO DE GRADUACIÓN

ING. FRANCISCO AGUIRRE GALLO DOCENTE ASESOR

ING. JOSE LUIS CASTRO

TRIBUNAL CALIFICADOR

ING. GUILLERMO MOYA TURCIOS

TRIBUNAL CALIFICADOR

A DIOS TODOPODEROSO por haberme permitido la culminación de mi carrera, por darme la sabiduría y las fuerzas necesarias para no rendirme en los momentos más duros a lo largo de la misma, y a ti VIRGEN MARÍA por siempre interceder a mis oraciones y suplicas.

A MI PADRE: Víctor Gustavo Espinoza Cabrera, por guiarme de la forma correcta, aconsejarme tenerme paciencia y darme todo su apoyo siempre y ser para mí un ejemplo como profesional.

A MI MADRE: Digna Estela Reyes de Espinoza (Q.D.E.P) por todo el sacrificio que hiciste para poder apoyarme en todas mis decisiones, por creer y confiar en mí y sobre todo por tu amor incondicional. Gracias, mamá, siempre estaré INFINITAMENTE AGRADECIDO.

A MI HERMANA: Carolina María Espinoza Reyes, por darme su apoyo incondicional y por exigirme siempre para ser mejor cada día.

A MI ABUELA: Alma Argentina Cabrera Díaz, por haberme enseñado valores y principios, por animarme y exigirme siempre para poder superarme y estar pendiente de mí en todo momento.
 A mis compañeros de trabajo de tesis: Por el espacio brindado para poder trabajar en equipo, y por el esfuerzo hecho para el desarrollo y elaboración del presente trabajo.

A MI ASESOR: Ing. Francisco Aguirre Gallo, por todo su apoyo brindado desde el inicio de la carrera y el asesoramiento en el trabajo de graduación.

VÍCTOR GUSTAVO ESPINOZA REYES.

A Dios: por haberme permitido terminar esta etapa de mi vida, por haberme guiado a lo largo de mi formación académica y por darme fortaleza para lograr mis metas.

A mis padres: Roxana Jeannette Guevara de Hernández y Carlos Hernández, porque han estado presentes en mi formación académica brindándome su apoyo, amor y consejos en todo momento.

A los Ingenieros catedráticos, por sus experiencias y enseñanzas brindadas a lo largo de todos estos años de formación académica.

A mi Asesor de tesis, Ingeniero Francisco Aguirre Gallo, por guiarnos y proporcionarnos sus conocimientos para la realización de esta investigación.

A mis compañeros de tesis, por brindarme su apoyo en todo momento, por su confianza, perseverancia para superar las adversidades que se presentaron en el desarrollo de esta investigación y por la dedicación para finalizar con éxito nuestro trabajo final.

RONALD EDGARDO HERNANDEZ GUEVARA

A Dios, por permitirme llegar hasta estas instancias con mucho esfuerzo y sacrificio de la mano de él, abriendo muchas puertas y tocando personas.

A mi madre, Zoila Margarita Muñoz por estar siempre a mi lado apoyándome en los peores momentos y dando palabras de aliento para poder concluir el sueño que emprendí en su momento.

A mi abuela, Blanca Alicia Muñoz con una especial dedicación de este logro por hacer de mi sueño parte de ella con su aliento y palabras cada día me fortalecieron y me dieron fuerzas para seguir adelante, esta dedicatoria va para ti hasta el cielo abuela.

A mi primo, Rudy Daniel Villatoro Muñoz por su apoyo en el momento justo para lograr acercarme al sueño que en una ves emprendí.

A mi padre y su esposa, los cuales me permitieron comenzar un sueño que hoy está llegando a su culminación.

A mis compañeros, con una especial mención a Roger Reyes, Ronald Guevara y Víctor Espinoza, por hacer un enorme esfuerzo a pesar de las condiciones y limitantes presentadas en el desarrollo de este trabajo.

Al docente asesor y catedráticos, por el apoyo y correcciones durante toda la elaboración de este trabajo, a los catedráticos por todas sus enseñanzas y consejos.

CARLOS RAFAEL PERALTA MUÑOZ

Dedico este trabajo a mis padres, Roger Eugenio Reyes Chávez y Nancy Melissa Maldonado de Reyes por que el amor que me han brindado durante todas las etapas de mi vida y su gran apoyo incondicional al igual que la confianza que me han tenido durante mis estudios.

A mis compañeros de trabajo, **Rafael Peralta, Ronald Guevara** y **Víctor Espinoza** por el apoyo mutuo que hemos tenido durante la realización de este trabajo y que permitió su finalización con éxito.

A nuestro asesor el **Ing. Francisco Aguirre Gallo** por habernos guiado durante todo este proceso y por todo el que conocimiento que nos impartió.

Y últimamente a **Dios** por haberme dado la fuerza, salud, bienestar y sabiduría necesaria para poder culminar este trabajo de investigación y mis estudios de Educación Superior

ROGER MANFREDY REYES MALDONADO

INDICE

RESUMEN		23
ABSTRAC1	Γ	24
INTRODUC	CION	25
CAPITULO	I GENERALIDADES	27
1.1 PL	ANTEAMIENTO DEL PROBLEMA	28
1.1.1	Uso de Agroquímicos	29
1.1.2	Desechos Ganaderos	31
1.1.3	Manejo de aguas residuales	37
1.1.4	Manejo de Desechos Sólidos	39
1.2 MA	ARCO NORMATIVO-JURÍDICO	41
1.2.1	Permiso Ambiental	41
1.2.2	Ley del Medio Ambiente de El Salvador	42
1.2.3	Reglamento General de la Ley del Medio Ambiente	43
1.2.4	Código Penal	43
1.2.5	Código de Salud	43
1.2.6	Reglamento Técnico RTS 13.05.01:18	44
1.2.7	Norma Técnica para el Manejo de los Desechos Bioinfecciosos	44
1.2.8	Reglamento Especial de Sustancias, Residuos y Desechos peligrosos	44
1.2.9	Ordenanza para la Gestión Ambiental del municipio de San Miguel	44
1.3 OE	BJETIVOS	46
1.3.1	Objetivo General	46
1.3.2	Objetivos Específicos	46
1.4 PL	ANTEAMIENTO DE HIPOTESIS	47
1.4.1	Hipótesis General	47

1.4.2 H	Hipótesis Especificas	47
1.5 OPE	RACIONALIZACION DE HIPOTESIS48	
1.6 JUST	TFICACION49	
1.7 ALCA	NCES51	
1.8 LIMIT	ACIONES51	
1.9 MET	DDOLOGIA	
1.9.1	ipo de Investigación	52
1.9.2	Descripción del Método	52
1.9.3 l	Jbicación Espacial y Temporal	53
1.9.3.1	Espacial.	53
1.9.3.2	Temporal	53
1.9.4 l	Jniverso de estudio	53
1.9.5 I	nstrumentos y Técnicas de Recolección de Información	53
1.9.6 F	Procedimiento	53
CAPITULO II	MARCO TEORICO	56
2.1 Fund	amentos teóricos57	
2.1.1 I	mpacto Ambiental	57
2.1.2 N	Nétodos de Evaluación de Impactos	61
2.1.2.1		00
	Listas de chequeo o verificación	62
2.1.2.2	Listas de chequeo o verificación	
2.1.2.2 2.1.2.3		64
	Cuestionarios.	64 64
2.1.2.3	Cuestionarios. Redes.	64 64 65
2.1.2.3 2.1.2.4	Cuestionarios. Redes. Panel de expertos.	64 64 65
2.1.2.3 2.1.2.4 2.1.2.5	Cuestionarios. Redes Panel de expertos. Cartografía ambiental.	64 65 66

2.1.2.9	Método Galletta	73
2.1.2.10) Método MEL-ENEL	73
2.1.2.11	Método de Criterios Relevantes Integrados.	74
CAPITULO III	CARACTERIZACIÓN DE LA ZONA DE ESTUDIO	80
3.1 Aspe	ctos generales de la Facultad Multidisciplinaria Oriental	81
3.1.1 A	Antecedentes	81
3.1.2 lı	nfraestructura	83
3.1.3 L	Jbicación geográfica y Área de Influencia	86
3.1.4	Colindantes	87
3.1.5	Servicios Básicos	89
3.1.5.1	Abastecimiento de Agua	89
3.1.5.2	Tratamiento de aguas residuales	92
3.1.5.3	Drenaje de aguas Iluvias.	103
3.1.5.4	Energía eléctrica	105
3.1.5.5	Sistema vial	106
3.1.5.6	Transporte público	108
3.1.5.7	Manejo y disposición final de desechos sólidos comunes	109
3.1.5.8	Manejo y disposición final de desechos y residuos peligrosos	111
3.1.6	Descripción del ambiente físico	114
3.1.6.1	Geología.	114
3.1.6.2	Topografía	114
3.1.6.3	Tipo de suelo	115
3.1.6.4	Uso de suelo.	115
3.1.6.5	Climatología	119
3.1.6.	5.1 Temperatura	119
3.1.6.	5.2 Precipitación	120

	3.	1.6.5.3 Humedad relativa	121
	3.1.6	6.6 Calidad de agua	122
	3.1.6	6.7 Calidad del aire	124
	3.1.7	Descripción del ambiente biótico	127
	3.1.7	7.1 Flora	127
	3.1.7	7.2 Fauna	128
	3.1.8	Descripción del ambiente social	129
CA	PITULC	IV IDENTIFICACION Y EVALUACION DE IMPACTOS AMBIENTALES	131
4	.1 ID	ENTIFICACION DE LOS IMPACTOS AMBIENTALES POTENCIALES	132
	4.1.1	Identificación de las actividades de la FMO	132
	4.1.2	Determinación de las zonas de influencia de impactos	133
	4.1.3	Determinación de los factores ambientales a ser afectados por el funcio	namiento
	de la F	-MO	137
	4.1.4	Confrontación de actividades y factores ambientales	138
4	.2 E	VALUACIÓN DE LOS IMPACTOS AMBIENTALES IDENTIFICADOS	138
	4.2.1	Identificación y predicción de los impactos ambientales	139
	4.2.2	Probabilidad de ocurrencia de los impactos ambientales	141
	4.2.3	Priorización de impactos ambientales	142
	4.2.4	Analisis de los resultados de la evaluacion de impacto ambiental	144
CA	PITULC	V PROGRAMA DE ADECUACION AMBIENTAL	145
5	.1 Pr	ograma de adecuación ambiental	146
5	.2 De	escripción de las medidas ambientales	146
	5.2.1	Medida 1: Manejo del estiércol de cabras y ovejas pelibuey	146
	5.2.2	Medida 2: Manejo de la pollinaza	146
	5.2.3	Medida 3: Manejo del estiercol de conejos	147
	5.2.4	Medida 4: Maneio del estiércol de vaca	147

	5.2.	5	Medida 5: Manejo del estiércol de cerdos	148
	5.2.	6	Medida 6: Manejo de lodos residuales del cultivo de tilapias	148
	5.2.	7	Medida 7: Manejo de los contenedores de agroquímicos desechados	149
	5.2.	8	Medida 8: Uso de humedales artificiales como tratamiento terciario de las	aguas
	resi	duale	es	149
	5.2.	9	Medida 9: Separación de los desechos solidos	150
	5.2.	10	Medida 10: Compostaje de residuos orgánicos	151
	5.2.	11	Medida 11: Manejo y disposición de los residuos inorgánicos	152
	5.2.	12	Medida 12: Manejo de desechos bioinfecciosos	153
	5.2.	13	Medida 13: Manejo de desechos y residuos químicos	156
	5.2.	14	Medida 14: Minimización de la cantidad y toxicidad de residuos y desecho	os de las
	pra	cticas	s experimentales de laboratorios	159
5	5.3	Prog	grama de adecuación ambiental	161
5	5.4	Mon	nitoreo de medidas de adecuación ambiental y de compensación	163
5	5.5	Cua	dro de evaluación de factibilidad de las medidas ambientales propuestas	165
CA	PITL	JLO \	/I CONCLUSIONES Y RECOMENDACIONES	166
6	6.1	CON	NCLUSIONES	167
6	6.2	REC	COMENDACIONES	169
BIE	BLIO	GRAF	FIA	170
ΑN	IEXO	S		175
F	NEX	(O 1 I	Plano de red de agua potable de la FMO	176
F	NEX	O 2 I	Plano de red de aguas residuales de la FMO	177
F	ANEX	(O 3 l	Jbicación de impactos identificados	178
F	ANEX	O 4 I	Plano de ubicación de medidas propuestas	179
F	NEX	O 5 (Cálculo de caudal máximo medio de la FMO	180
F	NEX	O 6 I	Diseño de biodigestor tubular	183

ANEXO 7 Plano de biodigestor para estiércol bovino	. 186
ANEXO 8 Plano de biodigestor para estiércol porcino	. 187
ANEXO 9 Dimensionamiento de humedal artificial	. 188
ANEXO 10 Plano de humedal artificial	. 193
ANEXO 11 Población total de estudiantes por carrera inscritos en el Ciclo I-2020	. 195
ANEXO 12 Informe de analisis microbiologico del agua de la FMO	. 197
ANEXO 13 Informe de analisis fisicoquimico del agua de la FMO	. 198
ANEXO 14 Matriz de interacciones actividades de la FMO vs Factores ambientales	. 199
ANEXO 15 Matriz de Intensidad de impactos	. 200
ANEXO 16 Matriz de Duración de Impactos	. 201
ANEXO 17 Matriz de Extensión de Impactos	. 202
ANEXO 18 Matriz de Reversibilidad de Impactos	. 203
ANEXO 19 Matriz de Incidencia de Impactos	. 204
ANEXO 20 Matriz de Magnitud de Impactos	. 205
ANEXO 21 Matriz de Valor Índice Ambiental	. 206
ANEXO 22 Matriz de Severidad de Impacto	. 207
ANEXO 23 Listado de reactivos químicos para laboratorio	208

INDICE DE FIGURAS

Figura 1 Fertilizantes utilizados en el invernadero de cultivos hidropónicos	29
Figura 2 Acumulación de estiércol bovino a un costado de los bebederos	33
Figura 3 Corral de los cerdos	34
Figura 4 Estiércol de cabras	35
Figura 5 Jaulas de Conejos	35
Figura 6 Galpón de pollos de engorde	36
Figura 7 Estanque de geomembrana para tilapias	37
Figura 8 Fosas sépticas ubicadas detrás de los edificios de Medicina	38
Figura 9 Punto de descarga de aguas provenientes de los edificios de medicina	38
Figura 10 Mal estado de las tuberías de conducción de aguas residuales	39
Figura 11 Filtración de agua residual de pozo sumidero destruido	39
Figura 12 Cafetín	40
Figura 13 Contenedores de reactivos químicos usados	41
Figura 14 Organigrama estructural de la FMO-UES (Actualizado Marzo/2016)	83
Figura 15 Mapa de ubicación geográfica y área de influencia de FMO	87
Figura 16 Mapa de colindantes de FMO	88
Figura 17 Pozo industrial de la FMO	89
Figura 18 Cisterna y estación de bombeo de agua	90
Figura 19 Válvula de control	91
Figura 20 Pozo de Agronomía	91
Figura 21 Fosa séptica del edificio de la Biblioteca	93
Figura 22 Tubería de rebose de la fosa séptica de la biblioteca	94
Figura 23 Punto de control de aguas residuales	95
Figura 24 Trampa de grasa	96
Figura 25 Fosa séptica del Laboratorio de Química	97

Figura 26 Fosa séptica clausurada	99
Figura 27 Fosa séptica en uso	99
Figura 28Fosa séptica clausurada usada como paso de las aguas residuales	100
Figura 29 Pozo de absorción del cafetín "Candy"	100
Figura 30 Filtro biológico de los edificios de medicina	101
Figura 31 Fosa séptica de aulas de posgrado	102
Figura 32 Fosa séptica del edificio de aulas de ingeniería	103
Figura 33 Tragante de aguas Iluvias	103
Figura 34 Pozo de visita de aguas Iluvia	104
Figura 35 Cunetas ubicadas frente de los edificios de medicina	104
Figura 36 Calle El Delirio- San Miguel	106
Figura 37 Entrada hacia Agronomía	107
Figura 38 Calle Principal	107
Figura 39 Camino de Agronomía hacia aulas de Ingeniería	108
Figura 40 Residuos sólidos del laboratorio de química	112
Figura 41 Mapa geológico General de la Republica de El Salvador	114
Figura 42 Edificio Minerva	116
Figura 43 Asuntos Académicos	116
Figura 44 Biblioteca	117
Figura 45 Parqueo principal	117
Figura 46 Campos de cultivo del Departamento de Ingeniería Agronómica	118
Figura 47 Zonas verdes	118
Figura 48 Temperatura máxima y mínima promedio	119
Figura 49 Temperatura promedia por hora	120
Figura 50 Precipitación de lluvia mensual promedio	120
Figura 51 Niveles de la humedad	122

Figura 52 Arboles detrás de los edificios de Medicina	128
Figura 53 Culebra	128
Figura 54 Estudiantes de Agronomía	129
Figura 55 Docentes del Departamento de Ingeniería Agronómica	130
Figura 56 Biodigestor tubular	148
Figura 57 Humedal artificial subsuperficial	150
Figura 58 Clasificación de la basura por colores	151
Figura 59 Compostera de madera	152

INDICE DE TABLAS

Tabla 1 Listado de agroquímicos usados en el campus de Agronomía	30
Tabla 2 Cantidad de ganado en el Campo Experimental y de Prácticas Unidad de Inves	stigación
Agropecuaria "UNIAGRO"	31
Tabla 3 Resumen del total de estiércol producido por tipo ganado	32
Tabla 4 Criterios para Valoración de Impactos	74
Tabla 5 Criterios para Valoración de Impactos	77
Tabla 6Escala de probabilidad de ocurrencia del impacto ambiental	78
Tabla 7 Escala de valores de severidad del impacto	79
Tabla 8 Comparación de caudal máximo probable y caudal máximo medido	92
Tabla 9 Comparación del efluente antes y después de pasar por el filtro biológico	94
Tabla 10 Resultados de muestra de efluente de los sanitarios ubicados al Norte y al Su	r del
Auditorio	96
Tabla 11 Resultados de muestra de efluente de la sección de biología	98
Tabla 12 Resultado de muestra de efluente de los edificios de Medicina	101
Tabla 13 Consumo de energía eléctrica de FMO	105
Tabla 14 Desechos sólidos producidos por semana	109
Tabla 15 Clasificación de los residuos peligrosos según por su grupo químico	112
Tabla 16 Informe de calidad fisicoquímica de agua de consumo humano en la FMO	122
Tabla 17 Informe de calidad microbiología de agua de consumo humano en la FMO	123
Tabla 18 Valores promedios de moléculas/cm² para los contaminantes atmosférico peri	odo
zafra	124
Tabla 19 Valores promedios de moléculas/cm² para los contaminantes atmosférico peri-	odo no
zafra	125
Tabla 20 Valores de PM2.5 Y PM10	126
Tabla 21 Docentes por tipo de contratación y genero	130

Tabla 22 Zona de influencia directa e indirecta de los impactos de las actividades identificada	วร
	136
Tabla 23 Matriz de resultados de interacciones entre actividades de la FMO y factores	
ambientales	138
Tabla 24 Resumen de interacciones identificadas	139
Tabla 25 Resumen de los valores de impacto ambiental de las actividades	141
Tabla 26 Resultados de la valoración según los niveles de severidad del impacto ambiental d	le
acuerdo con cada actividad	142
Tabla 27 Resumen del nivel de severidad de los impactos generados por las actividades	143
Tabla 28 Características de envases para desechos bioinfecciosos	154
Tabla 29 Recomendaciones referentes al uso de envases de polietileno para el	
almacenamiento de residuos	157
Tabla 30 Cantidad de artefactos sanitarios por unidad de análisis	180
Tabla 31 Gasto por artefacto sanitario	181
Tabla 32 Cálculo del caudal total probable por unidad de análisis	181
Tabla 33 Caudal máximo por unidad de análisis	183
Tabla 34 Parámetros de dimensionamiento de zanjas de biodigestores tubulares a partir del ángulo α y el radio de la circunferencia disponible de manga tubular	184
Tabla 35 Dimensiones de diseño de hiodigestor	185

RESUMEN

En este trabajo se desarrolla un diagnóstico ambiental de la Facultad Multidisciplinaria Oriental, dividido en tres fases, caracterización de la zona de estudio, identificación y evaluación de impactos ambientales y programa de adecuación ambiental. En la caracterización se describen aspectos generales de la facultad, el ambiente físico, el ambiente biótico y el ambiente social. En la fase de identificación de impactos ambientales se describen las actividades de la facultad, la zona de influencia y los factores ambientales para su posterior confrontación. En la fase de evaluación de impactos ambientales se identifica y predice los impactos, además, se determina la probabilidad de ocurrencia y priorización de los impactos ambientales para el análisis de los resultados. Finalizando con un programa de adecuación ambiental con el propósito de atenuar los efectos de los impactos ambientales negativos y acciones de control que garanticen la correcta implementación de las medidas propuestas. En esta fase se describen medidas ambientales, plan de monitoreo y evaluación de factibilidad de las medidas.

Palabra clave: diagnostico ambiental, programa de adecuación ambiental, método de criterios relevantes, impacto ambiental, evaluación de impacto ambiental.

ABSTRACT

In this work an environmental diagnosis of the Facultad Multidisciplinaria Oriental of the Universidad de El Salvador is elaborated, divided in three phases; qualification of the study zone, identification and evaluation of environmental impacts and environmental adequacy program. In the qualification of the study zone, there are described general aspects of the faculty, the physical environment, biotic environment and social environment. In the identification of environmental impacts phase is described the activities of the faculty, the influence zone and environmental factors for subsequent comparison. In the evaluation of environmental impacts phase the impacts are identified and predicted and also the occurrence probability and prioritization of the environmental impacts for the results analysis. Concluding with an environmental adequacy program with the purpose to attenuate the effects of negative environmental impacts and to make control actions that guaranteed the correct implementation of the proposed measures. In this phase are described environmental measures, monitoring plan and evaluation of the feasibility of the measures.

Key word: environmental diagnosis, environmental adequacy program, relevant criteria method, environmental impact, environmental diagnosis impact.

INTRODUCCION

Los problemas ambientales son consecuencia de una serie de actividades que desarrolla el ser humano a través de acciones de índole industrial, comercial, de servicios y domiciliar, de manera desordenada, aunado a la falta de regulación, que influyen negativamente en las condiciones de vida de la población.

En la Facultad Multidisciplinaria Oriental, ubicada en el departamento de San Miguel, está comprometida en la incorporación progresiva de acciones que tiendan a la mejora de la calidad ambiental.

Pero lamentablemente, la problemática ambiental se ha mantenido por el transcurso de los años sin que las autoridades hayan podido resolverlos de forma eficaz.

En la actualidad no se cuenta con un informe ambiental que abarque todas las acciones que se generan dentro de las instalaciones de la facultad de forma conjunta para la identificación de los efectos que ocasionan sobre el entorno ambiental.

En este sentido, el presente trabajo propuesto da respuesta a ese vacío existente, realizando un diagnóstico ambiental con el fin de brindar el conocimiento de la situación actual de los factores ambientales afectados dentro de la institución.

De esta forma es necesario elaborar un Diagnóstico Ambiental que permita identificar y evaluar la naturaleza, intensidad y características de sus impactos ambientales originados por las acciones que se generan dentro de sus instalaciones.

Una vez conocido el panorama ambiental, este servirá para especificar las medidas y acciones de compensación de los daños ambientales producidos, así como las destinadas a su atenuación y su prevención en el funcionamiento de las instalaciones de la facultad.

Dicha investigación, se encuentra conformada por varios capítulos:

El capítulo I, aborda las generalidades de la investigación, es decir, en éste se encuentra planteado el problema determinado en la Facultad Multidisciplinaria Oriental, la justificación, los objetivos, los alcances, las limitaciones y la metodología utilizada para llevar a cabo la siguiente investigación.

En el capítulo II presenta los fundamentos teóricos sobre los métodos de evaluación de impactos ambientales.

En el capítulo III muestra la caracterización de la zona de estudio que es la Facultad Multidisciplinaria Oriental a través de la infraestructura, ubicación, servicios básicos, medio físico, medio biótico y medio social.

En el capítulo IV se presenta la identificación y evaluación de los impactos ambientales identificados de las acciones de la Facultad Multidisciplinaria Oriental.

En el capítulo V se presenta las medidas de adecuación ambiental.

En el capítulo VI se presenta las conclusiones y recomendaciones del trabajo de investigación.

CAPITULO I GENERALIDADES

1.1 PLANTEAMIENTO DEL PROBLEMA

Los problemas ambientales son muy antiguos y complejos, surgen como resultado de la interacción de las sociedades humanas con el ambiente donde viven. Esta interacción ha tenido un largo desarrollo ya que en la medida en que se hacen más complejas las relaciones en la sociedad, más intensidad adquiere la acción del hombre sobre la naturaleza y por tanto sobre el ambiente.

La creciente preocupación de la humanidad por los problemas relacionados con la degradación del ambiente, fruto sin dudas del desbalance provocado como consecuencia de un uso no adecuado de los recursos, del crecimiento de la población, del desarrollo y difusión de la industria, entre otros, parecen haber puesto de actualidad una especie de añoranza en la búsqueda de soluciones encaminadas a mejorar la calidad de vida.

Cuando este tipo de problemas no se corrigen a tiempo, ocasionan un cambio impredecible en el medio ambiente que, a la larga, suele traducirse en desastres medioambientales, esto es, situaciones trágicas y catastróficas que involucran (y provienen de) el deterioro del medio ambiente.

La situación ambiental de El Salvador, se torna cada vez más difícil, los niveles de contaminación y deterioro de recursos tan importantes como el suelo, el agua, el aire, las especies nativas de flora y fauna están siendo afectados; de igual forma los altos niveles de riesgo y vulnerabilidad de muchas zonas a nivel nacional se incrementan, ante tal situación las comunidades organizadas están demandando de las instituciones competentes acciones más coherentes con la protección ambiental, aún a pesar de la represión institucional.

La Universidad está comprometida a conservar, fomentar y difundir la ciencia, el arte y la cultura, así como promover la sustentabilidad y la protección de los recursos naturales y el medio ambiente (art. 3, Ley Orgánica UES, 1999).

La Facultad Multidisciplinaria Oriental (FMO) con el transcurso del tiempo ha venido desarrollándose a tal grado que la población estudiantil y personal administrativo ha crecido

considerablemente, y los servicios que brinda han incrementado sus actividades propias diarias.

Entre las problemáticas que identificaron dentro de las instalaciones tenemos:

1.1.1 Uso de Agroquímicos

"El término agroquímicos se refiere a las sustancias o mezclas de sustancias destinadas a controlar o evitar la acción de plagas agrícolas, regular el crecimiento de las plantas, defoliar y desecar o proteger del deterioro, el producto o subproducto cosechado" (Garcia y Lazovski, 2011, p.9).

Figura 1

Fertilizantes utilizados en el invernadero de cultivos hidropónicos

La aplicación excesiva y manejo incorrecto de fertilizantes produce eutrofización, toxicidad en las aguas superficiales y subterráneas, degradación del suelo por variación del pH, deterioro de la estructura del suelo, deterioro de la microfauna y desequilibrios biológicos.

Los pesticidas (insecticidas, herbicidas, fungicidas, etc.) ponen en riesgo la calidad de las aguas superficiales y subterráneas a través de la aplicación directa e indirecta mediante la

deriva de pulverización y la volatilización del producto. También afectan a la fauna y flora circundante amenazando su estabilidad y representando un peligro de salud pública.

Hay que considerar que los agroquímicos pueden generar productos peligrosos de descomposición y reacciones peligrosas. También es necesario conocer su información toxicológica, ecotoxicidad, persistencia y degradabilidad, bioacumulación, movilidad, contenido de metales, consideraciones de su disposición final, medidas de contención y limpieza de incendios y derrames accidentales.

 Tabla 1

 Listado de agroquímicos usados en el campus de Agronomía

Descripción	Tipo
Cipermetrina 25 EC.	Insecticida
Dismetrina 25 EC.	Insecticida
Formula 15-15-15	Fertilizante
Mirex-S 0.3 GB	Insecticida
Monarca	Insecticida
Poliquel zinc	Fertilizante
Sulfato de magnesio heptahidratado	Fertilizante
Sulfato de magnesio	Fertilizante
Sulfato de potasio	Fertilizante
Urea	Fertilizante
Rimpirifos 2.5 GR	Insecticida
Formula 16-20-0	Fertilizante
Direct 11.25 SC	Insecticida
Gaucho	Insecticida
Atrazina 90 WG	Herbicida
Nitrato de calcio	Fertilizante
Sulfato de amonio	Fertilizante

1.1.2 Desechos Ganaderos

Los residuos ganaderos son muy heterogéneos, están formados por las deyecciones sólidas y líquidas, las camas y restos de alimentos, restos de productos fitosanitarios, antibióticos, etc. Iglesias (1995) afirma que "el estiércol como los purines son una mezcla de las heces de los animales con los orines y la cama. El estiércol es aquel material que puede ser manejado y almacenado como sólido, mientras los purines los son como líquidos" (p.3).

El potencial contaminante de los residuos ganaderos viene determinado por los parámetros: materia orgánica, nitrógeno, fósforo, potasio y metales pesados. Destaca la materia orgánica porque la contaminación, que potencialmente puede producir es extremadamente elevada.

 Tabla 2

 Cantidad de ganado en el Campo Experimental y de Prácticas Unidad de Investigación

 Agropecuaria "UNIAGRO"

Tipo de Ganado	Cantidad Total
Bovino	116
Porcino	7
Caprino	12
Ovino	42
Cunícula	20
Avícola	200

De manera general, hay que calcular cuánto estiércol se dispone al día. Para ello hay que considerar el manejo del ganado que se realiza, ya que, si es de pastoreo, el ganado duerme en la noche en un corral cercano solo se podrá recoger el 25% del estiércol producido por animal a lo largo del día (Martí, 2008, pág. 27).

En la Tabla 3 se muestra la cantidad estimada total de estiércol que se produce en las instalaciones de Agronomía.

Tabla 3Resumen del total de estiércol producido por tipo ganado

Ganado	Cantidad de estiércol	Total
Bovino	25-30 kg/día	3190 kg/día
Porcino	14 lb/día	98 lb/día
Caprino	8 lb/día	432 lb/día
Ganado	Cantidad de estiércol	Total
Cunícula	0.55 lb/día	11 lb/día
Avícola ¹	0.02 kg/animal-día	4 kg/día

El estiércol vacuno se recolecta a través de una carretilla y se acopia al costado Poniente de los corrales de ordeño, Figura 2, para que se descomponga al aire libre con el fin de utilizarlo como fertilizante.

"El suelo puede ser seriamente afectado por el estiércol si contiene concentraciones altas de nutrientes (nitrógeno, fósforo), microorganismos patógenos (*E. coli*), antibióticos, y compuestos que interactúen con el sistema endócrino (hormonas esteroidales, fitoestrógenos, plaguicidas y herbicidas)" (Powers, 2009, p.13-24).

"El agua es contaminada directamente a través de escurrimientos, infiltraciones y percolación profunda en las granjas, e indirectamente por escorrentías y flujos superficiales desde zonas de pastoreo y tierras de cultivo" (EPA, 2006, p.274). "El nitrógeno es abundante en el estiércol, y está relacionado con la contaminación de aguas subterráneas por la lixiviación de nitrato a través del suelo, mientras que el fósforo del estiércol está relacionado con la contaminación de aguas superficiales" (Miller, 2001, p. 405-416; Reddy *et al.*, 1999, p. 83-146).

Las descargas a la atmósfera provenientes del estiércol incluyen polvo, olores y gases producto de la digestión anaeróbica y descomposición aeróbica. El olor no presenta riesgos a la

¹ Las excretas removidas incluyen en su composición el material utilizado para la formación de la "cama". Fuente: Buenas Prácticas de Manejo y Utilización de Cama de Pollo y Guano (2015).

salud, pero la mayoría de la gente encuentra inaceptable los olores emitidos por el estiércol en zonas urbanas. (Miner *et al.*, 2000, p. 318)

Figura 2

Acumulación de estiércol bovino a un costado de los bebederos

El estiércol de origen porcino es recolectado durante la limpieza de las porquerizas y es desechado detrás del estas. Se observa en la Figura 3. que hay presencia de árboles en el sitio de descarga debido a la alta carga orgánica del estiércol.

Los principales contaminantes de las excretas porcinas pueden dividirse a su vez en: físicos como la materia orgánica y los sólidos en suspensión; químicos como el nitrógeno, el fósforo y el potasio excretados y el olor el cual es ocasionado por una gran cantidad de compuestos orgánicos volátiles (Sutton et al.,1999, como se citó en Landín, 2007, p.4).

Figura 3

Corral de los cerdos

En los corrales de las cabras y los pelibueyes se observa una gran concentración de estiércol, Figura 4, debido al estado de las instalaciones dificulta la recolección de este, por lo que se deja en el suelo.

El estiércol de cabra es rico en nutrientes. Contiene alrededor de 7 % de nitrógeno, 2 % de fósforo, 10 % de potasio, además de todos los oligoelementos. En resumen, las cabras no solamente producen el estiércol más fino, sino que su estiércol generalmente no atrae insectos o quema plantas.

El estiércol de ovejas cuando está fresco, hay que dejarlo fermentar dos o tres meses, pues es muy fuerte, pero una vez pasado ese tiempo, se puede mezclar con la tierra o el sustrato sin problemas.

Figura 4

Estiércol de cabras

Las excretas de los conejos son recolectadas de forma manual de las jaulas como se puede observar en la Figura 5.

El estiércol demasiado fresco quema las raíces y daña irreparablemente las plantas debido a que es fuerte y ácido. Además, es muy rico en nutrientes, de hecho tiene 4 % de nitrógeno, 4 % de fósforo y 1 % de potasio y todos los oligoelementos pero requiere fermentarse durante varios meses, y no ponerlo muy cerca de los troncos de las plantas.

Figura 5

Jaulas de Conejos

Para la crianza de pollos parrilleros poseen un galpón avícola de 50 m² con cama de viruta de madera. La pollinaza contiene las excretas de los pollos mezclada con el material de la cama para las aves.

La pollinaza es rica en nitrógeno, pero es muy fuerte. Por lo que, se debe dejar fermentar bien durante varios meses, y mezclarse luego con otros estiércoles, en caso de usarla como abono. Además, hay que tener en cuenta que tiene un alto contenido en calcio, por lo que no se debe de abusar si se tiene una tierra calcárea.

Figura 6

Galpón de pollos de engorde

Fuente: Página oficial Facultad Multidisciplinaria Oriental UES San Miguel

El campo de agronomía posee una granja piscícola que consta de dos estanques de 5 metros de diámetro, cada uno, con una altura de 1.30 metros y con capacidad de volumen máximo de 24 metros cúbicos de agua; ambos estanques cuentan además con sus respectivos drenajes al piso a una altura de 25 cm y drenajes de desagües a una altura de 1.05 metros, también el sistema de estanques posee una bomba periférica que permite drenar totalmente el agua de los ambos estanques. El área acuícola también cuenta con dos aireadores instalados para oxigenar cada uno de los estanques de forma individual. Cada estanque cuenta con dos platos difusores que son los encargados de distribuir el aire a razón de 80 litros por hora.

En general la composición de los efluentes piscícolas puede presentar grandes variaciones dependiendo de factores como la densidad de siembra, número de estanques cultivados, frecuencia, tipo de alimentación, especie cultivada etc. Debido a su carga orgánica puede ser utilizada para riego de plantas y cultivos.

También se producen lodos que están compuestos de materia fecal de peces y alimento no consumido, además de pequeñas cantidades de polvo provenientes del alimento, escamas, mucus y organismos que se desprenden desde las jaulas, entre otros. Estos lodos residuales provenientes del cultivo de tilapias tienen componentes orgánicos ricos en nitrógeno y fósforo, por lo que pueden ser utilizados como mejoradores de suelo y fertilizantes agrícolas, destinados a ganadería y forraje, entre otros.

Figura 7

Estanque de geomembrana para tilapias

1.1.3 Manejo de aguas residuales

El sistema de tratamiento para aguas residuales de la Facultad Multidisciplinaria

Oriental consiste en fosas sépticas (algunas poseen filtro biológico) y pozos de absorción; pero
debido al crecimiento de la población universitaria y su nulo mantenimiento son considerados
actualmente como precarios debido a su baja capacidad para tratar las aguas residuales.

Figura 8

Fosas sépticas ubicadas detrás de los edificios de Medicina

La mayoría de esas aguas es descargada en el subsuelo o a cielo abierto. Como ejemplo de punto de descarga de aguas residuales lo tenemos en la Figura 9 donde se contempla la descarga de aguas residuales al sureste del edificio II de Medicina.

Figura 9

Punto de descarga de aguas provenientes de los edificios de medicina

Otro problema son las aguas residuales provenientes de los cafetines ubicados al costado norte del auditórium que son conducidas por medio de tuberías con fugas a una caja de captación que esta destruida, Figura 10. Por lo que el agua se estanca en los alrededores generando un típico olor a "podrido", debido a sustancias como sulfuros, metano e hidrógeno.

Detrás de los cafetines del costado Norte del Auditorio se encuentran tres pozos sumideros, dos funcionando de los cuales uno es para un cafetín y el otro sirve para la fosa de la biblioteca y el otro cafetín. El otro pozo esta destruido por lo que filtra a la superficie el agua residual como se observa en la Figura 11.

Figura 10

Mal estado de las tuberías de conducción de aguas residuales

Figura 11

Filtración de agua residual de pozo sumidero destruido

1.1.4 Manejo de Desechos Sólidos

Las aulas son los espacios en donde normalmente más residuos sólidos se encuentran, dado que la mayor actividad académica de los estudiantes se da en estos espacios. En la FMO se generan desechos sólidos por medio del funcionamiento de las fotocopiadoras, las oficinas

administrativas, la limpieza y mantenimiento de instalaciones, los laboratorios, el Campo Experimental y de Practicas Unidad de Investigación Agropecuaria (UNIAGRO).

Dentro de la facultad existen tres cafetines los cuales producen los siguientes desechos:

- Materias orgánicas: restos de comida, verduras, frutas, carnes, cascaras de huevos, huesos
- Papeles como servilletas, resto de papel higiénico y cartones
- Plásticos
- Vidrios
- Empaques desechables
- Latas
- Desinfectantes y desmanchadores
- Elementos de aseo como guantes y tapabocas

Figura 12

Cafetín

La FMO cuenta con recipientes en los cuales se puede depositar los residuos sólidos que se genera en el Campus, pero se observa una variedad de residuos sólidos fuera de los recipientes y en los alrededores de los edificios.

No existe un manejo adecuado para todo tipo de residuos generados en el laboratorio, tanto a los no peligrosos como a los peligrosos, los reactivos caducados, los reactivos no caducados pero innecesarios, los materiales de un solo uso contaminados o no, los patrones² y todos aquellos materiales o productos que se hayan utilizado o generado en el mismo.

Figura 13

Contenedores de reactivos químicos usados

1.2 MARCO NORMATIVO-JURÍDICO

1.2.1 Permiso Ambiental

El permiso ambiental es un acto administrativo por medio del cual el Ministerio de Medio Ambiente y Recursos Naturales de acuerdo con la Ley y su reglamento, a solicitud del titular de una actividad, obra o proyecto, autoriza a que estas se realicen, sujetas al cumplimiento de las condiciones que este acto establezca.

Alcance de los Permisos Ambientales. El Permiso Ambiental obligará al titular de la actividad, obra o proyecto, a realizar todas las acciones de prevención, atenuación o compensación, establecidos en el Programa de Manejo Ambiental, como parte del

² Es una sustancia utilizada, en química, como referencia al momento de hacer una valoración o estandarización

.

Estudio de Impacto Ambiental, el cual será aprobado como condición para el otorgamiento del Permiso Ambiental.

Fianza de Cumplimiento Ambiental. Para asegurar el cumplimiento de los Permisos Ambientales en cuanto a la ejecución de los Programas de Manejo y Adecuación Ambiental, el titular de la obra o proyecto deberá rendir una Fianza de Cumplimiento por un monto equivalente a los costos totales de las obras físicas o inversiones que se requieran, para cumplir con los planes de manejo y adecuación ambiental. Esta fianza durará hasta que dichas obras o inversiones se hayan realizado en la forma previamente establecida.

1.2.2 Ley del Medio Ambiente de El Salvador

En su Art. 65, determinando que deberá asegurarse la sostenibilidad de los recursos, su cantidad y calidad, y protegerse adecuadamente los ecosistemas a que pertenezcan.

En el Art. 122.- El Diagnóstico Ambiental de una actividad, obra o proyecto debe identificar y Evaluar Impactos Ambientales producidos por su funcionamiento u operación en el área del proyecto y de su impacto, estableciendo si éste constituye el efecto de causas múltiples o existe relación causal directa entre la actividad, obra o proyecto y la situación de deterioro ambiental producida.

El programa de Adecuación que debe acompañar al Diagnóstico Ambiental debe especificar las medidas y acciones de compensación de los daños ambientales producidos, así como las destinadas a su atenuación y su prevención en el funcionamiento futuro de la actividad, la obra o el proyecto.

En el Art. 123.- El Diagnóstico Ambiental deberá incluir, sin necesariamente limitarse a ello, lo siguiente:

a. Descripción de la actividad, obra o proyecto y de los aspectos fisicoquímicos, biológicos y socioeconómicos de su área de influencia;

- b. Identificación, priorización y cuantificación de los daños ambientales ocasionados por la actividad, así como la causa directa e inmediata de los mismos, en lo posible; y
- c. Determinación, priorización y presupuesto de las medidas e inversiones ambientales de atenuación, prevención, corrección, compensación y control como aspectos indispensables del Programa de Adecuación ambiental respectivo.

1.2.3 Reglamento General de la Ley del Medio Ambiente

En el Art. 36. El Ministerio de Medio Ambiente y Recursos Naturales (MARN) realizará auditorias de evaluación ambiental para garantizar el cumplimiento a las condiciones definidas en el permiso ambiental.

1.2.4 Código Penal

En el art. 255 dice que: "cualquier actividad o acción directa o indirectamente que pusiere en peligro grave la salud o calidad de vida de las personas o el equilibrio de los sistemas ecológicos o del medio ambiente, será sancionado con prisión de cuatro a ocho años".

En el Art 256. Dice que será penada la acción de funcionare sin el correspondiente permiso ambiental o clandestinamente o haya desobedecido las disposiciones expresas de la autoridad ambiental para que corrigiere o suspendiere sus operaciones; hubiere aportado información falsa para obtener el permiso ambiental correspondiente o hubiere impedido u obstaculizado la inspección por la autoridad del medio ambiente.

1.2.5 Código de Salud

En resumen, en los artículos 57,67, 69, 79, 73, 284 determina la atribución al Ministerio de Salud de desarrollar programas de saneamiento ambiental, encaminados a lograr para las comunidades, la disposición adecuada de excretas y aguas servidas y la eliminación y control de contaminaciones del agua de consumo, del suelo y del aire.

1.2.6 Reglamento Técnico RTS 13.05.01:18

El reglamento establecer los límites permisibles para los parámetros de calidad de las aguas residuales y sus lodos, previo a su disposición final, así como los mecanismos y procedimientos técnicos para la gestión de los mismos; y contribuir a la recuperación, protección y aprovechamiento sostenible del recurso hídrico.

Aplica a toda actividad, obra o proyecto que realice gestión de las aguas residuales previo a la descarga a un medio receptor; así como el manejo de lodos residuales, independientemente de la procedencia y destino, ubicados en el territorio nacional

1.2.7 Norma Técnica para el Manejo de los Desechos Bioinfecciosos

La norma tiene como objeto establecer los requisitos sanitarios y medidas de bioseguridad para el manejo, transporte, tratamiento y disposición final, de los desechos bioinfecciosos.

La aplicación de esta norma es de carácter obligatorio, a toda persona natural o jurídica, que establecida en el territorio nacional generen, transporten, den tratamiento y disposición final, a desechos con características bioinfecciosas.

1.2.8 Reglamento Especial de Sustancias, Residuos y Desechos peligrosos.

En el art.17 establece que los generadores de residuos peligrosos son responsables del cumplimiento de la Ley, este reglamento y reglas técnicas que se deriven de él, estando obligados a determinar su peligrosidad y registrarse en el Consejo, y mantenerse actualizados en dicho registro.

En el art. 21. Establece que los generadores deben fomentar la disminución, así como desarrollar actividades y procedimiento que conduzcan a una gestión sostenible de los residuos.

1.2.9 Ordenanza para la Gestión Ambiental del municipio de San Miguel

Tiene como objeto crear un proceso participativo para la protección, conservación y recuperación de la gestión ambiental que asegure la calidad de vida de los habitantes y definir

los conceptos fundamentales para coordinar e implementar acciones relacionados con los deberes y derechos de las personas naturales y jurídicas a fin de evitar el deterioro del medio ambiente, conforme a la aplicación de un plan ambiental que facilite la toma de decisiones por parte de la máxima autoridad del municipio.

1.3 OBJETIVOS

1.3.1 Objetivo General

Realizar un diagnóstico de la situación ambiental de la Facultad Multidisciplinaria

Oriental de la Universidad de El Salvador.

1.3.2 Objetivos Específicos

- Identificar, definir y priorizar los impactos ambientales significativos ocasionados por las actividades del funcionamiento de la FMO
- Evaluar los impactos ambientales generados por las actividades de la FMO
- Describir el medio físico, biológico y social de la Facultad Multidisciplinaria Oriental.
- Presentar un programa de adecuación ambiental para mitigar los impactos ambientales identificados.

1.4 PLANTEAMIENTO DE HIPOTESIS

1.4.1 Hipótesis General

La Facultad Multidisciplinaria Oriental presenta una degradación ambiental por no contar con una regulación ambiental de sus actividades.

1.4.2 Hipótesis Especificas

- La falta de regulación de las actividades de la facultad genera mayores efectos negativos en su entorno ambiental.
- El diagnostico ambiental establece la relación entre las actividades de funcionamiento de la FMO y la situación de deterioro ambiental producida.
- La falta de aplicación de normas ambientales dentro de la FMO provoca mayor contaminación ambiental.
- La falta de mitigación de las actividades produce un aumento de su efecto contaminante.

1.5 OPERACIONALIZACION DE HIPOTESIS

HIPOTESIS	VARIABLES	INDICADORES
HIPÓTESIS GENERAL		
La Facultad Multidisciplinaria Oriental presenta una	VI: Degradación	Aspectos físicos y
degradación ambiental por no contar con una	ambiental	bióticos
regulación ambiental de sus actividades.	VD: Regulación	Acciones
	ambiental de	administrativas
	sus actividades	
HIPÓTESIS ESPECIFICAS	VARIABLES	INDICADORES
La falta de regulación de las actividades de la	VI: Falta de	Control de
facultad genera mayores efectos negativos en su	regulación	actividades
entorno ambiental	VD: Efectos	Contaminación
	negativos	ambiental
El diagnostico ambiental establece la relación entre	VI: Diagnostico	Evaluación
las actividades de funcionamiento de la FMO y la	ambiental	ambiental
situación de deterioro ambiental producida	VD: La relación	Impacto ambiental
	entre	
	actividades y	
	deterioro	
	ambiental	
La falta de aplicación de normas ambientales dentro	VI: Falta de	Leyes, Normas y
de la FMO provoca mayor contaminación ambiental	aplicación de	Reglamentos
	normas	
	ambientales	
	VD: Mayor	Mal manejo de
	contaminación	desechos sólidos y
	ambiental	aguas residuales
La falta de mitigación de actividades produce un	VI: Falta de	Medidas de
aumento de su efecto contaminante.	mitigación de	prevención
	actividades	
	VD: Efecto	Daños en los
	contaminante	recursos naturales

1.6 JUSTIFICACION

Esta investigación genera un diagnóstico de las actividades o acciones de la FMO, de sus impactos ambientales y su nivel de afectación de los factores ambientales, así como, proponer medidas que prevenga, mitiguen o corrijan estos impactos.

Para poder aplicar una determinada metodología es necesario considerar e identificar el tipo de impacto ambiental, el área que se afecta y la duración de los impactos, los componentes ambientales que se afectan, los efectos directos e indirectos, los impactos primarios, los efectos sinérgicos, así como su magnitud, importancia y riesgo.

Se puede hacer una diferenciación de metodologías en cuanto a su valoración:

- Valoración cualitativa de los impactos a partir de unos criterios, que van a determinar las características de éstos, o bien su importancia o magnitud. Este método consiste en situar cada impacto identificado en un rango de alguna escala de puntuación, cuyo tamaño depende del grado de confianza de que se disponga. La valoración puede ser simple (si el valor viene representado por un solo valor) o compuesta (si el impacto viene representado por más de un valor).
- Valoración cuantitativa de los impactos que requiere más información, conocimiento y
 criterio del equipo evaluador. Está basada en la definición de indicadores de impacto y
 en la situación sin proyecto respecto a la situación con proyecto. Este tipo de valoración
 permite sumar impactos para obtener un valor global del impacto del proyecto o
 actividad.

Para predecir los impactos se requiere información de cada uno de los elementos del medio ambiente que son receptores de impactos.

Cuando corresponda, la predicción y evaluación de los impactos ambientales se debe efectuar considerando el estado de los elementos del medio ambiente y la ejecución de la actividad en su condición más desfavorable

Una vez identificado un impacto es necesario estimarlo cualitativa y/o cuantitativamente, requiriéndose para ello conocer y describir el elemento del medio ambiente receptor de dicho impacto.

Para establecer si los impactos son o no significativos, éstos deben ser evaluados en función de las consideraciones y criterios establecidos en el método de evaluación elegido. La evaluación de impactos permite tanto establecer cuales impactos son significativos, así como justificar la inexistencia de estos.

La utilidad de la investigación es proporcionar un diagnóstico ambiental de la FMO, así como, un documento base para actualizaciones de futuras investigaciones ambientales generales y específicas de las acciones de la FMO.

La iniciativa y motivación de esta investigación surge de la inexistencia de una investigación ambiental sobre las actividades diarias propias de la FMO, el estado y manejo de dichas actividades.

La pertinencia radica en que la FMO sigue creciendo en infraestructura y actividades diarias propias, pero no toma en cuenta la situación ambiental que es afectada por el colapso o mal manejo de estos. Es necesario para generar un plan de ordenamiento que permita mejorar el manejo de dichas actividades y un crecimiento ordenado de nuevos edificios.

Una metodología de evaluación de impacto ambiental debe realizarse con la finalidad de poder identificar, predecir, cuantificar y valorar los impactos ambientales de un conjunto de acciones y/o actividades de un determinado Proyecto.

1.7 ALCANCES

- Se realiza identificación y evaluación de impactos ambientales, para su priorización.
- Se realiza una descripción de la FMO, que incluye rasgos generales de ubicación, área de la zona de estudio, servicios básicos.
- Se realiza la descripción del ambiente físico describe los aspectos geológicos, suelo,
 clima, hidrología, calidad del agua y calidad del aire, para conocer el estado de los
 factores ambientales afectados
- Se realiza una descripción del medio biótico, distribución de la flora y fauna.
- Se realiza la descripción del ambiente social a través de la cantidad de estudiantes, catedráticos, personal académico y administrativo, que influye el estado sanitario ambiental de la FMO
- Se elabora un programa de adecuación ambiental, que contempla medidas de atenuación, prevención, corrección, compensación y control sobre los efectos causados por los impactos adversos identificados en la evaluación ambiental.
- Se presenta un documento que contenga, una investigación que muestra los hallazgos de impactos ambientales negativos generados por actividades en la FMO, de acuerdo con una evaluación metodológica, que describe y caracteriza el medio físico, biótico y social. Contemplando un apartado de implementación de medidas ambientales descritas en un PAA.

1.8 LIMITACIONES

- Dificultad en el acceso de información de parte de las autoridades de la FMO.
- Costo monetario de realización de análisis de la calidad del agua, calidad de efluente residual, calidad del aire, etc.

1.9 METODOLOGIA

1.9.1 Tipo de Investigación

La presente investigación se basó en la identificación y clasificación sistemática de todas las consecuencias de las actividades propias diarias de la FMO sobre el suelo, el agua, el aire, la flora, la fauna y población humana, es decir, fue exploratoria, y para ello "era necesario contar con la información confiable sobre las condiciones actuales del ambiente para formular las preguntas específicas que se busca responder" (Sampieri, et al,2014, p.92).

También se desarrolla a partir de un diagnóstico de la situación ambiental en la que se encuentra la FMO para constatar todos los supuestos sobre los cuales se desarrolla este estudio. Por tanto, describe las causas que dan origen a la problemática ambiental, a partir de la evaluación de los posibles impactos generados por las actividades generadas en la facultad.

1.9.2 Descripción del Método

Mediante la descripción, caracterización y cuantificación del medio ambiente actual realizada en los componentes físicos, biológicos y socioeconómicos del área de influencia, se tiene los elementos de juicio para llevar a cabo la identificación, priorización, predicción y cuantificación de los impactos ambientales potenciales, tomando en cuenta las diferentes actividades que se realizan en la FMO.

En ese sentido, se limita en analizar los potenciales impactos ambientales que podrán ser generados sobre la zona de influencia del proyecto, proponiéndose medidas de carácter ambiental específicas con los impactos que se identificaren con potencialidad de ocurrencia.

En la metodología aplicada se ha tenido como base un ordenamiento de las actividades que se realizan en la FMO, realizando una estimación detallada del impacto de las actividades del funcionamiento sobre cada uno de los componentes ambientales y sociales dentro de su área de influencia.

1.9.3 Ubicación Espacial y Temporal

1.9.3.1 Espacial. La ubicación espacial de la investigación se encuentra en el cantón El Jute, municipio de San Miguel, departamento de San Miguel. La zona de estudio es en las instalaciones de la Facultad Multidisciplinaria Oriental de la Universidad de El Salvador con una extensión territorial de 108 manzanas.

1.9.3.2 Temporal. El presente trabajo de investigación se desarrolló de Febrero del año 2020 a Octubre del año 2021.

1.9.4 Universo de estudio

El universo del estudio lo constituyen las actividades académicas y administrativas de la Facultad Multidisciplinaria Oriental.

1.9.5 Instrumentos y Técnicas de Recolección de Información

Para la recolección de datos se utilizaron los siguientes instrumentos de investigación:

- Observaciones in situ de las áreas para explorar, describir, identificar y comprender la situación ambiental
- 2. Elaboración de matrices
- 3. Recopilación de contenidos: Estudios similares en la zona de estudio.
- 4. Apuntes de libreta de notas.
- 5. Registros Fotográficos.

1.9.6 Procedimiento

El desarrollo de la investigación se realizará en cuatro fases o etapas:

Fase de Recopilación de Información: en esta etapa se reunió información bibliográfica sobre infraestructura, ubicación, servicios básicos, aspectos del ambiente físico, la flora, la fauna y la población estudiantil y administrativa de la FMO, información sobre impacto ambiental, métodos de evaluación ambiental y sobre leyes, reglamentos, códigos y normas que protegen la integridad del medio ambiente y de la población de El Salvador.

Fase de Campo: en esta etapa se continuo con la recopilación de información proveniente de la visita de campo para observar el estado de la infraestructura, servicios básicos, flora y fauna de la FMO mediante la utilización apuntes de información y obtener registros fotográficos, información necesaria para la descripción que servirán para poder calificar el tipo de impacto ambiental existente. También se realizaron previa cita pactada con los jefes de Departamento para tomar sus impresiones, opiniones y observaciones que tienen sobre las actividades que generan sus respectivos departamentos.

Para determinar el impacto ambiental generado en la FMO se realizó por medio de matrices de calificación. Dichas matrices son de doble entrada, siguiendo la metodología de los Criterios Relevantes Integrados donde se establecen índices de impacto ambiental para cada efecto:

- En el lado de las columnas se colocan las actividades que alteran el medio natural.
- En el lado de las filas figuran los componentes ambientales que son afectados, es decir aquellos que son característicos del entorno

Se elaboró una matriz por cada indicador necesario para la determinación del impacto:

- Una matriz de calificación para el carácter del impacto.
- Una matriz de calificación para las interacciones del impacto y factores ambientales
- Una matriz de calificación para intensidad del impacto.
- Una matriz de calificación para la extensión del impacto.
- Una matriz de calificación para la duración del impacto.
- Una matriz de calificación para la reversibilidad del impacto.
- Una matriz de calificación para la incidencia del impacto.
- Una matriz de calificación para la obtención de la magnitud del impacto: dicho valor se obtuvo a través de la utilización de una fórmula matemática establecida en la metodología de los Criterios Relevantes Integrados.

- Una matriz de calificación para la obtención del valor del índice ambiental: dicho valor se obtuvo a través de la utilización de una fórmula matemática establecida en la metodología de los Criterios Relevantes Integrados.
- Una matriz de calificación para determinar la severidad del impacto en cada sector:
 dicho valor se obtuvo al multiplicar el valor de la magnitud y el índice ambiental.

En la cuarta fase, se elaboró un programa de adecuación ambiental proponiendo medidas para compensar, atenuar y prevenir los daños ambientales identificados por las actividades generadas em el área de estudio. Así mismo formular las conclusiones y/o recomendaciones pertinentes.

CAPITULO II MARCO TEORICO

2.1 Fundamentos teóricos

2.1.1 Impacto Ambiental

Un impacto ambiental es la alteración de la calidad del medio ambiente producida por una actividad humana. Hay que tener en cuenta que no todas las variaciones medibles de un factor ambiental pueden ser consideradas como impactos ambientales, ante el riesgo de convertir la definición de impacto en un concepto totalmente inoperante para la evaluación del impacto ambiental, ya que habría que incluir las propias variaciones naturales, producidas por las estaciones del año o por algunas perturbaciones cíclicas (incendios, terremotos, etc.). Siempre se deberían incluir todos los elementos ambientales posibles, estudiando para cada uno de ellos, los factores ambientales que mejor definan el cambio en su calidad.

Otros definen los impactos como las alteraciones significativas, de carácter negativo o beneficioso, que se producen en el ambiente como resultado de una actividad humana. En ambos casos debe tenerse claridad sobre los umbrales de aceptabilidad respecto al deterioro ambiental y los elementos del ambiente que deben ser protegidos. Cabe recordar acá la diferencia entre efecto e impacto. El primero se refiere a cualquier variación o modificación de los factores ambientales por la acción de un proyecto. El segundo vincula la valoración de la significancia positiva o negativa producida sobre la calidad ambiental.

Una primera consideración es el origen o la causa de este cambio ambiental. Para poder hablar de un efecto ambiental o de un impacto ambiental, éste tiene que estar producido directa o indirectamente por una actividad humana,

En un segundo paso, para que este efecto ambiental se pueda considerar un impacto, es necesaria una valoración positiva o negativa de este cambio de calidad ambiental.

Por lo tanto, la definición de un impacto ambiental necesita al menos de dos valores:

- 1. El cambio que se produce en el factor ambiental estudiado (magnitud)
- El valor que tiene este cambio con respecto a la calidad de los elementos ambientales estudiados o de la calidad ambiental desde un punto de vista más global.

Este cambio de calidad ambiental siempre tiene que ser positivo o negativo, ya que no tiene sentido realizar una valoración neutra de un impacto.

Se han desarrollado múltiples metodologías que permiten responder a las exigencias de la evaluación de impactos ambientales, las que han evolucionado rápidamente en la última década. Una metodología puede ser más útil cuando se ajusta a las necesidades del usuario, al ambiente afectado y a las características del proyecto. Caso a caso, se determina cuál de las herramientas disponibles es más efectiva para analizar la propuesta en particular. Un enfoque lógico y sistemático permite asegurar que todos los impactos, sus causas y las interacciones entre ellos puedan ser adecuadamente cubiertas por la metodología. Los métodos se basan en la experiencia colectiva acumulada y su selección correcta elimina errores e incertezas en los análisis. Muchos de ellos han sido ajustados para incrementar su eficiencia y exactitud

Los impactos pueden ser establecidos cuantitativamente con indicadores, o cualitativamente según criterios de valoración preestablecidos. La serie de estimaciones previstas por las metodologías conforman una proyección de las consecuencias de la propuesta sobre el ambiente. Esto constituye el marco de análisis para tomar una decisión conjunta con otras variables del desarrollo. El impacto ambiental constituye una alteración significativa de las acciones humanas; su trascendencia deriva de la vulnerabilidad territorial. Esta es múltiple; por ejemplo: un determinado territorio puede presentar características de fragilidad en cuanto al riesgo de erosión y no por la contaminación de acuíferos. Esta diversidad de facetas siempre debería ponerse de manifiesto en una evaluación de impacto ambiental. Una alteración ambiental, correspondiente a cualquiera de esas facetas de la vulnerabilidad o fragilidad del territorio, puede ser individualizada por una serie de características.

Por otra parte, cuando se trata de caracterizar los impactos se deben considerar algunas circunstancias colaterales, que son importantes para explicar el comportamiento de

determinados fenómenos. Por ejemplo, algunos de los elementos del medio no son susceptibles de recibir impactos de las acciones, como es obvio en el caso de la altitud u otros parámetros fisiográficos. Sin embargo, puede ser necesario tenerlos en cuenta porque actúan como amplificadores de alteraciones sobre otros elementos del ambiente.

Por otro lado, el significado del impacto puede conectarse con su reversibilidad. La necesidad de calificar el deterioro irreversible, el agotamiento de un recurso, y la iniciación de procesos negativos que se aceleran a sí mismos, ha conducido al desarrollo de estrategias de definición y uso de umbrales. Estos marcan los límites a partir de los cuales el impacto se considera inadmisible y que, por lo tanto, incompatibilizan la ejecución de la acción con determinados ambientes

Todas estas circunstancias y características definen la mayor o menor gravedad o beneficio, derivado de las acciones humanas en un territorio. La correcta evaluación de los impactos ambientales se concreta normalmente con la utilización de alguna escala de niveles; esto facilita la utilización de la información recopilada para la toma de decisiones. Existen diversas formas para definir y calificar los impactos. Un ejemplo de niveles puede ser el siguiente:

- a) Impacto compatible: La carencia de impacto o la recuperación inmediata tras el cese de la acción. No se necesitan prácticas mitigadoras.
- b) **Impacto moderado:** La recuperación de las condiciones iniciales requiere cierto tiempo. Se precisan prácticas de mitigación simples.
- c) Impacto severo: La magnitud del impacto exige, para la recuperación de las condiciones, la adecuación de prácticas específicas de mitigación. La recuperación necesita un período de tiempo dilatado.
- d) Impacto crítico: La magnitud del impacto es superior al umbral aceptable. Se produce una pérdida permanente de la calidad de las condiciones ambientales, sin posibilidad de recuperación incluso con la adopción de prácticas de mitigación.

Un primer criterio para incluir en la selección de técnicas y métodos es definir si se necesita medir la capacidad de una variable del ambiente o el impacto que sobre ella se genera. Un segundo elemento se relaciona con su comportamiento en el tiempo. Por ejemplo, se considera a la naturaleza como un estado de equilibrio que es ocasionalmente perturbado por eventos propios o inducidos. Esta percepción obedece, probablemente, a que los cambios ecológicos acontecen en escalas temporales mayores que las humanas. Esto introduce una complicación adicional en la utilización de técnicas y métodos ya que las perturbaciones ambientales ocasionadas por un proyecto y sus efectos sobre el medio ambiente deben compararse no tan sólo con la situación inicial, previa a la acción, sino que con los posibles estados del sistema de acuerdo con las dinámicas de cambio natural.

El punto crucial en las metodologías de estudios de impacto ambiental es la medición de los aspectos cualitativos. La estimación y el valor de un área en que viven especies animales o vegetales en peligro de extinción, o el establecimiento de las modificaciones en las cadenas tróficas, son problemas que muchas veces sólo pueden ser resueltos con la cualificación de variables. La utilización de métodos para identificar las modificaciones en el medio es una tarea relativamente fácil. Pero otra cosa es la calificación de esas modificaciones: todos los aspectos y parámetros pueden medirse; la dificultad está en valorarlos.

Ninguna metodología es la mejor per se ante otras. La combinación de ellas casi siempre resulta más útil en la EIA. Los factores que influyen en la selección se vinculan con:

- El tipo y tamaño de la propuesta
- Las alternativas
- La naturaleza de los impactos
 La adecuación al ambiente afectado
- La experiencia del equipo de trabajo
- Los recursos disponibles (información, especialistas, etc)

- La experiencia del proponente
- La limitación y/o procedimientos administrativos
- La participación ciudadana
- La seguridad de adecuarse a la situación específica

A pesar de estas dificultades algunos métodos son ampliamente usados, aun cuando todavía se discuta la utilidad real y se busque perfeccionar sus alcances (por ejemplo, la matriz de Leopold). Las metodologías de evaluación de impacto ambiental se refieren a los enfoques desarrollados para identificar, predecir y valorar las alteraciones de una acción. Consiste en reconocer qué variables y/o procesos físicos, químicos, biológicos, socioeconómicos, culturales y paisajísticos pueden ser afectados de manera significativa. Es relevante destacar acá que un impacto ignorado o subestimado hace insatisfactorio cualquier análisis, aun cuando se use una metodología sofisticada

La medición puede ser cuantitativa o cualitativa; ambas son igualmente importantes, aun cuando requieren de criterios específicos para su definición adecuada. La predicción implica seleccionar los impactos que efectivamente pueden ocurrir y que merecen una preocupación especial por el comportamiento que pueda presentarse. Es importante contrastarlos con indicadores de la calidad ambiental deseada.

2.1.2 Métodos de Evaluación de Impactos

Para llevar a cabo estas etapas, es necesario realizar los estudios de impacto ambiental partiendo de algunos supuestos básicos imprescindibles, entre los que se destaca la calidad y la fiabilidad del método utilizado. El método para utilizar debe poder reflejar si existe o no impacto (positivo o negativo) sobre los factores ambientales (entre los cuales se incluye al hombre y su medio social) de las acciones del proyecto o estructura. Esta relación causa-efecto puede mostrarse en forma muy satisfactoria con un esquema de matriz, es decir, con un arreglo de filas y columnas que en su intersección reflejan numéricamente si existe incidencia

de la causa sobre el factor (primera etapa) y luego su valoración ponderada de acuerdo con una escala arbitraria comparativa (segunda etapa).

El desarrollo de los métodos para evaluar impactos ambientales puede vincularse con:

- La búsqueda de las relaciones entre los elementos o características territoriales y las acciones.
- b) Las mediciones específicas y la información necesaria para estimar los impactos.
- c) Las medidas de mitigación, compensación y seguimiento.

Estos antecedentes permiten una adecuada identificación, predicción e interpretación de los impactos sobre diversos componentes del ambiente. La información puede concretarse sobre la base de dos aspectos básicos: la medición de la capacidad y del impacto sobre el medio.

También se hace referencia a otros enfoques para aplicar este concepto como, por ejemplo, la capacidad de carga. Esta puede expresarse en:

- a) Número de organismos de una especie dada que pueden vivir en un ecosistema sin causar deterioro.
- b) Máximo número de animales que pueden sobrevivir al período anual más desfavorable en un área.

Los métodos más utilizados para la Evaluación de Impacto Ambiental son:

- 2.1.2.1 Listas de chequeo o verificación. Este método consiste en una lista ordenada de factores ambientales que son potencialmente afectados por una acción humana. Las listas de chequeo son exhaustivas. Su principal utilidad es identificar todas las posibles consecuencias ligadas a la acción propuesta, asegurando en una primera etapa de la evaluación de impacto ambiental que ninguna alteración relevante sea omitida. Una lista de chequeo debería contener ítems, como los siguientes, que permiten identificar impactos sobre:
- **Suelo** (usos del suelo, rasgos físicos únicos, etc),
- Agua (calidad, alteración de caudales, etc),

- Atmósfera (calidad del aire, variación de temperatura, etc),
- Flora (especies en peligro, deforestación, etc),
- Fauna (especies raras, especies en peligro, etc.),
- Recursos (paisajes naturales, pantanos, etc),
- Recreación (pérdida de pesca, camping y picnics, etc),
- Culturales (afectación de comunidades indígenas, cambios de costumbres, etc), y en general sobre todos los elementos del ambiente que sean de interés especial
 Existen diversos tipos de listados; entre ellos destacan:
- Listados simples: Contienen sólo una lista de factores o variables ambientales con impacto, o una lista de características de la acción con impacto, o ambos elementos.
 Permiten asegurarse de que un factor particular no sea omitido del análisis. Son más que nada una ayuda-memoria.
- Listados descriptivos: Estos listados dan orientaciones para una evaluación de los parámetros ambientales impactados. Se indican, por ejemplo: posibles medidas de mitigación, bases para una estimación técnica del impacto, referencias bibliográficas o datos sobre los grupos afectados.
- Listados escalonados: Se establecen criterios para evaluar un conjunto de elementos ambientales, comparando sus Valores Mínimos Aceptables (VMA), establecidos por las normas y criterios de calidad ambiental, y las Variaciones de su Valor (VV) ante tres alternativas del proyecto: Sin Acción (SA), con Inversión Media (IM) y con Inversión Grande (IG). Para cada caso se indica si hay o no Impacto Ambiental Negativo (IAN). Se trata de un caso ilustrativo y las unidades de los criterios deben ser adaptadas a cada situación.

- 2.1.2.2 Cuestionarios. Se trata de un conjunto de preguntas sistemáticas sobre categorías genéricas de factores ambientales. Normalmente hay tres respuestas dependiendo de cuánto se sabe del impacto específico. Se puede así estimar hasta qué punto se cuenta con información sobre los impactos: SÍ, NO y No Sabe. Por agregación de respuestas se puede tener una idea cualitativa de la importancia relativa de un cierto impacto, tanto negativo como positivo. El análisis ambiental de un proyecto consiste entonces en un procedimiento sistemático de preguntas y respuestas con la adición de información cuantitativa y cualitativa, si es necesario.
- 2.1.2.3 Redes. Las redes son una extensión de los diagramas de flujo a fin de incorporar impactos de largo plazo. Los componentes ambientales están generalmente interconectados, formando tramas o redes y a menudo se requiere de aproximaciones ecológicas para identificar impactos secundarios y terciarios. Las condiciones causantes de impacto en una red son establecidas a partir de listas de actividades del proyecto.

El desarrollo de una red requiere indicar los impactos que resultan de cada actividad del proyecto. Se utilizan, en orden jerárquico, los impactos primarios, los impactos secundarios y terciarios, y así sucesivamente hasta obtener las interacciones respectivas. Las redes son útiles como guías en el trabajo de evaluación de impactos ambientales para detectar impactos indirectos o secundarios; en proyectos complejos o con muchas componentes pueden ser muy importantes para identificar las interacciones mutuas. Además, proporcionan resúmenes útiles y concisos de los impactos globales de un proyecto. Su principal desventaja es que no proveen criterios para decidir si un impacto en particular es importante o no. Cuando la red es muy densa, se genera confusión y dificultad para interpretar la información.

- 2.1.2.4 Panel de expertos. Este método ad hoc no proporciona en principio ninguna guía formal para la realización de una evaluación de impacto ambiental. En realidad, es la sistematización de las consultas a un grupo de expertos familiarizados con un proyecto o con sus tópicos especializados. Estas metodologías dependen mucho del tipo de expertos disponibles y/o en general, permiten:
- Identificar una gama amplia de impactos más que definir parámetros específicos para aspectos a considerar en el futuro,
- Establecer medidas de mitigación,
- Disponer de procedimientos de seguimiento y control.

Su ventaja radica en la falta de formalidad y la facilidad para adaptar la evaluación a las circunstancias específicas de una acción. Aunque dependen de los antecedentes, de la experiencia y de la disponibilidad del equipo que lo lleva a cabo, son efectivamente rápidos y fáciles de conducir con poco esfuerzo. Además, requieren formar equipos particulares para cada tipo de proyecto y no dan ninguna seguridad de ser exhaustivos o comprensivos. Uno de los problemas principales para la representatividad del método es lograr un panel representativo de expertos en los temas analizados. Actualmente se trabaja en los llamados sistemas de expertos con bases computacionales para el procesamiento de la información y el apoyo a las decisiones. Son en realidad sistemas de interacción hombre-máquina que resuelven problemas en un dominio específico. Los sistemas de expertos están orientados a problemas y no a metodologías

2.1.2.5 Cartografía ambiental. Los métodos gráficos han estado permanentemente vigentes en diversas categorías de análisis ambiental, particularmente en su proyección espacial. El procedimiento más utilizado es la superposición de transparencias, donde diversos mapas que establecen impactos individuales sobre un territorio son sobrepuestos para obtener un impacto global. Cada mapa indica una característica física, social o cultural, que refleja un impacto ambiental específico. Los mapas pueden identificar, predecir y asignar un valor relativo a cada impacto. La superposición de mapas permite una comprensión del conjunto de impactos establecidos en forma independiente, relacionarlos con diversas características (como aspectos físico-territoriales y socioeconómicos de la población radicada en el área) y establecer de esta forma un impacto global. Para la elaboración de los mapas se utilizan elementos como fotografías aéreas, mapas topográficos, observaciones en terreno, opinión de expertos y de diferentes actores sociales, etc. Es relevante que los mapas tengan la misma escala entre sí y que, además, aporten un adecuado nivel de resolución para el tema en análisis. El procedimiento más utilizado es la superposición de transparencias.

En este campo se ha desarrollado una amplia gama de paquetes computacionales, los que han incrementado considerablemente su aplicabilidad y eficiencia, sobre todo en desarrollos lineales. También han sido aplicados profusamente como complemento de listados y matrices

Este método es especialmente útil cuando existen variaciones espaciales de los impactos, de las que no dan cuenta las matrices. Adquieren relevancia en el ámbito local, en particular cuando se trata de relacionar impactos ambientales localizados con indicadores de salud o características socioeconómicas espacialmente diferenciadas. Son singularmente útiles para la evaluación de rutas alternativas en desarrollos lineales como ductos, carreteras y líneas de transmisión. Sin embargo, su mayor limitación deriva precisamente de su ventaja, o sea que solamente considera algunos impactos limitados que puedan expresarse en coordenadas espaciales. Elementos como probabilidad, dinámica y reversibilidad están ausentes. La

definición de los límites o las fronteras de alcance de los impactos es normalmente poco clara y no se puede sobreponer una gran cantidad de variables.

2.1.2.6 Matrices de causa-efecto. El uso de matrices puede llevarse a cabo con una recolección moderada de datos técnicos y ecológicos, pero requiere en forma imprescindible de una cierta familiaridad con el área afectada por el proyecto y con la naturaleza de este. En el hecho, es fundamental un ejercicio de consulta a expertos, al personal involucrado, a las autoridades responsables de la protección ambiental – en sus dimensiones sanitaria, agrícola, recursos naturales, calidad ambiental – y al público involucrado. Todos pueden contribuir a una rápida identificación de los posibles impactos. Las matrices de causa-efecto consisten en un listado de acciones humanas y otro de indicadores de impacto ambiental, que se relacionan en un diagrama matricial. Son muy útiles cuando se trata de identificar el origen de ciertos impactos, pero tienen limitaciones para establecer interacciones, definir impactos secundarios o terciarios y realizar consideraciones temporales o espaciales

Se han desarrollado diversos tipos de matrices de interacción. En un principio constituyeron cuerpos estáticos que había que considerar en bloque, pero, con cada vez mayor frecuencia, se ha consolidado la práctica de adaptarlas a las necesidades de problemas particulares, a las características de ciertos medios, o a las posibilidades de los diferentes países para aplicarlas, especialmente cuando la información disponible es insuficiente.

2.1.2.7 Matriz de Leopold. Esta matriz fue desarrollada en los años 70 por el Dr. Luna Leopold y colaboradores, para ser aplicada en proyectos de construcción y es especialmente útil, por enfoque y contenido, para la evaluación preliminar de aquellos proyectos de los que se prevén grandes impactos ambientales. La matriz sirve sólo para identificar impactos y su origen, sin proporcionarles un valor. Permite, sin embargo, estimar la importancia y magnitud de los impactos con la ayuda de un grupo de expertos y de otros profesionales involucrados en el proyecto. En este sentido representan un avance respecto a las matrices de interacción simple

La Matriz de Leopold consiste en un listado de 100 acciones que pueden causar impactos ambientales y 88 características ambientales. Esta combinación produce una matriz con 8.800 casilleros. En cada casillero, a su vez, se distingue entre magnitud e importancia del impacto, en una escala que va de uno a diez. La magnitud del impacto hace referencia a su cantidad física; si es grande o pequeño dependerá del patrón de comparación, y puede tener el carácter de positivo o negativo, si es que el tipo de modificación identificada es deseado o no, respectivamente. La importancia, que sólo puede recibir valores positivos, queda dada por la ponderación que se le asigne y puede ser muy diferente de la magnitud. Si un contaminante, por ejemplo, degrada fuertemente un curso de agua en una región muy remota, sin fauna valiosa ni asentamientos humanos, la incidencia puede ser reducida. En otras palabras, significa una alta magnitud, pero baja importancia.

Al hacer las identificaciones debe tenerse presente que en esta matriz los impactos no son exclusivos o finales, y por ello hay que identificar impactos de primer grado de cada acción específica para no considerarlos dos o más veces. La forma de utilizar la matriz de Leopold puede resumirse en los siguientes pasos:

- Delimitar el área de influencia.
- Determinar las acciones que ejercerá el proyecto sobre el área.

- Determinar para cada acción, qué elemento(s) se afecta(n). Esto se logramediante el rayado correspondiente a la cuadrícula de interacción.
- Determinar la importancia de cada elemento en una escala de 1 a 10.
- Determinar la magnitud de cada acción sobre cada elemento, en una escala de1 a 10.
- Determinar si la magnitud es positiva o negativa.
- Determinar cuántas acciones del proyecto afectan al ambiente, desglosándolas en positivas y negativas
- Agregar los resultados para las acciones.
- Determinar cuántos elementos del ambiente son afectados por el proyecto,
 desglosándolos en positivos y negativos.
- Agregar los resultados para los elementos del ambiente

La metodología original propuesta por Leopold considera para cada una de las celdillas un número fraccionario en donde la magnitud es el numerador y la importancia el denominador. La agregación de resultados se resume en los denominados "promedios aritméticos", que resultan de dividir el numerador con el denominador (y así obtener un numero decimal) y adicionarlos algebraicamente a lo largo de la fila o columna analizada. El promedio aritmético final es el resultado de dividir el número obtenido para el total de celdillas de interacción (marcadas con la diagonal) en la respectiva fila o columna. Esta forma de agregación hace que "se pierda la sensación" de que se está sumando y restando y no permite tener una apreciación real de cuán representativa es una interacción respecto al total de relaciones establecidas de causalidad-efecto

En esta metodología, se utilizan dos tipos de matrices en etapas sucesivas de análisis:

 Matriz de identificación de impactos ambientales a partir de la relación entre las acciones del proyecto y los factores a ser evaluados. Estos factores se identifican previamente a partir de listas de chequeo o verificación, extractadas de la bibliografía y

- discutidas por todos los profesionales que conforman el grupo de trabajo. Pueden realizarse algunos ajustes para su adaptación en proyectos diferentes:
- Matriz de importancia como primera valoración cualitativa de los impactos ambientales identificados sobre los diversos factores ambientales. Esta matriz permite valorar tanto la agresividad de las acciones como los factores ambientales que sufrirán en mayor o menor grado las consecuencias de la actividad en cuestión. La escala que se utiliza para la valoración de la importancia de los impactos se basa en criterios que se explican en la tabla

La principal ventaja de esta metodología consiste en la consideración de los posibles impactos y su importancia y magnitud respecto a los distintos factores ambientales. Además, permite el desarrollo de una matriz para cada subconjunto en el que pueda dividirse el proyecto. Las desventajas son que el carácter subjetivo de la valoración hace que sea de muy difícil reproducibilidad por parte de distintos equipos de profesionales, y que no tiene en cuenta los efectos sinérgicos entre factores ni la temporalidad de los efectos. (Coria, 2008, p.131)

- 2.1.2.8 El Método de Battelle. Este método fue diseñado para evaluar el impacto de proyectos relacionados con recursos hídricos, aunque también se utiliza en evaluación de proyectos de otra índole. El método es un tipo de lista de verificación con escalas de ponderación que contempla la descripción de los factores ambientales, la ponderación valórica de cada aspecto y la asignación de unidades de importancia. El sistema tiene cuatro niveles:
- Nivel I: Información General (Categorías Ambientales)
- Nivel II: Información Intermedia (Componentes Ambientales)
- Nivel III: Información Específica (Parámetros ambientales)
- Nivel IV: Información Muy Especifica (Medidas Ambientales)

Las categorías representan grandes agrupaciones con dominios similares (ecología, contaminación ambiental, estética, interés para las personas). Los componentes están

contenidos en grupos de parámetros similares (agua, aire, suelo, etc.). Los parámetros representan unidades o aspectos significativos del ambiente (ruido, metales, etc.). Las medidas corresponden a los datos que son necesarios para estimar correctamente un parámetro. Las variables ambientales son organizadas en 4 categorías, 17 componentes y 78 parámetros ambientales para la evaluación de proyectos hídricos. La importancia relativa de cada variable se asigna a base de un juicio compartido del grupo de expertos con la información obtenida de los actores involucrados (empresa, comunidad, gobierno local, ONGs, etc.). Una vez obtenida la lista de variables que respondan a las exigencias que se acaban de detallar, el modelo de Battelle establece un sistema en el que ellas se lleguen a evaluar en unidades comparables, representando valores que, en lo posible, sean el resultado de mediciones reales. Para ello, el método se vale de las denominadas Unidades de Impacto Ambiental (UIA); el procedimiento de transformación de los datos obtenidos en estas unidades es el que sigue

- Paso 1: Transformar los datos en su correspondiente equivalencia de índice de calidad ambiental.
- Paso 2: Ponderar la importancia del parámetro considerado, según su significación relativa dentro del ambiente.
- Paso 3: Expresar a partir de 1 y 2 el impacto neto como resultado de multiplicar el índice de calidad por su peso de ponderación.

Para obtener valores de calidad comparables, al extremo óptimo se le asigna 1 (uno) y al pésimo 0 (cero), quedando comprendidos entre ambos los valores intermedios para definir los distintos estados de calidad posibles. Esta función, que relaciona el índice de calidad ambiental con cualquiera de los parámetros, puede ser lineal, con pendiente positiva o negativa, o de cualquier otro grado. Puede, además, ser distinta según el entorno físico y socioeconómico del proyecto. No obstante, el modelo de Battelle hace un muy detallado estudio de aplicación al contexto de los Estados Unidos de América, por lo que su utilización en otras situaciones tiene que ser cuidadosamente analizado. En este método se estima la calidad

ambiental esperada sin y con proyecto. La diferencia en unidades de impacto ambiental entre las dos condiciones puede resultar:

- Positiva, donde la calidad ambiental de la situación con proyecto supera la de la situación sin proyecto, y el impacto global es beneficioso.
- Negativa, donde la calidad ambiental de la situación con proyecto es menor a la de la situación sin proyecto y el impacto global es adverso.
- Cero, en cuyo caso no existe impacto agregado global.
 - Las **ventajas** más destacadas del método son:
- Los resultados son cuantitativos y pueden ser comparados indistintamente con otros proyectos sin importar su tipo o quiénes lo realizaron.
- Es un método sistematizado para la comparación de alternativas. Esta induce a la decisión, dado que se obtiene la cifra de alteración de calidad ambiental para cada alternativa
 - Las desventajas más notables, en cambio, pueden resumirse en los siguientes puntos:
- Los índices de calidad ambiental disponibles son los que fueron desarrollados en los Estados Unidos de América, para un medio en particular, por lo que, en rigor, no son válidos para medios distintos.
- El método fue desarrollado para proyectos hidráulicos, lo que significa que se tendría que adaptar cada vez que se trate de analizar un proyecto distinto.
- La lista de indicadores es limitada y arbitraria, sin tener en cuenta las relaciones entre componentes ambientales o las interacciones causa-efecto.

2.1.2.9 Método Galletta. Nació de la evaluación de carreteras y autopistas y se basa en el método de transparencias de Mc Harg. Se diseño en Umbria, Italia, y propone un modelo general de evaluación de impactos ambientales. Un programa de computador calcula la calidad ambiental inicial del medio y la calidad con proyecto, representando gráficamente los resultados.

Se consideran 14 factores ambientales que se ponderan de 0 a 100. Se divide el territorio en cuadriculas homogéneas formando una malla, y se valora en cada cuadricula, cada uno de los 14 factores con una puntuación de 1 a 5, obteniéndose la calidad del medio.

Posteriormente se calculan los impactos producidos por el proyecto y de esta forma se obtiene la calidad final con proyecto para cada cuadricula. Estos resultados se representan en mapas ambientales.

2.1.2.10 Método MEL-ENEL. Es un sistema racional degeneración, manejo y procesamiento de datos ambientales, aplicable como herramienta para la evaluación ambiental de proyectos en etapa de pre inversión o en operación, que garantiza al equipo interdisciplinario el conocimiento exhaustivo del proyecto y del medio ambiente interactuante, la identificación completa de sus impactos potenciales, una adecuada evaluación y priorización de acuerdo con su significancia ambiental y los criterios para definir el límite entre el nivel significativo y no significativo, para efectos de justificar cuáles impactos negativos requieren de medidas de control ambiental.

Sobre esta base, el equipo evaluador podrá proponer las medidas correctivas ambientales únicamente en aquellos que verdaderamente lo requieran, sin cargar costos financieros injustificados en el proyecto evaluado. El Método consta de seis etapas secuenciales, cada una de las cuales ha sido desglosada en una serie de pasos intermedios. A continuación, se presentan las etapas del método MEL-ENEL:

- I. Desglose de Acciones del Proyecto
- II. Desglose de Factores Ambientales

- III. Matriz de Identificación de Impactos
- IV. Categorización por Impactos Genéricos
- V. Evaluación de Impactos Genéricos
- VI. Priorización de Impactos por Significancia

2.1.2.11 Método de Criterios Relevantes Integrados. La metodología de los Criterios Relevantes Integrados (CRI) se aplica a proyectos específicos en los que participa un grupo multidisciplinario de profesionales en diversas áreas, las cuales son requeridas para la ejecución del estudio ambiental del proyecto (biólogo, sociólogo, arqueólogo, geólogo, ambiental, eléctrico, mecánico, entre otros).

La valoración de cada impacto ambiental, según la metodología de Criterios Relevantes Integrados, se realiza a través de la evaluación de la Intensidad, Extensión y Duración, Reversibilidad e Incidencia.

También se establece una escala de valores para las variables de Intensidad (I), Extensión (E), Duración (D), Reversibilidad (Re) e Incidencia (G) para la valoración de cada elemento, según los siguientes criterios:

Tabla 4Criterios para Valoración de Impactos

PARAMETRO	CRITERIO		VALOR
	Se refiere al grado con el que un impacto altera a un	Alto	7-9
	determinado elemento del ambiente, por tanto, está en	N.4. II	4.0
Intensidad de	relación con la fragilidad y sensibilidad de dicho elemento,	Medio	4-6
impacto (I)	puede ser alto, medio o bajo. El valor numérico de la		
	intensidad varía dependiendo del grado del cambio sufrido.	Bajo	1-3
	Esta calificación de carácter subjetivo estable la predicción del	Бајо	1 0
	cambio neto entre las condiciones, con y sin la acción		

PARAMETRO	CRITERIO	ESCALA	VALOR	
Extensión o	Determina el área geográfica de influencia teórica que será	Regional	10	
influencia	afectada por un impacto en relación con el entorno del	Local	5	
espacial (E)	proyecto en que se manifiesta, pudiendo esta ser puntual, local, regional	Puntual	2	
	Se refiere al tiempo que supuestamente permanecería el	(>10años)	10	
	efecto, desde su aparición, y a partir del cual el factor	Largo	10	
Duración (D)	afectado retornaría a las condiciones iniciales, previo a la	(5-10 años)	5	
Duración (D)	acción de medios naturales o mediante la introducción de	Mediano	5	
	medidas correctoras. La duración es independiente de la	(0-5 años)	2	
	reversibilidad	Corto	۷	

Fuente: Metodología de Criterios Relevantes Integrados, CRI (Buroz, 1994)

Magnitud del Impacto Ambiental

La Magnitud del Impacto que es el efecto de la acción, como resultado de la sumatoria acumulada de los valores obtenidos de las variables de intensidad (I), extensión (E) y duración (D), donde cada variable se multiplica por el valor de peso asignado. Esto se indica en la siguiente formula:

$$Ma = (I \times WI) + (E \times WE) + (D \times WD)$$

Dónde:

Ma: Valor calculado de la magnitud del impacto ambiental

I: Valor del criterio de intensidad del impacto

• **WI:** Peso del criterio de intensidad

D: Valor del criterio de duración del impacto

WD: Peso del criterio de duración del impacto

• E: Valor del criterio de extensión del impacto

• **WE:** Peso del criterio de extensión

76

Las ponderaciones para el cálculo de la magnitud se estimaron mediante el criterio de

representatividad de cada variable (I, E, D). Para el presente caso se propuso los siguientes

valores para los pesos o factores de ponderación:

• Peso del criterio de intensidad (WI): 0.40

• Peso del criterio de extensión (WE): 0.40

• Peso del criterio de duración (WD): 0.20

Se debe cumplir que: WI+WE +WD = 1

Valor del Índice Ambiental (VIA)

El valor del índice ambiental está dado en función de las características del impacto y se calcula mediante los valores de reversibilidad, incidencia y magnitud; los mismos que contienen valores exponenciales, que son valores de peso:

Fórmula de Valor de Índice Ambiental: $VIA = (R_i^{XR} \times G_i^{XG} \times M_i^{XM})$

Valores de peso:

• **XM:** Peso del criterio de magnitud = 0,61

XR: Peso del criterio de reversibilidad = 0,22

• **XG:** Peso del criterio de incidencia = 0,17

R: Reversibilidad

G: Incidencia

M: Magnitud

Tabla 5

Criterios para Valoración de Impactos

PARÁMETR	CRITERIO	ESCALA	VALOR
		Irreversible: Baja o irrecuperable	10
		Irreversible: El impacto puede ser	
	Es la posibilidad de reconstrucción del	recuperable a muy largo plazo (>30	9
Reversibilida	factor afectado, es decir, la posibilidad	años) y a elevados costos	
	de retornar a las condiciones iniciales	Parcialmente reversible: Media	
(R)	previas a la intervención humana, una	(Impacto reversible a largo y	5
	vez que aquella acción deja de actuar	mediano plazo)	
		Reversible: Alta (Impacto reversible	0
		de forma inmediata o a corto plazo)	2
	Es la posibilidad real o potencial de	Alto	10
	que una determinada actividad	,	. •
	produzca un impacto sobre un factor	Medio	5
	ambiental. Se considera como Alto		
	cuando existe la certeza de que un		
Incidencia (G	i)impacto se produzca y sea real, Medio		
	es la condición intermedia de duda de	Deia	0
	que se produzca o no un impacto y,	Bajo	2
	Bajo si no existe la certeza de que un		
	impacto se produzca y por lo tanto es		
	potencial		

Fuente: Metodología de Criterios Relevantes Integrados, CRI (Buroz, 1994)

Los VIA pueden tomar valores de 0 a 10, en donde un valor de 0 significa que el impacto sobre la variable es nulo o inexistente, mientras que un valor cercano a 10 indica que el impacto es altamente probable. Su efecto, ya sea positivo o negativo, dependerá del signo que presente ese índice. En la Tabla 6, se presenta la escala de valores del valor de impacto ambiental.

 Tabla 6

 Escala de probabilidad de ocurrencia del impacto ambiental

Probabilidad	Valor de VIA	Significado	
de ocurrencia		Significado	
Muy alto	VIA>8.1	Probabilidad de ocurrencia muy alta, con	
ividy alto	VIA-20.1	cambios permanentes e irreversibles.	
		Probabilidad de ocurrencia alta, generan	
Alto	6.1 <via≤8.0< td=""><td>efectos graves, negativos con</td></via≤8.0<>	efectos graves, negativos con	
		consecuencias de largo plazo	
		Probabilidad de ocurrencia moderada, el	
Medio	4.1 <via≤6.0< td=""><td>impacto es mínimo, pero en combinación</td></via≤6.0<>	impacto es mínimo, pero en combinación	
		con otros impactos aumenta.	
		Probabilidad de ocurrencia baja o media, el	
Bajo	2.1 <via<4.0 i<="" td=""><td>mpacto es aceptable donde la mitigación es</td></via<4.0>	mpacto es aceptable donde la mitigación es	
		deseable pero no esencial	
Muy Bajo	VIA≤2.0	Probabilidad de ocurrencia muy baja.	

Adaptado: Gamero, E. (2016) "Unidad 3, Método VIA-EIA115"

Severidad del Impacto Ambiental

La severidad (S) de cada impacto es directamente proporcional a la multiplicación de la Magnitud por el Valor de Índice Ambiental (VIA) de cada impacto, conforme la siguiente fórmula:

$$S = M \times VIA$$

Para jerarquizar los impactos se ha definido una escala de valores, Tabla 7, la cual nos indica el nivel de la severidad.

Tabla 7

Escala de valores de severidad del impacto

Severidad del impacto	Escala
Leve	0-5
Moderado	6-15
Severo	16-39
Critico	40-100
Representativo	0-100

Dónde:

- Impacto Leve: La carencia del impacto, o la recuperación inmediata tras el cese de la acción. No se necesita aplicar prácticas mitigadoras.
- Impacto Moderado: La recuperación de las condiciones iniciales requiere cierto tiempo.
 Se precisan prácticas de mitigación simples.
- Impacto Severo: La magnitud del impacto exige, para la recuperación de las condiciones, la adecuación de prácticas específicas de mitigación. La recuperación necesita un período de tiempo dilatado.
- Impacto Crítico: La magnitud del impacto es superior al umbral aceptable. Se produce una pérdida permanente de la calidad de las condiciones ambientales sin posibilidad de su recuperación, incluso con la adopción de prácticas de mitigación.
- Impacto Representativo: Se refiere a los impactos con carácter positivo que traen beneficios ambientales, sociales, económicos, técnicos.

CAPITULO III CARACTERIZACIÓN DE LA ZONA DE ESTUDIO

3.1 Aspectos generales de la Facultad Multidisciplinaria Oriental

3.1.1 Antecedentes.

El 17 de junio de 1966, en sesión 304, el Consejo Superior Universitario fundó el Centro Universitario de Oriente (C.U.O) en la Ciudad de San Miguel, como una extensión de los estudios universitarios de la Universidad de El Salvador hacia el oriente del país. En abril de 1967 se adquirió un terreno de 108 manzanas por gestiones del doctor Ángel Góchez Marín, en el Cantón el Jute Km 144½ salida al Cuco, donde se pretendía construir el campus universitario. Las actividades académicas se iniciaron el 17 de mayo de 1969, 128 años después de la fundación de la Universidad de El Salvador en 1841, comenzando sus actividades académicas en dos locales alquilados en el centro de la ciudad iniciando con 91 alumnos, el número de docentes con que inicio el centro universitario no se pudo establecer por no existir registros. El primer director fue el Dr. José Enrique Vinnatea; y las actividades académicas se iniciaron a través de tres departamentos que impartirían servicios de áreas comunes, los departamentos eran:

- Departamentos de Física y Matemática.
- Departamento de Ciencias Biológicas y Químicas.
- Departamento de Ciencias Sociales, Filosofía y Letras.

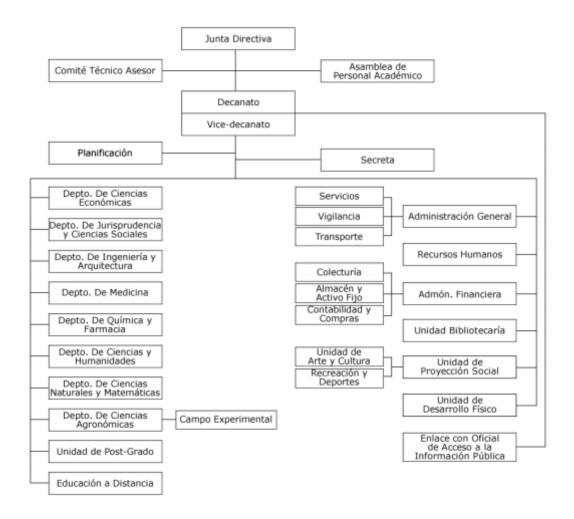
Fue hasta el año de 1984 que dicho Centro se trasladó al terreno antes mencionado; cuando contaba con infraestructura adecuada, personal idóneo y docentes con capacidad profesional. En 1988 el Consejo Superior Universitario aprobó el Reglamento de Gobierno de los Centros Regionales, el cual establece una nueva cultura académica administrativa que permitiría ampliar su capacidad de servicio; creándose los departamentos homólogos o las facultades, exceptuándose odontología y permitiéndole crecer de manera espontánea las diferentes carreras que hoy se tienen. El Centro Universitario de Oriente se denominó "Facultad Multidisciplinaria Oriental ", el 4 de Junio de 1992 según acuerdo 39-91-95-Lx del Consejo Superior Universitario, con todas las atribuciones y deberes del resto de facultades. La Facultad Multidisciplinaria

Oriental (FMO) es una unidad regional de la Universidad de El Salvador creada para extender los servicios de los docentes de investigación y extensión universitaria en la zona oriental.

Dicha Facultad está organizada académicamente en los siguientes departamentos:

- Departamento de Medicina.
- Departamento de Ciencias Agronómicas.
- Departamento de Ciencias Jurídicas.
- Departamento de Ciencias Económicas.
- Departamento de Química y Farmacia.
- Departamento de Ciencias Naturales y Matemática.
- Departamento de Ciencias y Humanidades.
- Departamento de Ingeniería y Arquitectura.

Además de los departamentos de la facultad cuenta con las siguiente Unidades


Administrativas:

- Administración General.
- Administración Financiera.
- Administración Académica.
- Unidad de Proyección Social.
- Unidad de Planificación.
- Unidad Bibliotecaria

Los Órganos Directrices de esta facultad son:

- 1. Órganos de gobierno: Junta Directiva y Decano.
- 2. Funcionarios ejecutivos: El Vicedecano.
- Organismos Asesores: La Asamblea del Personal Académico, el comité técnico asesor
 y los contemplados en el reglamento de cada Facultad.
- 4. Funcionarios Auxiliares: Secretario de la Facultad.

Figura 14
Organigrama estructural de la FMO-UES (Actualizado Marzo/2016).

Fuente: Decanato, Facultad Multidisciplinaria Oriental

3.1.2 Infraestructura.

La F.M.O está organizada en cuanto a su infraestructura, de tal manera que se pueden identificar básicamente el área Administrativa, Académica, módulo de aulas y el campo experimental

Comprende edificios de un nivel, dentro de los que podemos encontrar:

- Módulos de aulas.
- Servicios sanitarios.

- Auditórium.
- Edificios de administración académica.
- Laboratorios experimentales de química, física y biología.
- Cafetines.
- Fotocopiadoras.
- La librería universitaria,
- ACOPUS de R.L. etc.

Cuenta, además, con edificios de dos niveles donde se encuentran:

- Las oficinas del Decanato,
- Proyección Social,
- Planificación Laboratorios de cómputo
- Sala de Internet,
- Sala de reuniones
- Oficinas de los servicios de la facultad
- Edificio de Medicina.
- Edificio conocido como el riñón (por la forma orgánica que posee),
- Edificio de aulas de ingeniería

También la Facultad cuentan con cuatro zonas de parqueo (parque general para estudiantes que se encuentra en el lado poniente costado sur de la facultad) para el parqueo de los administrativos se encuentra costado norte del edificio del departamento de ciencias y humanidades y el parqueo del Departamento de Medicina que esta al poniente del edificio de Biblioteca y el parqueo de Agronomía que esta al costado sur del departamento.

Cuenta con cancha de fútbol al costado sur del dpto. de Agronomía y una en el sector poniente de los campos de Agronomía. También existe una cancha de baloncesto al costado norte del edificio de la biblioteca.

En el sector de agronomía, con su campus experimental ocupa la mayor parte del terreno de la FMO, cuenta con:

- Campo experimental.
- Los establos.
- Porquerizas.
- Lecherías.
- Invernadero.
- Área agrícola.
- Viveros. Aulas,
- Área administrativa (dpto. de agronomía)

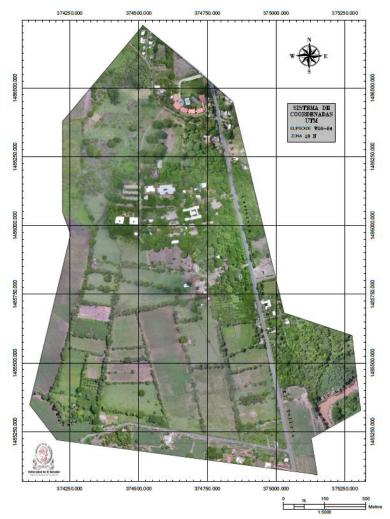
A través de los años la Facultad se ha expandido construyendo nuevos edificios de forma desordenada y dispersa debido a la falta de planes para ordenar el desarrollo físico dentro de las instalaciones.

UNIDAD AMBIENTAL DE LA FMO

La creación de la Unidad Ambiental de la Universidad de El Salvador se fundamenta en el Art. 117 de la Constitución de la República; y Art. 6 de la Ley de Medio Ambiente que ordena la creación del Sistema Nacional de Gestión de Medio Ambiente (SINAMA), el cual está integrado por el Ministerio de Medio Ambiente y Recursos Naturales (MARN), como Coordinador; Las Unidades Ambientales de los Ministerios, las instituciones Autónomas y Municipales, es un imperativo de la Ley crearlas, organizarlas con personal propio y financiarlas con el presupuesto de las unidades primarias de cada institución, para promover la gestión ambiental y la protección de los recursos naturales;

Misión. Promover la participación del personal académico, científico, técnico y administrativo multidisciplinario de la Universidad de El Salvador, para contribuir a elaborar y ejecutar los planes, programas y proyectos relacionados con la protección y manejo de los

recursos naturales, el medio ambiente, prevención de riesgos, adaptación al cambio climático, e inclusión social.

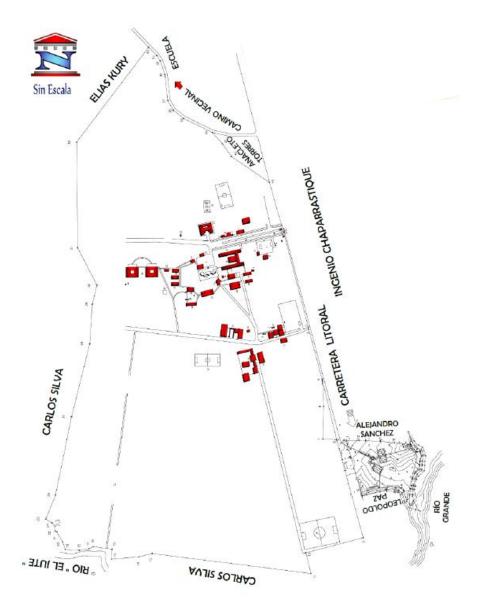

Visión. Ser reconocida como una Unidad de la Universidad de El Salvador, que vela por el cumplimiento de la Política, Ley y Reglamento sobre el Medio Ambiente, impulsando actividades educativas de protección y recuperación ambiental.

3.1.3 Ubicación geográfica y Área de Influencia

El Terreno de La Facultad Multidisciplinaria Oriental, se encuentra ubicado en el Cantón El Jute, municipio de San Miguel sobre la carretera Litoral a la altura del kilómetro 144 y a 6.5 km. Al sur oriente de la Ciudad de San Miguel, ubicada en una zona semiurbana; El terreno está dividido en dos partes, la mayor extensión de 106 manzanas y la menor ubicada al costado oriente de la carretera con una extensión de 2 manzanas. Haciendo un total de 108 manzanas, donde se distribuye su actual infraestructura parte de ella utilizada para actividades agropecuarias (Campo Experimental), que corresponde a un 70% del total del área y 30% para actividades académicas y administrativas.

Figura 15

Mapa de ubicación geográfica y área de influencia de FMO


Fuente: Aplicación de fotogrametría aérea en levantamientos topográficos mediante el uso de vehículos aéreos no tripulados

3.1.4 Colindantes

Al norte colinda con la propiedad de Anacleto Torres y un camino vecinal, al norponiente con la propiedad de Elías Kury. Hacia el poniente y el sur colinda con el terreno de Carlos Silva y el Puente El Jute. Y en el lado oriente con la carretera El Delirio.

Figura 16

Mapa de colindantes de FMO

Fuente: "Proyecto: edificio de control de operaciones para emergencia, salud y medio ambiente, gestión de riesgos, seguridad y salud ocupacional en la UES-FMO"

3.1.5 Servicios Básicos

3.1.5.1 Abastecimiento de Agua. La Facultad se abastece por medio de un pozo industrial de 60 m de profundidad a través de una bomba sumergible de 5hp. Esta bombea el agua a una cisterna ubicada a 200 m Este de la caseta de bombeo. Ver ANEXO 1.

Figura 17

Pozo industrial de la FMO

Esta cisterna tiene una capacidad de 100 m³ de capacidad ubicada al frente del departamento de Ingeniería y Arquitectura. La cisterna recibe como tratamiento potabilizador una pastilla de cloro cada 2 días.

A partir de la caseta de distribución, Figura 18, deriva en dos ramales de tuberías de 2". El ramal más antiguo alimenta la biblioteca, los chorros de la biblioteca, los cafetines, las aulas de posgrado, los chorros de las aulas de economía, y cambia a una tubería de ¾" para alimentar a los chorros ubicados al costado de la cancha y la zona noroeste de los terrenos de la facultad (estos chorros están rotos y no se pueden ubicar por la maleza).

Figura 18

Cisterna y estación de bombeo de agua

El segundo ramal se conecta a un punto de control que alimenta el edificio Minerva, la librería, el laboratorio, el laboratorio de suelos, los chorros ubicados en la sección de Física y Matemática del departamento de Ciencias Naturales y Matemática.

Tiene una derivación que alimenta a los edificios de Medicina, el cafetín detrás de los edificios de Medicina, el Centro de Desarrollo Infantil (CDI) y a los chorros ubicados en el parqueo frente de los edificios de Medicina.

Enfrente del edificio el riñón hay una válvula de control, Figura 19, donde el ramal se divide en tres salidas dos tuberías de 2" y una tubería de 1". De la tubería de 2" que se desvía a la derecha del punto de control se abastece el edificio el riñón, los laboratorios de biología, los baños de biología y los chorros del taller de mantenimiento, los chorros de las aulas de ingeniería y los chorros de las aulas de educación. De la tubería de 2" que gira a la izquierda de la válvula de control abastece a los baños del auditorio, los chorros al costado del auditorio y al tanque de almacenamiento del campo de agronomía. La tubería de 1" abastece todos los chorros de la entrada principal, el laboratorio de Química, los chorros del departamento de Ciencias Jurídicas y académica.

Figura 19
Válvula de control

En el campus del departamento de Ciencias Agronómicas, el tanque de almacenamiento es abastecido por la tubería de 2" y por el pozo de agronomía, Figura 20. El tanque y el pozo abastecen a los bebederos de agua para las vacas, al invernadero hidropónico, a los estanques de tilapias, a los baños, chorros del departamento de Ingeniería Agronómica y el riego de cultivos.

Figura 20
Pozo de Agronomía.

3.1.5.2Tratamiento de aguas residuales. Determinar la cantidad de agua residual que se genera a diario en la facultad mediante la metodología propuesta en la norma técnica de ANDA resultaría en un dato poco preciso debido a la permanencia y afluencia de la población que tiene picos en ciertos horarios pero que en la mayoría del tiempo no alcanza a ocupar su máxima capacidad posible en términos del espacio disponible.

La demanda de agua de los edificios depende de la clase y cantidad de accesorios debido a que se alimentan con gastos distintos, así como de la probabilidad de su operación simultánea. El tiempo de operación de los muebles es intermitente y es pequeño en comparación con el tiempo en que no están operando. Por lo que el gasto es mucho menor al gasto máximo potencial.

Como se puede observar, el caudal máximo probable, ver ANEXO 5 y el caudal máximo medido son similares, exceptuando en la biblioteca debido a la cantidad de muebles sanitarios comparado a la cantidad que se usa.

Tabla 8

Comparación de caudal máximo probable y caudal máximo medido

Unidad de análisis	Q _{MAX}	QMAX REAL 3	
Official de affailsis	(L/s)	≪ MAX REAL	
Edificio El Riñon	0.43586	N/A	
Edificio de Medicina 1	0.4	N/A	
Edificio de Medicina 2	0.5795	N/A	
Edificio de la biblioteca	0.7147	0.1228	
Baños del Pabellon de	0.61074	0.619	
aulas	0.01074	0.019	
Sector de agronomía	0.3024	N/A	
Sector de biología	0.2	0.0171	
Sector de química	0.23096	0.0271	

³ Fuente: Propuesta para el tratamiento de las aguas residuales de la Facultad Multidisciplinaria Oriental de la Universidad de El Salvador. (2009).

Unidad de análisis	Q _{MAX}	^	
Unidad de analisis	(L/s)	Q _{MAX} REAL	
Edificio Minerva	0.5795	N/A	
Aulas de posgrado	0.34749	N/A	
Cafetines al costado del	0.23096	0.1323	
auditorio			
Cafetín de medicina	0.1768	N/A	

A continuación, se describen las zonas de la FMO que poseen un sistema de tratamiento de aguas residuales. Ver ANEXO 2.

Edificio de la Biblioteca

Este sistema está constituido por una fosa séptica y un filtro biológico, la cual se ubica al Oriente del edificio de la biblioteca y sus dimensiones son (2.35 x 7.2) m. Esta recibe las aguas residuales del edificio de la Biblioteca, se observa que tapadera esta destruida en uno de los costados lo que ocasiona que se infiltre agua en época lluviosa. Esta posee una tubería de rebose que conecta con un punto de control para descargar en el filtro biológico.

Fosa séptica del edificio de la Biblioteca

Figura 22

Tubería de rebose de la fosa séptica de la biblioteca

En la Tabla 9 se observa que el efluente del filtro biológico no cumple con el límite máximo permisible por la norma NSO 13.49.01:09. También se observa que tienen una baja eficiencia en la remoción de DBO Y DQO.

 Tabla 9

 Comparación del efluente antes y después de pasar por el filtro biológico

Parámetros de	Resultados	Resultados	Límite
laboratorio	Entrada del	Salida del	máximo
	biofiltro	biofiltro	permisible
DQO Total	399 mg/L	264 mg/L	150 mg/L
DBO Total	275 mg/L	185 mg/L	60 mg/L
Solidos sedimentables	0.2 mL/L	<0.2 mL/L	1 mL/L
Solidos suspendidos	72 mg/L	8 mg/L	60 mg/L
totales	J	Ü	Ü

Fuente: Propuesta para el tratamiento de las aguas residuales de la Facultad Multidisciplinaria

Oriental de la Universidad de El Salvador

El Cafetín "Las Margaritas" y Cafetín amarillo

Las aguas producidas en las actividades propias de los cafetines son conducidas por medio de una tubería de PVC y se realiza su disposición final en pozo de absorción ubicado al costado Norte de los cafetines y al costado Poniente del área de estudio de Ciencias Económicas. Posee un punto de control como se observa en la Figura 23, que comparte con la fosa séptica de la biblioteca, por lo que se combinan los efluentes los cuales se descargan en pozo de absorción. Se observa en la Figura 22, la tapadera destruida y posee residuos en el interior del punto de control que obstruyen la descarga del efluente en la tubería hacia el filtro biológico.

Figura 23

Punto de control de aguas residuales

Solo un cafetín posee trampa de grasa la cual consiste en una cesta de freidora oxidada y destruida envuelta de una red fina que evita que se escape cualquier residuo solido (ver Figura 24) y no posee las dimensiones para el tiempo de retención necesario para que se solidifique las grasas.

En un análisis de aceites y grasas del agua residual de los cafetines dio el resultado de 282.5 mg/L⁴.

Figura 24

Trampa de grasa

Sanitarios del Pabellón de aulas

Estos sanitarios por su ubicación presentan una alta concentración de la población estudiantil, por lo que son las instalaciones de mayor producción de aguas residuales. Estas aguas son conducidas hasta una fosa ubicada al costado Sur del parqueo que se encuentra en la entrada principal de la facultad.

Tabla 10Resultados de muestra de efluente de los sanitarios ubicados al Norte y al Sur del Auditorio

Parámetros de	Decultadas	Límite máximo permisible	
laboratorio	Resultados		
DQO Total	906.67 mg/L	150 mg/L	
DBO Total	455 mg/L	60 mg/L	
Solidos sedimentables	7.0 mL/L	1 mL/L	

⁴ Fuente: Propuesta para el tratamiento de las aguas residuales de la Facultad Multidisciplinaria Oriental de la Universidad de El Salvador

Parámetros de	Decultodes	l ímite mávime neumicible	
laboratorio	Resultados	Límite máximo permisible	
Solidos suspendidos	200 m m/l	60 mg/L	
totales	290 mg/L		
Aceites y grasa	85.0 mg/L	20 mg/L	
pН	8.42	5.5-9.0	
Turbidez	400 E NITU	No aumentar en 5 NTU del cuerpo	
	189.5 NTU	receptor	
Color	1890 Pt-Co	No incrementar el color visible del	
	1090 Pt-C0	cuerpo receptor	
Coliformes totales	1.3 (E+7) NMP/100 mL	10000 NMP/100 mL	
Coliformes fecales	1.3(E+7) NMP/100 mL	2000 NMP/100 mL	

Fuente: Diseño del sistema de conducción de aguas residuales, propuesta para su depuración, y ensayos de viabilidad en discontinuo para codigestión de estiércol bovino con aguas residuales en la Universidad de El Salvador - Facultad Multidisciplinaria Oriental, Febrero 2014

Laboratorios de Química

En esta zona se cuenta con fosa séptica ubicada al costado Sur de los laboratorios de química, en donde se depositan las aguas producidas por las prácticas de laboratorio y los baños que tiene en sus instalaciones.

Fosa séptica del Laboratorio de Química

El edificio "El Riñón", los laboratorios de Biología y baños de Biología

Esta zona cuenta con una fosa séptica ubicada al costado de las aulas de Ingeniería y Arquitectura donde son depositadas las aguas producidas por el edificio El Riñón, laboratorios de biología y los baños de biología.

Tabla 11

Resultados de muestra de efluente de la sección de biología

Parámetros de	Resultados	Limite máximo permisible
laboratorio		
DQO Total	262.33 mg/L	150 mg/L
DBO Total	>48.75 mg/L	60 mg/L
Solidos sediméntales	0.4 mL/L	1 mL/L
Solidos suspendidos totales	30 mg/L	60 mg/L
Aceites y grasa	91.0 mg/L	20 mg/L
рН	7.86	5.5-9.0
Turbidez	84.75 NTU	No aumentar en 5 NTU del cuerpo
		receptor
Color	785 Pt-Co	No incrementar el color visible del cuerpo
30101	7001100	receptor
Coliformes totales	3.5(E+7) NMP/100 mL	10000 NMP/100 mL
Coliformes fecales	3.5(E+7) NMP/100 mL	2000 NMP/100 mL

Fuente: Diseño del sistema de conducción de aguas residuales, propuesta para su depuración, y ensayos de viabilidad en discontinuo para codigestión de estiércol bovino con aguas residuales en la Universidad de El Salvador - Facultad Multidisciplinaria Oriental, Febrero 2014

Anteriormente se usaba una fosa séptica enfrente de los laboratorios de biología, pero este colapso y fue clausurada como se muestra en la Figura 26.

Figura 26
Fosa séptica clausurada.

Existe una fosa séptica que no funciona, Figura 27, y la usan en la actualidad como punto de paso de las aguas provenientes de la sección de biología y del edificio el riñón. Figura 28.

Figura 27
Fosa séptica en uso

Figura 28

Fosa séptica clausurada usada como paso de las aguas residuales

Cafetín "Candy" ubicado al costado Sur del edificio I de Medicina

El cafetín cuenta con una trampa grasas y un pozo de absorción, ambos ubicados al costado Poniente de los cafetines y al costado Sur del edifico I de Medicina.

Figura 29

Pozo de absorción del cafetín "Candy"

Edificios del departamento de Medicina

Las aguas negras y las aguas producidas en los laboratorios del departamento de Medicina son conducidas hasta un sistema de fosa y filtro biológico que se encuentra al costado Sur del edificio II de medicina. Además, recibe los efluentes tratados del edificio

Minerva, librería y laboratorio. Las aguas residuales tratadas se descargan en una quebrada seca, Figura 9. Esta quebrada en época lluviosa por escorrentía conduce las aguas hasta el río El Jute.

Esta fosa recibe las aguas residuales del departamento de medicina, el edificio de ingeniería y la librería.

Figura 30
Filtro biológico de los edificios de medicina

 Tabla 12

 Resultado de muestra de efluente de los edificios de Medicina

Parámetros de	Decultodes	Límite máximo permisible	
laboratorio	Resultados		
DQO Total	180.27 mg/L	150 mg/L	
DBO Total	>22.5 mg/L	60 mg/L	
Solidos sediméntales	2.5 mL/L	1	
Solidos suspendidos totales	76 mg/L	60 mg/L	
Aceites y grasa	49.0 mg/L	20 mg/L	
рН	8.29	5.5-9.0	
Turbidez	10.25 NTU	No aumentar en 5 NTU del cuerpo receptor	

Parámetros de laboratorio	Resultados	Límite máximo permisible	
Color	139 Pt-Co	No incrementar el color visible del cuerpo	
Coloi	13311-00	receptor	
Coliformes totales	1.1(E+7) NMP/100 mL	10000 NMP/100 mL	
Coliformes fecales	3.43(E+5) NMP/100 mL	2000 NMP/100 mL	

Fuente: Diseño del sistema de conducción de aguas residuales, propuesta para su depuración, y ensayos de viabilidad en discontinuo para codigestión de estiércol bovino con aguas residuales en la Universidad de El Salvador - Facultad Multidisciplinaria Oriental, Febrero 2014

Sanitarios del departamento de Ciencias Agronómicas

Este sistema está constituido por una fosa séptica que se ubica al costado Norte de las aulas del departamento de Ciencias Agronómicas, en la cual se almacenan los sólidos y posteriormente el agua es dispuesta superficialmente al costado Oriente de la fosa, en el campo experimental del mismo departamento.

Edificios de aulas de posgrado

Esta fosa séptica posee un biofiltro y punto de rebose que están cubiertos por la vegetación de los alrededores, está ubicada a un lado de los edificios de posgrado enfrente del parqueo de Medicina.

Fosa séptica de aulas de posgrado

Edificios de aulas de ingeniería

Esta fosa séptica posee un filtro biológico que recibe las aguas negras del edificio Minerva, la librería y el laboratorio. Está en buen estado debido a que su construcción es reciente (año 2019). El efluente resultante es desviado hacia el punto de descarga de Medicina.

Figura 32

Fosa séptica del edificio de aulas de ingeniería

3.1.5.3 Drenaje de aguas Iluvias. Existe un sistema de drenaje pluvial sobre la calle del acceso principal que cuenta con caja tragantes (ver Figura 33). El sistema recibe el drenaje del edificio de la Biblioteca y las zonas aledañas al auditorio "Miguel Ángel Parada".

Figura 33

Tragante de aguas lluvias

Figura 34

Pozo de visita de aguas lluvia

El resto de los edificios se desalojan por medio de cunetas que descargan directamente hacia el terreno. Por lo que, las aguas corren superficialmente siguiendo las escorrentías naturales del terreno hasta consumirse en el mismo. Como se puede observar en la Figura 35, los aguas lluvias producidas son conducidas por las cunetas hacia un punto de descarga sobre el terreno.

Figura 35

Cunetas ubicadas frente de los edificios de medicina

3.1.5.4 Energía eléctrica. La energía eléctrica consumida en el campus es distribuida por la compañía de energía eléctrica EEO, que actualmente provee el servicio eléctrico por una única acometida de 13.2Kv, con medición primaria y medidor #30056331.

El sistema de instalaciones eléctrica que tiene la Facultad cuenta con dieciséis subestaciones (ver Tabla 13) las cuales son obsoletas en algunos puntos. La universidad cuenta con una gama de tipos de luminarias como lo son postes de luz de mercurio, postes con transformadores, postes de red telefónicas, lámparas de luz tenue o difusa en pantallas de policarbonato.

Tabla 13

Consumo de energía eléctrica de FMO

EDIFICIOS	Subestación actual kva 1φ ⁵	Kw	kWh
Auditorio y pabellones aledaños	75	75	750
Fotocopiadora, edificios administrativos y aulas de Química	50	50	500
y Farmacia	50	30	300
Riñón	100	100	1000
Aulas de matemática y biología	50	50	500
Medicina 1	100	100	1000
Edificio de ingeniería	100	100	1000
Bomba de agua y otros	25	25	250
Medicina 2	167	167	1670
Cafetín de medicina	25	25	250
Parqueo de medicina y edificio de jefatura de ingeniería	25	25	250
Jefatura de ciencias básicas y aulas aledañas	50	50	500
Edificio de aulas y oficinas	75	60	600
Biblioteca	300	240	2400
Cafetines y Aulas de economía	37.5	37.5	375

⁵ Resumen de perfiles de carga de los transformadores de la Facultad Multidisciplinaria Oriental de la Universidad de El Salvador

_

EDIFICIOS		Subestación actual kva 1φ	Kw	kWh
Agronomía		35	28	280
	TOTAL			11325

Fuente: Diseño fotovoltaico y distribución eléctrica subterránea de la Facultad Multidisciplinaria Oriental de la Universidad de El Salvador

3.1.5.5 Sistema vial. Entre los sistemas viales presentes en las instalaciones de la Facultad tenemos los siguientes:

Accesos Principales. El primer acceso de la FMO (es por la carretera el Litoral, ver Figura 36) entrada que nos lleva al parqueo y a todos los edificios.

Figura 36

Calle El Delirio- San Miguel

La segunda entrada nos lleva al Departamento de Ciencias Agronómicas y el campo experimental de agronomía.

Figura 37

Entrada hacia Agronomía

Acceso vehicular. La calle interna de la facultad se accede desde el acceso principal el cual conecta los estacionamientos y otras áreas; se encuentra adoquinada y en un bueno estado.

Figura 38

Calle Principal

Accesos peatonales. Entro los accesos peatonales internos de la Facultad tenemos:

El acceso en el área de agronomía comunicando además con otras zonas de la F.M.O, cuyo material en los primeros metros al acceso del área de agronomía en estado mejorado y

luego de tierra y se encuentra en un estado regular presentando problemas sobre todo en la temporada invernal.

Figura 39

Camino de Agronomía hacia aulas de Ingeniería

El acceso peatonal a los departamentos se hace por las sendas internas, las cuales comunican a todos los departamentos y otras áreas.

3.1.5.6 Transporte público. Existen dos paradas de buses, las cuales están ubicadas frente al acceso principal de la Facultad, sobre la Carretera al Litoral.

Rutas de Buses Urbanos.

 La ruta 90F, se hace su recorrido desde la colonia Chaparrastique, cruzando por el centro de la ciudad hasta llegar aproximadamente 2 km. Después de la FMO.

Rutas de Buses interurbanos.

- La ruta 373, que hace su recorrido de San Miguel hacia Usulután y viceversa.
- La ruta 101, hace su recorrido de San Miguel hacia San Salvador, por la carretera del Litoral.
- La ruta 320 que hace su recorrido de San Miguel hasta el CUCO y viceversa.

3.1.5.7 Manejo y disposición final de desechos sólidos comunes. La Facultad cuenta con recipientes en los cuales se puede depositar los residuos sólidos que se generan. En las aulas son los espacios en donde normalmente más residuos sólidos se encuentran, debido a la actividad académica de los estudiantes.

Además, hay que considerar que son lugares que están a poca distancia de las áreas de venta de alimentos. Sin embargo, no existe una adecuada orientación que busque mejorar las condiciones del manejo de los residuos sólidos.

En la Tabla 14 se muestra la producción de desechos sólidos por semana de los resultados se obtiene que para un mes se produce 4073.1 kg.

Tabla 14

Desechos sólidos producidos por semana

Componente	Semana 1	Semana 2	Semana 3	Semana 4	TOTAL
Papel y cartón	95.7	115.4	83.5	101.8	396.4
Plástico	697.15	302.7	352	327	1678.95
Vidrio	14.1	72	10.5	8.9	105.5
Metal	11.6	13.2	9.2	7.2	41.2
Madera	0.5	2.4	1.0	1.1	5
Residuos de Jardín	151.7	0.4	0.6	0.4	153.1
Residuos de comida	453.15	429.5	368	384.1	1634.75
Otros	13	16.9	15	13.3	58.2
TOTAL	1436.9	952.5	839.8	397.4	4073.1

Fuente: Caracterización física de los residuos sólidos de la Facultad Multidisciplinaria Oriental, Universidad de El Salvador, 2012.

El papel y cartón es generado por las actividades académicas-administrativas. El volumen de papel no llega al contendor de disposición final debido a que el personal de limpieza lo recolectan para venderlo a una empresa privada CONAVE S.A. DE C.V., así también los tres centros de fotocopias le regalan a una persona externa este recurso.

El plástico es generado por el consumo de alimentos almacenados en platos desechables. Así también, en las diferentes actividades académicas como panel fórum, conferencias, capacitaciones etc. Donde se comparten refrigerios que por lo general se utilizan platos desechables con o sin tapa y vasos descartables, por lo que la generación de este componente varía según cantidad de personas y programaciones académicas. También proviene de productos de limpieza, depósitos de agua, jugos, yogurt y té.

El vidrio es generado por la limpieza de ventanas rotas, las lámparas fluorescentes desechadas y materiales de laboratorio rotos como vasos precipitados, portaobjetos, matraz, tubo de ensayo, etc.

El metal es generado solo por los trabajadores de mantenimiento que se encargan de la reconstruir los pupitres y techos de algunas aulas, es uno de los materiales que llega en mínima cantidad.

La madera es generada por la construcción de muebles secretariales, pizarras, libreras, y algunas construcciones de infraestructura física, realizadas por la unidad de mantenimiento. Sin embargo, pocas veces se desecha trozos de madera debido a que se reutiliza para otras actividades. Este material se desecha en mínima cantidad en el contenedor de disposición final.

Debido a la limpieza y mantenimiento constante de la vegetación, árboles y plantas ornamentales, la generación de residuos de jardinería es mínimo debido a que estos residuos se desechan como abono en zonas verdes de poca circulación.

Dentro de la Facultad Multidisciplinaria Oriental, existen tres cafetines que generan desechos de comida en grandes cantidades debido a que todas la población estudiantil y personal académico y administrativo consumen alimentos en cada uno de los cafetines.

Los desechos sólidos que por su composición no se lograron ubicar en ninguno de los otros tipos es una cantidad mínima. Algunos de ellos son: residuos de tela, estuches de tinta y tóner, marcadores, frascos de aerosoles, etc.

3.1.5.8 Manejo y disposición final de desechos y residuos peligrosos. Todos los desechos del tipo peligroso exigen un plan para su recolección, almacenamiento, identificación y clasificación, y un tratamiento, que puede ser dentro o fuera del laboratorio, para disminuir su peligrosidad.

De acuerdo con las practicas experimentales en laboratorios se pueden distinguir los siguientes tipos de desechos:

- Los desechos químicos son generados durante las actividades auxiliares desarrolladas en los diferentes laboratorios constituyen un peligro para la salud por sus características propias, tales como corrosividad, reactividad, inflamabilidad, toxicidad, explosividad.
 También se incluyen en esta categoría los fármacos vencidos que presentan características similares de peligrosidad.
- 2. Los desechos bioinfecciosos son todos aquellos desechos que contienen agentes microbiológicos con capacidad de causar infección y efectos nocivos a los seres vivos y el ambiente; resultan de su contacto con fluidos de personas y/o animales enfermos. Estos desechos se clasifican según su grado de peligrosidad y en base a la actividad realizada como se muestra a continuación:
 - a) Los desechos patológicos son todos aquellos tejidos, productos de la concepción (placentas o membranas), fluidos, órganos o partes de órganos obtenidos por trauma o mutilación, así como por procedimientos médicos, quirúrgicos y autopsias provenientes de seres humanos o animales, originados durante las diferentes actividades de atención a la salud, diagnóstico, tratamiento e investigación, como los siguientes: Cultivos microbiológicos, Placentas y muestras de patología, Partes humanas y animales.
 - b) Los desechos punzocortantes son aquellos objetos que han estado en contacto con líquidos provenientes de humanos o animales o sus muestras biológicas durante el diagnóstico o tratamiento y que tienen la capacidad de penetrar, causar heridas y/o

cortar, como los que se detallan a continuación: Agujas hipodérmicas, Jeringas con aguja incorporada, Pipetas de Pasteur, Agujas, Bisturís, Placas de cultivo fraccionadas, Hojas de afeitar, Hisopos fraccionados, Cristalería de vidrio quebrada y contaminada.

Figura 40

Residuos sólidos del laboratorio de química

Las actividades generadas dentro de los laboratorios producen desechos líquidos, acuosos y sólidos, los cuales pueden generar sustancias peligrosas tanto para el medio ambiente como a los seres humano.

A continuación, se describe la clasificación de residuos peligrosos según sus grupos químicos, con sus componentes y observaciones.

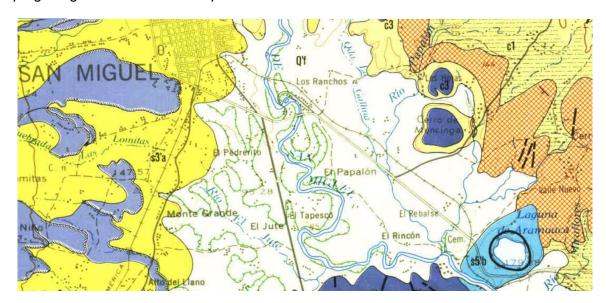
Tabla 15Clasificación de los residuos peligrosos según por su grupo químico

Grupo	Componentes	Observaciones
	Productos líquidos orgánicos	Se trata de productos muy tóxicos e
I. Disolventes	que contienen más del 2% de	irritantes y, en algún caso, cancerígenos
halogenados	algún halógeno, cloruro de	
	metileno, bromoformo	

Grupo	Componentes	Observaciones
	Alcoholes, aldehídos, amidas,	Son productos inflamables y tóxicos, se
II. Disolventes no halogenados	acetonas, esteres, glicoles,	debe evitar mezclas de disolventes que
	hidrocarburos alifáticos,	sean inmiscibles ya que la aparición de
	hidrocarburos aromáticos y	fases diferentes dificulta el tratamiento
	nitrilos	posterior
	Soluciones acuosas	Un grupo muy amplio y propenso a
III. Disoluciones	inorgánicas, básicas, de	reacciones si son mezclados entre si
	metales pesado, de cromo VI,	
acuosas	orgánicas o de alta DQO, de	
	fijadores orgánicos	
	Ácidos inorgánicos y sus	Puede producir alguna reacción química
IV. Ácidos	soluciones acuosas	peligrosa con desprendimiento de gases
IV. Acidos	concentradas a más del 10%	tóxicos e incrementos de temperatura
	en volumen	
V. Aceites	Aceites minerales	Derivados de operaciones de
v. Aceiles	Aceiles minerales	mantenimiento
	Solidos orgánicos e inorgánicos	S
VI. Solidos	y material desechado	
	contaminado	
	Carburantes, compuestos	Productos químicos, solidos o líquidos,
VII. Especiales	pirofóricos, compuestos muy	que, por su elevada peligrosidad, no
vii. Especiales	reactivos, mercurio,	deben ser incluidos en ninguno de los
	compuestos muy tóxicos	otros grupos.

Fuente: La gestión de residuos peligrosos en los laboratorios universitarios y de investigación.

Ministerio de Trabajo de España.2012


3.1.6 Descripción del ambiente físico

3.1.6.1 Geología. El área de estudio se encuentra ubicada en la zona de influencia del río Grande de San Miguel y el vulcanismo del Chaparrastique, donde se distinguen dos unidades lito estratigráficas correspondientes a diferentes miembros de las formaciones San Salvador (volcánicos básicos-intermedios y sedimentarios).

Como se puede observar en la imagen Figura 41, la Facultad se encuentra ubicada en el miembro Q'f de la formación San Salvador (época de El Holoceno del Período Cuaternario).

Figura 41

Mapa geológico General de la Republica de El Salvador

Fuente: H. R. Bose ... [et al.]; redacción H. S. Weber, G. Wiesemann, H. Wittekindt.

3.1.6.2Topografía. La ciudad de San Miguel con relación al nivel del mar es de 110 m.
La ciudad está situada sobre una planicie que se extiende hacia el sur dentro de la cual está ubicado el terreno de la Facultad Multidisciplinaria Oriental.

El terreno es parte del valle del Río Grande de San Miguel, al pie de las faldas del volcán Chaparrastique, donde la topografía es regular en su mayoría cuyas pendientes oscilan entre el 2% y el 6%.

El terreno de la Facultad Multidisciplinaria Oriental presenta sus mayores elevaciones en la zona Norte del terreno y va disminuyendo conforme se acerca a la zona Sur del terreno y se observa que desde la entrada hasta la Biblioteca aumenta la elevación del terreno y de la Biblioteca hasta los edificios de Medicina comienza a disminuir. Estas diferentes elevaciones del terreno sirven de drenaje natural a la escorrentía pluvial. El relieve local es bajo siendo la diferencia entre la mayor y la menor elevación aproximadamente de 10 m.

3.1.6.3Tipo de suelo. El tipo de suelo que predomina en la facultad multidisciplinaria oriental son suelos latosoles arcillosos rojizos (alfisoles), se puede observar que debido a sus propiedades este suelo en época de verano se agrieta.

El terreno posee suelo franco-limoso, del centro hasta el costado Sur, que actualmente están destinados para actividades agropecuarias (Campo Experimental); y suelos arcillosos hacia el Norte, donde actualmente está la mayor parte de las edificaciones, por ser los suelos menos fértiles.

Al costado Norte está fundamentalmente compuesto por suelos arcilloso y orgánico color gris oscuro (negro), de alta plasticidad y de espesor aproximado de 2 m. La consistencia del estrato varía entre firme y muy consistente desde la superficie a 150 m de profundidad subyacente al estrato anterior se encuentra una capa de suelo limoso que en ciertas zonas tiende a limo arcilloso en términos generales predomina el limo arcilloso.

- 3.1.6.4Uso de suelo. Podemos entender el uso de suelo como la característica o calificación que se le asigna al uso de un espacio, para el cual fue construido. Para efectos del análisis se han agrupado los diversos usos dentro del Campus Universitario, entre los cuales podemos mencionar:
- Uso de suelo académico: Se desarrollan actividades específicas de enseñanza
 aprendizaje, investigación y práctica, como son el desarrollo de clases, laboratorio, etc.
 Incluye los edificios de los diferentes departamentos y sus respectivos espacios para
 aulas y laboratorios.

Figura 42

Edificio Minerva

 Uso de suelo administrativo: La conforma el área donde se controla y maneja lo referente a la administración de la FMO.

Figura 43Asuntos Académicos

Uso de Suelo de Servicios Complementarios: Incluye los establecimientos dedicados
a prestar servicios a la población universitaria como son: la biblioteca, en el taller de
carpintería, fotocopiadoras, cafetería, etc.

Figura 44

Biblioteca

 Uso de Suelo de Equipamiento: Está constituido por las plazas y los estacionamientos y áreas de circulación que posee la facultad para el desplazamiento de automóviles y peatones a lo largo del campus. Sirviendo de conexión entre las distintas instalaciones físicas.

Figura 45

Parqueo principal

• Uso de suelo Agrícola: lo constituyen el departamento de CC. Agronómicas.

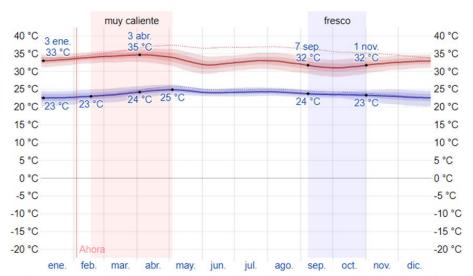
Figura 46

Campos de cultivo del Departamento de Ingeniería Agronómica

 Uso de suelo de Zona Verde: Lo constituyen todos aquellos espacios abiertos de zona verde que posea la facultad.

Figura 47

Zonas verdes

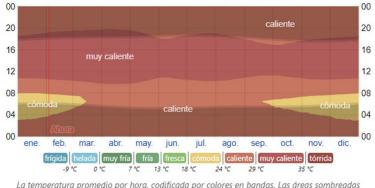


3.1.6.5 Climatología. La FMO se encuentra ubicada en la zona climática de sabana tropical caliente o tierra caliente, y se caracteriza por su clima cálido, propio de la altura a la que se encuentra y por el ecosistema alrededor de la ciudad. Se le considera una de las zonas más calurosas del istmo centroamericano, alcanzando temperaturas máximas extremas en los meses de marzo, abril y mayo.

3.1.6.5.1 Temperatura. La temperatura media mensual en el área de estudio oscila entre los 25.0 °C y 30 °C. Las temperaturas alcanzan un mínimo valor en los meses de diciembre y enero y un máximo valor en los meses de marzo y abril los cuales presentan temperaturas mayores a los 39 °C. La temperatura máxima promedio diaria es más de 34 °C. El día más caluroso del año tiene una temperatura máxima promedio de 35 °C y una temperatura mínima promedio de 24 °C. La temporada fresca tiene una temperatura máxima promedio diaria menor de 32 °C. El día más frío con una temperatura mínima promedio de 23 °C y máxima promedio de 33 °C.

Figura 48

Temperatura máxima y mínima promedio


La temperatura máxima (línea roja) y la temperatura mínima (línea azul) promedio diaria con las bandas de los percentiles 25° a 75°, y 10° a 90°. Las líneas delgadas punteadas son las temperaturas promedio percibidas correspondientes.

Fuente: Clima promedio en San Miguel, El Salvador, durante todo el año - Weather Spark

En la Figura 49 muestra una ilustración compacta de las temperaturas promedio por hora de todo el año. El eje horizontal es el día del año, el eje vertical es la hora y el color es la temperatura promedio para ese día y a esa hora.

Figura 49

Temperatura promedia por hora

La temperatura promedio por hora, codificada por colores en bandas. Las áreas sombreadas superpuestas indican la noche y el crepúsculo civil.

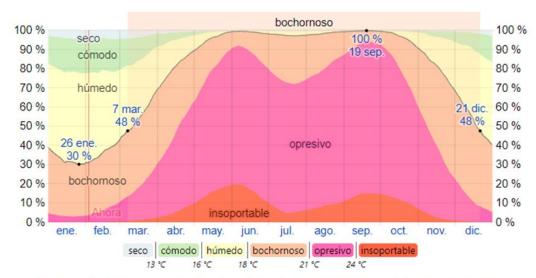
Fuente: Clima promedio en San Miguel, El Salvador, durante todo el año – Weather Spark
3.1.6.5.2 Precipitación. En El Salvador solo existen dos estaciones las cuales son la seca (14 de noviembre al 19 de abril) y la lluviosa (21 de mayo al 16 de octubre). Además de tener una transición seca-lluviosa (20 de abril al 20 de mayo) y una transición lluviosa-seca (17 de octubre al 13 de noviembre). Además de que San Miguel tiene una variación extremada de lluvia mensual por estación.

Figura 50 Precipitación de lluvia mensual promedio

La lluvia promedio (línea sólida) acumulada en un periodo móvil de 31 días centrado en el día en cuestión, con las bandas de percentiles del 25° al 75° y del 10° al 90°. La línea delgada punteada es el equivalente de nieve en líquido promedio correspondiente.

Fuente: Clima promedio en San Miguel, El Salvador, durante todo el año - Weather Spark

3.1.6.5.3 Humedad relativa. La humedad relativa tiene un pequeño efecto sobre el confort térmico en el exterior cuando las temperaturas del aire son bajas, un efecto ligeramente más pronunciado a temperaturas del aire moderadas y una influencia mucho mayor a temperaturas del aire más alta.


En general, las temperaturas más altas requerirán humedades relativas más bajas para lograr el confort térmico en comparación con las temperaturas más bajas, y todos los demás factores se mantendrán constantes

Basamos el nivel de comodidad de la humedad en el punto de rocío, ya que éste determina si el sudor se evaporará de la piel enfriando así el cuerpo. Cuando los puntos de rocío son más bajos se siente más seco y cuando son altos se siente más húmedo. A diferencia de la temperatura, que generalmente varía considerablemente entre la noche y el día, el punto de rocío tiende a cambiar más lentamente, así que, aunque la temperatura baje en la noche, en un día húmedo generalmente la noche es húmeda.

En San Miguel la humedad percibida varía extremadamente, ver Figura 51. El período más húmedo del año dura 9.5 meses, del 7 de marzo al 21 de diciembre, y durante ese tiempo el nivel de comodidad es bochornoso, opresivo o insoportable por lo menos durante el 48 % del tiempo. El día más húmedo del año cuenta con humedad el 100 % del tiempo. El día menos húmedo cuenta con condiciones húmedas el 30 % del tiempo.

Figura 51

Niveles de la humedad

El porcentaje de tiempo pasado en varios niveles de comodidad de humedad, categorizado por el punto de rocío.

Fuente: Clima promedio en San Miguel, El Salvador, durante todo el año – Weather Spark

3.1.6.6 Calidad de agua. Para la descripción de este apartado se tomó datos del

"Informe de calidad fisicoquímica del agua de pozo de la Facultad Multidisciplinaria Oriental,

2019" realizado por el laboratorio fisicoquímico de aguas de la Facultada de Química y

Farmacia de la Universidad de El Salvador.

A continuación, se indican los valores obtenidos en el año 2019 de los siguientes parámetros: Alcalinidad Total, Arsénico, Hierro Total, Mercurio y Plomo. De los resultados obtenidos comparando con el RTS 13.02.01:14, los criterios de calidad admisibles para agua de consumo humano.

Tabla 16

Informe de calidad fisicoquímica de agua de consumo humano en la FMO

Características	Valores encontrados	RTS 13.02.01:14
Alcalinidad Total (CaCo3)	14.6 mg/L	NO NORMADO
Arsenico	No detectado	0.01 mg/L
Hierro Total	0.02 mg/L	0.3 mg/L

Características	Valores encontrados	RTS 13.02.01:14
Mercurio	0.0052 mg/L	0.006 mg/L
Plomo	0.02 mg/L	0.01 mg/L

Fuente: Informe de análisis del Laboratorio Fisicoquímico de aguas de la Facultada de Química y Farmacia de la Universidad de El Salvador.

También se tomó los datos del "Informe de calidad microbiológica del agua de pozo de la FMO, 2019" realizado por el Laboratorio de Microbiología y Biotecnología del Centro de Investigación y Desarrollo en Salud (CENSALUD) de la Universidad de El Salvador.

A continuación, se indican los valores obtenidos en el año 2019 de los siguientes parámetros: Bacterias coliformes totales. Bacterias coliformes fecales, Escherichia coli, conteo de bacterias heterótrofas aerobeas y mesófilas, microorganismos patógenos. De los resultados obtenidos comparando con el RTS 13.02.01:14, los criterios de calidad admisibles para agua de consumo humano.

Según los datos del informe de la calidad microbiológica de agua describe la muestra como incoloro, transparente y sin olor.

Tabla 17

Informe de calidad microbiología de agua de consumo humano en la FMO

Características	Valores encontrados	Especificaciones		
Bacterias coliformes	>23 NMP/100 MI	< 1.1 NMP / 100 MI		
totales	>23 INIVIE/ TOO IVII	< 1.1 NIVIP / 100 IVII		
Bacterias coliformes	- 22 NIMD/ 400 MI	- 1 1 NMD / 100 MI		
fecales	>23 NMP/ 100 MI	< 1.1 NMP / 100 MI		
Escherichia coli	>23 NMP/ 100 MI	< 1.1 NMP / 100 MI		
Conteo de bacterias				
heterótrofas aerobeas y	336 UFC/ MI	100 UFC / MI		
mesófilas				
Microorganismos				
patógenos Pseudomonas	Presencia	Ausencia		
aeruginosa				

Fuente: Informe de análisis del Laboratorio de Microbiología y Biotecnología del Centro de Investigación y Desarrollo en Salud (CENSALUD) de la Universidad de El Salvador

Desde el mes de abril del 2013, los tres cafetines que funcionan al interior de la FMO cuentan con un sistema de purificación del agua con que preparan los alimentos.

A partir de junio del 2019 Se han instalado purificadores de agua marca Oasis con sistema de Purificación a través de: Filtro de sedimentos, filtro HQS y lámpara de luz ultravioleta en las siguientes zonas: Edificio de Economía, Edificio 1 y Edificio 2 de Medicina, Primer nivel del Edificio de Biblioteca, Nuevo Edificio de Aulas de la FMO, Zona del Auditórium y Departamento de Agronomía.

3.1.6.7 Calidad del aire. Para la descripción de la calidad de aire se toma como referencia el trabajo de tesis "Determinación de los niveles de contaminantes atmosféricos en periodo de zafra y no zafra en la ciudad de San Miguel, durante febrero a julio de 2015" concluyeron que los niveles de NO2 para ciudad de San Miguel en período de zafra son mayores que los registrados en no zafra.

En la investigación utilizaron un espectrógrafo Ocean Optics (USB4000-UV-VIS) usando la técnica DOAS pasiva para la obtención de las concentraciones de moléculas/cm² para NO₂, HCHO (formaldehído), HONO (acido nitroso), O4(tetra-oxígeno), BrO (monóxido de bromo) en el período de zafra y no zafra obtuvieron resultados que muestran en las siguientes tablas.

Tabla 18Valores promedios de moléculas/cm² para los contaminantes atmosférico periodo zafra

	Concentraciones (moléculas/cm²)								
Fecha	Angulo	NO ₂	НСНО	HONO	O_4	BrO			
	3°	1.89 x10 ¹⁶	4.32 x10 ¹⁶	6.48 x10 ¹⁵	2.69 x10 ⁴³	2.02 x10 ¹⁴			
19/03/2015	10°	2.02 x10 ¹⁶	4.60 x10 ¹⁶	6.95 x10 ¹⁵	2.86 x10 ⁴³	2.09 x10 ¹⁴			
	30°	2.41 x10 ¹⁶	5.28 x10 ¹⁶	7.16 x10 ¹⁵	3.20 x10 ⁴³	2.38 x10 ¹⁴			

Concentraciones (moléculas/cm²)									
Fecha	Angulo	NO ₂	НСНО	HONO	O ₄	BrO			
	3°	2.33 x10 ¹⁶	1.16 x10 ¹⁶	1.66 x10 ¹⁵	0.70 x10 ⁴³	0.43 x10 ¹⁴			
20/03/2015	10°	2.14 x10 ¹⁶	1.03 x10 ¹⁶	1.66 x10 ¹⁵	0.70 x10 ⁴³	0.38 x10 ¹⁴			
	30°	2.71 x10 ¹⁶	1.35 x10 ¹⁶	1.92 x10 ¹⁵	0.85 x10 ⁴³	0.51 x10 ¹⁴			
	3°	2.28 x10 ¹⁶	1.33 x10 ¹⁶	1.65 x10 ¹⁵	0.63 x10 ⁴³	0.57 x10 ¹⁴			
21/03/2015	10°	2.16 x10 ¹⁶	1.21 x10 ¹⁶	1.68 x10 ¹⁵	0.67 x10 ⁴³	0.50 x10 ¹⁴			
	30°	2.76 x10 ¹⁶	1.60 x10 ¹⁶	2.12 x10 ¹⁵	0.85 x10 ⁴³	0.63 x10 ¹⁴			
	3°	4.53 x10 ¹⁶	2.34 x10 ¹⁶	2.92 x10 ¹⁵	1.48 x10 ⁴³	0.79 x10 ¹⁴			
22/03/2015	10°	3.97 x10 ¹⁶	2.03 x10 ¹⁶	2.60 x10 ¹⁵	1.29 x10 ⁴³	0.72 x10 ¹⁴			
	30°	3.93 x10 ¹⁶	2.06 x10 ¹⁶	2.64 x10 ¹⁵	1.32 x10 ⁴³	0.76 x10 ¹⁴			

Nota: O₄(moléculas/cm⁵)

Fuente: Determinación de los niveles de contaminantes atmosféricos en periodo de zafra y no zafra en la ciudad de San Miguel, durante febrero a julio de 2015

Tabla 19Valores promedios de moléculas/cm² para los contaminantes atmosférico periodo no zafra

Concentraciones (moléculas/cm²)								
Fecha	Angulo	NO ₂	НСНО	HONO	O ₄ BrO			
	3°	1.26 x10 ¹⁶	4.62 x10 ¹⁶	6.84 x10 ¹⁵	1.24 x10 ⁴³	1.20 x10 ¹⁴		
23/07/2015	10°	1.10 x10 ¹⁶	4.20 x10 ¹⁶	6.58 x10 ¹⁵	1.13 x10 ⁴³	1.09 x10 ¹⁴		
	30°	1.22 x10 ¹⁶	4.19 x10 ¹⁶	6.35 x10 ¹⁵	1.03 x10 ⁴³	1.03 x10 ¹⁴		
	3°	1.64 x10 ¹⁶	5.00 x10 ¹⁶	7.71 x10 ¹⁵	1.48 x10 ⁴³	1.46 x10 ¹⁴		
24/07/2015	10°	1.58 x10 ¹⁶	4.55 x10 ¹⁶	7.49 x10 ¹⁵	1.41 x10 ⁴³	1.29 x10 ¹⁴		
	30°	1.46 x10 ¹⁶	4.17 x10 ¹⁶	6.80 x10 ¹⁵	1.07 x10 ⁴³	1.11 x10 ¹⁴		
	3°	2.00 x10 ¹⁶	7.30 x10 ¹⁶	8.31 x10 ¹⁵	2.60 x10 ⁴³	2.37 x10 ¹⁴		
25/07/2015	10°	2.11 x10 ¹⁶	7.88 x10 ¹⁶	8.83 x10 ¹⁵	2.89 x10 ⁴³	2.59 x10 ¹⁴		
	30°	2.22 x10 ¹⁶	7.98 x10 ¹⁶	8.81 x10 ¹⁵	2.92 x10 ⁴³	2.63 x10 ¹⁴		
	3°	2.27 x10 ¹⁶	7.19 x10 ¹⁶	8.86 x10 ¹⁵	2.79 x10 ⁴³	2.37 x10 ¹⁴		
26/07/2015	10°	2.24 x10 ¹⁶	7.22 x10 ¹⁶	8.86 x10 ¹⁵	2.85 x10 ⁴³	2.35 x10 ¹⁴		
	30°	2.17 x10 ¹⁶	6.84 x10 ¹⁶	8.54 x10 ¹⁵	2.66 x10 ⁴³	2.24 x10 ¹⁴		

Nota: O₄(moléculas/cm⁵)

Fuente: Determinación de los niveles de contaminantes atmosféricos en periodo de zafra y no zafra en la ciudad de San Miguel, durante febrero a julio de 2015

También se tomó como referencia el trabajo de tesis "Comparación de los valores del material particulado PM2.5 y PM10 medidos en Facultad Multidisciplinaria Oriental y los establecidos en la norma salvadoreña NSO 13.11.01:01 en el período comprendido de marzo a septiembre de 2019" determinó que los valores obtenidos de concentración de PM2.5 Y PM10 en el costado sur de la Biblioteca de la Facultad Multidisciplinaria Oriental son menores a los valores de la norma.

Los principales motivos por los cual se registraron estos valores promedio tan bajos de material particulado en esta área fueron la presencia de zona verde y árboles cercanos a la biblioteca debido a que actúan como agentes atenuadores y filtradores de las partículas suspendidas en el aire. Otro de los motivos fueron la presencia de leves precipitaciones en los días previos a los días de medición y que durante la noche se reduce drásticamente el material particulado debido a la ausencia de fuentes emisoras causando que el promedio diario sea menor al valor de la norma.

Tabla 20 *Valores de PM2.5 Y PM10*

Dia	РМ	PMprom (µg/m3)	Interpretación de calidad del aire según el ICCA
29/04/2019	PM2.5	34.2	Moderado
	PM10	43.7	Buena
01/05/2019	PM2.5	1.56	Buena
	PM10	2.18	Buena
03/05/2019	PM2.5	34.3	Moderado
	PM10	48.0	Buena
05/05/2019	PM2.5	3.0	Buena
	PM10	4.2	Buena

			Interpretación de
Dia	PM	PMprom (μg/m3)	calidad del aire
			según el ICCA
20/05/2019	PM2.5	4.8	Buena
	PM10	6.7	Buena
22/05/2019	PM2.5	9.6	Buena
	PM10	13.3	Buena
24/05/2019	PM2.5	5.4	Buena
	PM10	7.6	Buena
26/05/2019	PM2.5	2.9	Buena
	PM10	4.1	Buena
10/06/2019	PM2.5	2.32	Buena
	PM10	3.23	Buena
12/06/2019	PM2.5	7.49	Buena
	PM10	8.65	Buena
14/06/2019	PM2.5	2.37	Buena
	PM10	3.3	Buena
16/06/2019	PM2.5	2.46	Buena
	PM10	3.4	Buena

Fuente: Comparación de los valores del material particulado PM2.5 y PM10 medidos en Facultad Multidisciplinaria Oriental y los establecidos en la norma salvadoreña NSO 13.11.01:01 en el período comprendido de marzo a septiembre de 2019

3.1.7 Descripción del ambiente biótico

3.1.7.1 Flora. En el área de estudio podemos definir la vegetación como plantas nativas de bosque húmedo subtropical donde podemos encontrar especies que han sido plantadas como ornamento y reforestación tales como árbol de fuego, eucalipto, amate, teca, almendro, laurel de la india, tuya, croto y clavel.

También se encuentra matorral y pasto que está formado por especies arbustivas secundarias que alcanzan por lo general una altura de 2-5 metros. Entre las especies que

forman este ecosistema se pueden mencionar a las Asteraceas, Mimosáceas, Convolvuláceas Asclepiadáceas, Poaceas o Gramíneas, Ciperáceas, etc.

Figura 52

Arboles detrás de los edificios de Medicina

3.1.7.2 Fauna. Por la falta de vegetación en los terrenos y el aumento de nuevos edificios, la presencia de especies de fauna es escasa. Sin embargo, en las mediaciones se puede observar especies como aves migratorias, zanate, garrobo, iguana, lagartija, zenzontle, pericos, serpientes, y diversidad de insectos.

Figura 53
Culebra

3.1.8 Descripción del ambiente social

La población de estudiantes inscritos en la Facultad Multidisciplinaria Oriental durante el año 2020 es de 7831 en las diferentes carreras que oferta, ver Anexo 11. El porcentaje de población masculina es 44.92% y el porcentaje de población femenino 55.08%.

Figura 54

Estudiantes de Agronomía

El total de la población no están presentes en las instalaciones de la Facultad al mismo tiempo debido a la variación de los horarios y la ocupación de las aulas.

Como se puede observar en la Tabla 21, la población total de docentes es 240. El porcentaje de hombres es 67.5% y de mujeres 32.5%. Además, el porcentaje de docentes por tiempo completo es 70%, el porcentaje de docentes tiempo parcial es 28.75% y el porcentaje de docentes por hora clase es 1.25%.

Figura 55

Docentes del Departamento de Ingeniería Agronómica

La cantidad total del Personal Administrativo es de 120 según categorías (secretarias, ordenanzas, jefes de unidades administrativas y otros).

Tabla 21Docentes por tipo de contratación y genero

Contrataciones	Tiem	oo coi	mpleto	Tien	npo P	arcial	Horas Clase		Total	
Contrataciones.	Н	M	Total	Н	I M Total H M To	Total	Total			
Profesor	108	60	160	52	17	69	2	1	2	240
universitario	100	00	100	52	17	09	۷	ı	3	240

Adaptación: Diagnostico Institucional 2016

CAPITULO IV IDENTIFICACIÓN Y EVALUACION DE IMPACTOS AMBIENTALES

4.1 IDENTIFICACION DE LOS IMPACTOS AMBIENTALES POTENCIALES

En esta sección del estudio se valoran los efectos sobre el entorno ambiental de las actividades desarrolladas en la Facultad Multidisciplinaria Oriental.

Metodología

Para la identificación, priorización, predicción y cuantificación generados por la Facultad Multidisciplinaria Oriental, se procederá en dos fases. La primera etapa se identificarán los impactos ambientales mediante una matriz de interacción, en la cual se colocará las acciones identificadas, los factores ambientales que podrían ser afectados y los impactos potenciales. En la segunda etapa se procederá a realizar la evaluación de los impactos ambientales identificados, mediante el método de Criterios Relevantes Integrados.

4.1.1 Identificación de las actividades de la FMO

Se identificaron las actividades que se desarrollan dentro de la Facultad Multidisciplinaria Oriental que pudiesen generar impactos negativos al medio ambiente por cada actividad. Ver ANEXO 3.

- Desechos de agroquímicos: se refiere a los depósitos o contenedores de agroquímicos vacíos y desechados.
- 2. Crianza de vacas: se refiere al manejo del estiércol producido por las vacas
- 3. Crianza de cerdos: se refiere al manejo del estiércol y orina producido por los cerdos
- 4. Crianza de pollos de engorde: se refiere al manejo de las excretas y la cama para pollos de engorde.
- Crianza de cabras y oveja pelibuey: se refiere al manejo del estiércol producido por las cabras y oveja pelibuey.
- **6. Crianza de conejos:** se refiere a los restos de comida, estiércol, orina y pelaje caido.
- 7. Cultivo de tilapias: se refiere al efluente producto del recambio de agua de los estanques y la producción de lodos.

- 8. Descarga de aguas residuales tratadas: se refiere a descarga del efluente tratado por fosa séptica y filtro biológico a través de infiltración en el subsuelo y descarga superficial.
- 9. Generación de desechos sólidos: se refiere a la recolección de basura de los contenedores, desechos generados por las fotocopiadoras, edificios administrativos, envases vacíos de productos de limpieza, desechos por mantenimiento de infraestructura como cambios de ventanas, tubos fluorescentes, pupitres, escritorios, etc.
- 10. Cafetines: se refiere a la producción de desechos orgánicos y aguas grises por la preparación de alimentos.
- 11. Prácticas de laboratorio de química: se refiere a los residuos sólidos y líquidos producto de reacciones químicas, reactivos vencidos, recipientes vacíos de reactivos químicos, desechos comunes, materiales contaminados con productos químicos y material punzocortante.
- 12. Prácticas de laboratorio de biología: se refiere a los residuos biosanitarios, residuos sólidos y líquidos producto de reacciones químicas, reactivos vencidos, recipientes vacíos de reactivos químicos, materiales contaminados con productos químicos y biológicos, residuos punzocortantes y desechos comunes.
- 13. Prácticas de laboratorios de Medicina: se refiere a los residuos sólidos y líquidos producto de reacciones químicas, reactivos vencidos, recipientes vacíos de los reactivos químicos, desechos comunes, materiales contaminados con productos químico y biológico, medicinas vencidas, residuos biosanitarios y material punzocortante.

4.1.2 Determinación de las zonas de influencia de impactos

El concepto de área de influencia está relacionado con el espacio físico donde los impactos ambientales, producto de una determinada actividad, pueden ser percibidos de manera directa e indirecta.

El área de influencia, además de delimitar geográficamente la zona de estudio, también determina el marco de referencia donde se identifican las características ambientales preexistentes a la ejecución de las actividades.

Es dentro de este marco físico y conceptual que se desarrolla la línea de base ambiental, cuya información podrá ser contrastada con la futura situación ambiental, resultado de las obras de construcción, operación y cierre del proyecto. El criterio fundamental para identificar el área de influencia del proyecto es reconocer los componentes ambientales que pueden ser afectados por las actividades determinadas.

El área de influencia corresponde al área o espacio geográfico de donde se obtiene la información necesaria para predecir y evaluar los impactos en los elementos del medio ambiente.

La determinación y descripción del área de influencia, se debe realizar sobre los elementos del medio ambiente anteriormente seleccionados, con el fin de predecir y evaluar los impactos en dichos elementos, que son los receptores de impactos.

En síntesis, para determinar el área de influencia es necesario considerar tanto el espacio geográfico comprendido por las acciones determinadas como el espacio geográfico con presencia de los elementos del medio ambiente receptores de impactos.

Descripción general del área de influencia de impactos

En el diagnostico se considera una descripción detallada respecto de los impactos significativos; así como una descripción general respecto de aquellos elementos del medio ambiente que no son receptores de impactos significativos.

Área de influencia directa (AID)

El AID se define como el espacio físico que será ocupado, en forma permanente o temporal, por los componentes del proyecto durante todas sus etapas de desarrollo. También son considerados los espacios colindantes donde un componente ambiental puede ser persistente o significativamente afectado por las actividades de operación del proyecto.

Área de influencia indirecta (All)

El All de un proyecto consiste en aquel espacio físico donde los efectos directos del proyecto sobre un determinado componente ambiental influyen, a su vez, en otro u otros componentes ambientales, aunque con menor intensidad. Es importante mencionar que esa influencia puede ser de carácter positivo o negativo.

Se considera como AII aquellas zonas alrededor del área de influencia directa en donde se podrían evidenciar impactos de tipo indirecto por las actividades del proyecto. Estas zonas pueden definirse como zonas de amortiguamiento con un radio de acción determinado, y su tamaño puede depender de la magnitud del impacto y el componente afectado. En este sentido, la determinación del área de influencia indirecta es variable, según se considere el componente físico, biótico o socioeconómico y cultural; e incluso dentro de cada uno de estos componentes el área de influencia indirecta puede variar según el elemento ambiental analizado.

Tabla 22

Zona de influencia directa e indirecta de los impactos de las actividades identificadas

Actividades	Zona de influencia	Zona de influencia
	directa	indirecta
Desechos de agroquímicos	Campo experimental de Agronomía	La vegetación de las zonas aledañas El rio Jute
Crianza de vacas	Campo experimental de Agronomía	Zonas de pastoreo
Crianza de cerdos	Campo experimental de Agronomía	Zona donde se descargan los desechos de la crianza
Crianza de pollos de engorde	Campo experimental de Agronomía	Zona donde se descargan los desechos de la crianza
Crianza de cabras y oveja pelibuey	Campo experimental de Agronomía	Aulas de Ingeniería, Educación y zonas de pastoreo
Crianza de conejos	Campo experimental de	Zona donde se descargan
Cultivo de tilapias	Agronomía Campo experimental de Agronomía	los desechos de la crianza Área donde se drena el agua y lodos
Descarga de aguas residuales tratadas	Áreas aledañas a las fosas sépticas	- ,
Generación de desechos sólidos	Las zonas aledañas a los edificios y salones de clases	Zonas verdes
Cafetines	Las zonas aledañas a la ubicación de estos	Aulas de Economía
Prácticas de laboratorio de química	Laboratorio de Quimica	Descarga de las aguas residuales en fosa séptica
Prácticas de laboratorio de biología	Zona de Biología	Descarga de las aguas residuales en fosa séptica
Prácticas de laboratorios de Medicina	Edificio II de Medicina	Rio El Jute

4.1.3 Determinación de los factores ambientales a ser afectados por el funcionamiento de la FMO

Considerando la condición en que se encuentra el medioambiente en el área donde se localiza la Facultad Multidisciplinaria Oriental, se determinaron los componentes ambientales que a juicio del equipo de tesis serian afectados por las actividades en estudio, definiendo un total de 7, en los cuales se incluyeron 4 físicos, que incluyen: (2) aire, (1) Suelo y (1) Agua; (2) biológicos; (1) sociales, que se detallan a continuación.

Aspectos físicos

Aire: consiste en la presencia de gases o partículas que pueden suponer un riesgo, daño o molestia de diferente gravedad en los seres vivos.

- Emisiones de gases y CO₂: es la producción de dióxido de carbono y otros gases que impactan drásticamente al medio ambiente.
 - Control de olores: se refiere a los gases que generan olores desagradables.

Agua: consiste en los cambios de composición física, biológica y química que altera la calidad del agua.

Aguas superficiales: son aquellas aguas que se encuentran sobre la superficie
 del terreno y la escorrentía generada por las precipitaciones.

Suelo: consiste en la alteración de la biodiversidad del suelo, reduciendo la materia orgánica que contiene y su capacidad para actuar como filtro.

• Calidad del suelo: describe a las propiedades físicas y biológicas para mantener la calidad del medio ambiente y promover la sanidad de plantas y de animales.

Flora: consiste en la afectación de la flora por la operación de la facultad.

• Flora terrestre: hace referencia a la vegetación terrestre que se puede ver afectadas por las actividades-acciones generadas por la facultad.

Fauna: consiste en la afectación de la fauna por la operación de la facultad.

• Fauna terrestre: hace referencia a los animales terrestres que se pueden ver afectados por las actividades generadas por la facultad.

Social: consiste en la afectación de la población estudiantil y personal académico y administrativo.

 Salud ocupacional: Es la actividad que promueve la protección de la salud de las personas y reduciendo las condiciones de riesgo.

4.1.4 Confrontación de actividades y factores ambientales

Las actividades ejecutadas en la facultad y los factores ambientales identificados fueron confrontadas en el cruce matricial, utilizando para ello una matriz sencilla de doble entrada, (ver Anexo 14). De los resultados que se obtuvieron del cruce matricial se presentan en la siguiente tabla:

Tabla 23Matriz de resultados de interacciones entre actividades de la FMO y factores ambientales

Factores ambientales Ele		Elou	Elementos estructurales		ictos
		Elei			(-)
		1	Emisiones de gases y	0	4
	Atmosfera		CO_2	U	7
Físicos		2	Control de olores	0	6
	Agua	3	Agua superficial	0	13
	Suelo	4	Calidad del suelo	0	13
Dialégiasa	Flora	5	Flora terrestre	0	8
Biológicos	Fauna	6	Fauna terrestre	0	4
Social	Social	7	Salud ocupacional	0	4
TOTAL				0	52

4.2 EVALUACIÓN DE LOS IMPACTOS AMBIENTALES IDENTIFICADOS

Para la evaluación de los factores ambientales a ser impactados, se utilizó una matriz de doble entrada, ubicando en las filas los Factores Ambientales y en las columnas las

actividades de la Facultad; en la matriz se localiza y analiza el lugar donde interactúan las actividades de la facultad con los factores ambientales, en la interacción se manifiesta un impacto ambiental potencial que debe ser analizado para determinar su significancia.

La interacción debe ser evaluada individualmente para valorar la significancia del impacto ambiental potencial. Para cuantificar cada impacto ambiental potencial se hará uso del método de criterios relevantes integrados, con el cual se obtiene un índice de valoración del impacto ambiental (VIA) para luego obtener su severidad.

4.2.1 Identificación y predicción de los impactos ambientales

De acuerdo con la matriz de interacciones presentadas, se elabora el siguiente listado genérico de impactos ambientales.

Tabla 24

Resumen de interacciones identificadas

Actividad	Interacción	Impacto ambiental
	1(-)	Alteración de la calidad del agua
	2(-)	Alteración de la calidad del suelo
Desechos de agroquímicos	3(-)	Alteración de la flora
	4(-)	Intoxicación y muerte de animales
	5(-)	Alteración de la salud
	6(-)	Emisión de gases por descomposición del
		estiércol
	7(-)	Generación de olores desagradables
Crianza de vacas	8(-)	Alteración de la calidad del agua
	9(-)	Alteración de la calidad del suelo
	10(-)	Alteración de la flora
	11(-)	Emisión de gases por descomposición del
		estiercol
Crianza de cerdos	12(-)	Generación de olores desagradables
	13(-)	Alteración de la calidad del agua
	14(-)	Alteración de la calidad del suelo

Actividad	Interacción	Impacto ambiental
	15(-)	Generación de olores desagradables
Crianza de pollos de engorde	16(-)	Alteración de la calidad del agua
	17(-)	Alteración de la calidad del suelo
	18(-)	Emisión de gases por descomposición del
		estiercol
Crianza de cabras y pelibuey	19(-)	Generación de olores desagradables
	20(-)	Alteración de la calidad del agua
	21(-)	Alteración de la calidad del suelo
	22(-)	Alteración de la flora
	23(-)	Generación de olores desagradables
Crianza da concias	24(-)	Alteración de la calidad del agua
Crianza de conejos	25(-)	Alteración de la calidad del suelo
	26(-)	Alteración de la flora
Crianza da tilanias	27(-)	Alteración de la calidad del agua
Crianza de tilapias	28(-)	Alteración de la calidad del suelo
	29(-)	Emisión de gases
Descarga de aguas	30(-)	Generación de olores desagradables
residuales tratadas	31(-)	Alteración de la calidad del agua
	32(-)	Alteración de la calidad del suelo
Generación de desechos	33(-)	Alteración de la calidad del agua
solidos	34(-)	Alteración de la calidad del suelo
	35(-)	Alteración de la calidad del agua
Cafetines	36(-)	Alteración de la calidad del suelo
	37(-)	Alteración de la flora
	38(-)	Alteración de la calidad del agua
Drácticos do loboratorio de	39(-)	Alteración de la calidad del suelo
Prácticas de laboratorio de	40(-)	Alteración de la flora
química	41(-)	Alteración de la fauna
	42(-)	Alteración de la salud

Interacción	Impacto ambiental
43(-)	Alteración de la calidad del agua
44(-)	Alteración de la calidad del suelo
45(-)	Alteración de la flora
46(-)	Alteración de la fauna
47(-)	Alteración de la salud
48(-)	Alteración de la calidad del agua
49(-)	Alteración de la calidad del suelo
50(-)	Alteración de la flora
51(-)	Alteración de la fauna
52(-)	Alteración de la salud
	44(-) 45(-) 46(-) 47(-) 48(-) 49(-) 50(-) 51(-)

4.2.2 Probabilidad de ocurrencia de los impactos ambientales

Para evaluar la probabilidad de ocurrencia de cada actividad se tomó el promedio de las severidades de las interacciones de cada actividad. Se ordeno de mayor a menor.

Tabla 25Resumen de los valores de impacto ambiental de las actividades

Actividades	VIA	Probabilidad	
Actividades	VIA	de ocurrencia	
Prácticas de laboratorio	4.46	MODERADA	
de química	4.40	MODERADA	
Prácticas de	4.30	MODERADA	
laboratorios de Medicina	4.30	IVIODERADA	
Descarga de aguas	4.16	MODERADA	
residuales tratadas	4.10	WODERADA	
Prácticas de laboratorio	4.07	MODEDADA	
de biología	4.07	MODERADA	
Crianza de vacas	4.1	MODERADA	
Crianza de cerdos	3.73	BAJO	
Desechos de	2.70	DAIO	
agroquímicos	3.70	BAJO	

Actividad	Interacción	Impacto ambiental	
Generación de	3.11	BAJO	
desechos solidos	3.11	DAJU	
Cafetines	3.11	BAJO	
Crianza de tilapias	2.66	BAJO	
Crianza de cabras y	2.51	DA IO	
pelibuey	2.51	BAJO	
Crianza de conejos	2.50	BAJO	
Crianza de pollos de	0.00	DAIO	
engorde	2.22	BAJO	

4.2.3 Priorización de impactos ambientales

Utilizando el método de los criterios relevantes integrados se determina la significancia de cada impacto ambiental potencial NEGATIVO para elegir medidas de prevención o mitigación de las acciones producidas.

De la evaluación se identificó 52 impactos de carácter negativo de los cuales el 51.9% son de un nivel moderada, el 11.6% son de un nivel leve y el 36.5% equivale a un nivel severo.

Tabla 26

Resultados de la valoración según los niveles de severidad del impacto ambiental de acuerdo con cada actividad

	Impactos	Carácter Negativo			
Actividad	por actividad				
		Leve	Moderado	Severo	Critico
Desechos de		1	1	3	0
agroquímicos	5	I	Į	3	U
Crianza de vacas	5	0	3	2	0
Crianza de cerdos	4	0	2	2	0
Crianza de pollos	0	0	4	0	•
de engorde	3	2	1	U	0

	Impactos		Cará	cter	
Actividad	por Negativo				
	actividad	Leve	Moderado	Severo	Critico
Crianza de cabras	5	2	3	0	0
y pelibuey	3	2	3	O	O
Crianza de	4	1	3	0	0
conejos	т	'	3	O	O
Crianza de tilapias	2	0	2	0	0
Descarga de					
aguas residuales	4	0	2	2	0
tratadas					
Generación de	2	0	2	0	0
desechos solidos	۷	U	2	U	U
Cafetines	3	0	3	0	0
Prácticas de					
laboratorio de	5	0	1	4	0
química					
Prácticas de					
laboratorio de	5	0	2	3	0
biología					
Prácticas de					
laboratorios de	5	0	2	3	0
Medicina					

Para evaluar el nivel del impacto de cada actividad se tomó el promedio de las severidades de las interacciones de cada actividad. Se ordeno de mayor a menor.

 Tabla 27

 Resumen del nivel de severidad de los impactos generados por las actividades

Actividades	Severidad	Nivel
Prácticas de laboratorio de	21.55	SEVERO
química	21.55	SEVERO

Actividades	Severidad	Nivel
Prácticas de laboratorios de	18.73	SEVERO
Medicina	10.73	SEVERO
Prácticas de laboratorio de	17.99	SEVERO
biología	17.55	SEVERO
Crianza de vacas	17.4	SEVERO
Descarga de aguas residuales	16.41	SEVERO
tratadas	10.41	SEVERO
Desechos de agroquímicos	15.82	MODERADO
Crianza de cerdos	14.04	MODERADO
Generación de desechos	9.95	MODERADO
solidos	9.90	MODERADO
Cafetines	9.95	MODERADO
Crianza de tilapias	8.51	MODERADO
Crianza de cabras y pelibuey	7.86	MODERADO
Crianza de conejos	7.38	MODERADO
Crianza de pollos de engorde	5.50	LEVE

4.2.4 Analisis de los resultados de la evaluación de impacto ambiental

En base al resumen de los resultados obtenidos en las matrices permitió tener una idea general del impacto total causado por las actividades de la FMO el cual es de nivel moderado con una probabilidad de ocurrencia baja.

De acuerdo con la Tabla 25, la probabilidad moderada indica que el impacto es mínimo, pero en combinación con otros impactos aumenta. Mientras que la probabilidad bajo indica que el impacto es aceptable, por lo que las medidas ambientales son deseables, pero no esenciales. En la Tabla 27, se establecen el tipo de medidas ambientales para cada tipo de actividad.

CAPITULO V PROGRAMA DE ADECUACION AMBIENTAL

5.1 Programa de adecuación ambiental

Después de evaluar los impactos de las actividades de la FMO sobre los factores medioambientales, corresponde como siguiente paso, proponer el conjunto de medidas de prevención, compensación y/o atenuación de los impactos identificados. Ver ANEXO 4.

Objetivos del PAA:

Tiene como objetivo corregir, mitigar y compensar los impactos que generen efectos negativos para la calidad de vida y del medio ambiente. En este sentido, propone acciones y procedimientos de control necesarios para garantizar el adecuado cumplimiento de las medidas ambientales que se requieren implementar.

5.2 Descripción de las medidas ambientales.

A continuación, se hace una descripción de las medidas de ambientales detallando en qué consiste cada una.

5.2.1 Medida 1: Manejo del estiércol de cabras y ovejas pelibuey

Descripción de la medida:

Para el manejo del estiércol de cabras y pelibuey se recolectará cada semana y se compostará a cama de los corrales de las cabras y oveja pelibuey conformada por una mezcla de excretas, viruta de madera, comida de rechazo (restos de forraje y concentrado), orina y restos de pelo. Será acopiada en montículos a un costado de los corrales y tapada por un plástico para protección de la lluvia. Para un periodo de 3-4 meses estará listo el compost. De forma opcional se le puede agregar microorganismos de montaña a las superficies de las camas de los corrales para acelerar el proceso de compostaje.

5.2.2 Medida 2: Manejo de la pollinaza

Descripción de la medida:

Para el manejo de la pollinaza que es la excreta de los pollos de engorde se mezcla con el material que se utiliza como cama para los pollos se recolectara cada semana como mínimo. Se escogerá un lugar con buena ventilación y no genere exceso de calor y humedad donde se

depositará los desechos recolectados. Todos estos materiales se mezclarán bien para que quede lo más suelta posible, la pila debe tener una altura de 1.5 a 1.6 metros y luego cubrirlo con plástico. El compost se puede usar después de dos a tres meses. Se puede utilizar como suplemento en animales de pastoreo en combinación con pajas, rastrojos, maíz, sorgo, olote de maíz y melaza.

5.2.3 Medida 3: Manejo del estiercol de conejos

Descripción de la medida:

Para el manejo de los desechos de la crianza de conejos se recolectará el estiércol, la comida de rechazo y la orina mezclándolos con los residuos de jardín, recortes de hierba, hojas de árboles, etc. para una mejor fermentación.

Para poder compostar hay que tener listo un compostador o hacer un hoyo en algún sitio de suelo del terreno, colocando los desechos orgánicos elegidos y el estiércol del conejo previamente desecadas al sol y removiendo cada vez que se incorporan nuevos elementos y regar hasta humedecer. Hay que procurar darle vuelta a todo el contenido una vez a la semana, y agregar agua de tanto en tanto para mantener la humedad.

5.2.4 Medida 4: Manejo del estiércol de vaca

Descripción de la medida:

Para el manejo de las deyecciones del ganado bovino pueden ser tratadas mediante un biodigestor del tipo tubular con capacidad de 66.5 m³ donde el estiércol, ver ANEXO 6 y ANEXO7, se diluye con agua en una proporción de 1:3 donde al ser introducidos en el biodigestor son descompuestos y se convierten en fertilizante y biogás.

Figura 56Biodigestor tubular

Fuente: https://www.infocampo.com.ar/los-beneficios-de-tener-biodigestores-en-los-establecimientos-productivos/

Costo de inversión \$3,033.11

5.2.5 Medida 5: Manejo del estiércol de cerdos

Descripción de la medida:

Para el manejo de las deyecciones del ganado porcino pueden ser tratadas mediante un biodigestor del tipo tubular con capacidad de 9.4 m³, ver ANEXO 6 y ANEXO 8, donde el estiércol se diluye con agua en una proporción de 1:3 donde al ser introducidos en el biodigestor son descompuestos y se convierten en fertilizante y biogás. Ver Figura 56.

Costo de inversión \$965.50

5.2.6 Medida 6: Manejo de lodos residuales del cultivo de tilapias

Descripción de la medida:

Para el manejo de los lodos de la crianza de tilapias consiste en neutralizar el pH, recomendando valores entre 5.5 y 9, deshidratarlo mediante el secado al sol para su posterior aplicación al terreno.

5.2.7 Medida 7: Manejo de los contenedores de agroquímicos desechados

Descripción de la medida:

Para el manejo de contenedores de agroquímicos desechados consiste en la aplicación del sistema manual de triple enjuaque:

- Rellenar parcialmente el contenedor con aproximadamente el 10-20% de agua,
- Cerrar el tapón y agitar o hacer rodar el contenedor. Después de agitar el contenedor,
 quite el tapón lentamente.
- Verter las aguas del enjuague en la cuba de pulverización, de modo que el envase se escurra durante unos 30 segundos.
- Repetir el proceso dos veces más.

Lo ideal es realizar la operación de lavado mientras se prepara la mezcla de pulverización, de forma que el agua residual pueda agregarse a la cuba.

Si se realiza la operación de lavado y no se prepara ninguna mezcla de pulverización, el agua del enjuague ha de recogerse en un contenedor adecuado, etiquetarse y almacenarse en un lugar seguro para luego ser eliminada de forma segura.

A continuación, es preciso perforar y/o aplastar los contenedores sin dañar o desfigurar, en la medida en que esto sea posible, la etiqueta, y luego, una vez listos para su eliminación, almacenarlos en un lugar seguro.

Separar las tapas para evitar que los gases o vapores de algunos agroquímicos puedan atentar contra la salud de las personas que reciben los envases. Las tapas y los envases separados deben ser enviados a bodegas de almacenamiento para su posterior disposición por entidades encargadas de este tipo de desechos.

5.2.8 Medida 8: Uso de humedales artificiales como tratamiento terciario de las aguas residuales

Descripción de la medida:

La medida propone el uso de un humedal de flujo subsuperficial con medidas de 15 m x 43.6 m x 1.20 m, ver ANEXO 9 y ANEXO 10, con relleno de material granular con 4 plantas por metro cuadrado. Cada humedal contará con un punto de control del efluente que será descargado en una guebrada cercana.

Costo de inversión \$49,471.53

Figura 57

Humedal artificial subsuperficial

Fuente: https://ingenieriaambiental.net/humedales-artificiales/

5.2.9 Medida 9: Separación de los desechos solidos

Descripción de la medida:

Para la separación de los residuos, es importante contar con depósitos o recipientes para los diferentes tipos de residuos generados. Los residuos se clasifican por su composición en: residuos orgánicos, residuos inorgánicos y peligrosos

Existe Codificación internacional de tipología de residuos vinculada a su manejo. Esto se refleja en colores aptos a identificar el tipo de residuos a separar.

- Verde: residuos orgánicos como cáscara de frutas, verduras y restos de alimentos.
- Azul: Plástico y metales

Gris: papel y cartón.

Costo de inversión: 23x3x\$14.75= \$1,017.75

Figura 58

Clasificación de la basura por colores

Fuente: https://ingenieriaambiental.net/clasificacion-de-la-basura-por-colores/

5.2.10 Medida 10: Compostaje de residuos orgánicos

Descripción de la medida:

Para el manejo de los residuos orgánicos se propone el uso de una compostera de madera con dimensiones de 1 m x 3 m x 1.50 m con tres compartimientos. El fondo estará en contacto con el suelo y cada compartimiento tendrá su tapadera superior. El producto resultante "compost" se puede aprovechar como mejorador de suelos para cultivos ornamentales, hortalizas, frutales y forestales.

Costo de inversión: \$328.05

Figura 59

Compostera de madera

Fuente: http://www.creatujardin.es/2013/04/elabora-un-compost-de-calidad.html

5.2.11 Medida 11: Manejo y disposición de los residuos inorgánicos

Descripción de la medida:

Para la disposición de los desechos inorgánicos como plástico, vidrio, metal, lapiceros, bolígrafos, marcadores, cintas, sellos, correctores líquidos, cartucho de tinta, pegamentos líquidos y en barra, carpetas de plástico, CD, etc. Se almacenarán y serán recogidos por empresas de recuperación y reciclaje de residuos y desechos. Los envases provenientes de productos de limpieza y aseo una vez terminado el producto se hace triple lavado y se almacenan para su posterior disposición.

Para el manejo de las lámparas fluorescentes de desecho de forma temporal se debe evitar que se quiebren. Para su almacenamiento hay que seguir las recomendaciones siguientes:

1. La lámpara debe estar completa, es decir, no debe tener quebraduras.

- En ninguna circunstancia se deben trasladar lámparas fluorescentes a los puntos de disposición de residuos ordinarios.
- 3. Establecer un espacio para la colocación y el almacenamiento de las lámparas de desecho dentro del local o edificio, de tal forma que se puedan almacenar temporalmente, hasta que se realice su traslado. Debe ser un espacio ventilado, de fácil acceso en caso de emergencias, pero restringido, con el fin de evitar que otras personas puedan romper las lámparas.
- Las lámparas deben estar debidamente acomodadas, preferiblemente a nivel del suelo, lejos de zonas húmedas. No deben ser golpeadas o tiradas y se debe evitar que se quiebren.
- 5. Para el almacenamiento temporal en la unidad, se recomienda utilizar la caja de empaque de las lámparas nuevas. En caso de que el empaque no sea individual, se puede acumular en el mismo empaque marcando las lámparas de desecho para diferenciarlas de las lámparas nuevas.
- 6. No se recomienda acumular más de 20 unidades. En caso de no contar con la caja de empaque original, la lámpara se debe almacenar en cartón o plástico u otro material que provea protección y evite que se exponga a quebraduras o golpes. No apilar caja sobre caja para evitar el rompimiento de los tubos

5.2.12 Medida 12: Manejo de desechos bioinfecciosos

Descripción de la medida:

- **Segregación:** Consiste en separar y colocar en el envase adecuado cada desecho, de acuerdo con sus características y su peligrosidad.
- Etiquetado: Colocar en cada envase que contenga desechos peligrosos, una vez sellado, la etiqueta con los datos que lo identifican y con el símbolo universal de bioinfecciosos.

- Acumulación: Consiste en colocar los contenedores sellados en un lugar apropiado en espera de su recolección interna.
- Almacenamiento temporal: Para evitar que los desechos bioinfecciosos se mezclen con los desechos comunes, se debe de preestablecer un sitio para el almacenamiento temporal de los mismos, dentro del perímetro del establecimiento especialmente acondicionado o construido para esta actividad. El almacenamiento central temporal se debe ubicar en un lugar que permita el acceso directo de los vehículos de recolección externa de los desechos bioinfecciosos.
- Gestionar la contratación de una empresa certificada para la recolección, tratamiento y disposición final de los desechos bioinfecciosos

 Tabla 28

 Características de envases para desechos bioinfecciosos

Tipo de	Tipo y color de	Características del envase
desecho	envase	
Infecciosos y patológicos sin líquidos libres	envase	-Ser de color rojo -Ser de plástico impermeable, polipropileno de baja densidad, espesor de 100 a 200 micras, con capacidad máxima de 8 a 10 kgTamaño: ancho de 16 hasta 27 pulgadas y alto de 31a 53 pulgadasLa bolsa debe llenarse hasta dos tercios de su capacidad o en el límite de seguridad señalado por el fabricanteSi la bolsa se coloca dentro de un envase rígido, esta debe cubrir completamente el borde del mismo con doblez hacia afuera por lo menos
		10 cm.

		-Ser de color rojo	
		-Resistente, preferiblemente de polietileno,	
		polipropileno o metálico.	
		-De cierre hermético	
Detalfaire		-Etiquetado con símbolo universal de	
Patológicos	\mathcal{B}	bioinfeccioso	
con líquidos		-Pueden ser reusables, en este caso deben ser	
libres		lavados y desinfectados después de su uso, con	
		agua a presión aplicando detergente; la	
		desinfección debe realizarse con una solución	
		de hipoclorito de sodio de 250 mg/l a 350 mg/l u	
		otro desinfectante eficaz para tal fin	
		-Resistente, preferiblemente de polietileno o	
		polipropileno	
		-De cierre hermético	
		-De diferentes tamaños, según volumen	
		generado	
Infecciosos con		-De superficie lisa, redondeada por dentro	
líquidos libres	(4)	-Que el material con el cual esté construido	
		permita efectuar el tratamiento de los desechos	
		efectivamente	
		-Etiquetado con símbolo universal de	
		bioinfeccioso y con una etiqueta según lo	
		establece la norma vigente.	
		-Hechos de material rígido, impermeable,	
		resistente y descartable con tapadera hermética.	
		-Material de plástico, polipropileno o polietileno.	
Punzocortantes		-Fácilmente identificables, rotulado con la	
. Grizooriantos	TOTAL CONTROL	leyenda PUNZOCORTANTES	
		BIOINFECCIOSOS.	
		-No deben llenarse más de dos tercios de su	
		capacidad o según lo indique el fabricante.	

bioinfeccioso, el cual debe estar grabado en el material del contenedor. -Debe tener dimensiones de fácil manejo -Debe tener un rotulo impreso, adherido o grabado en el material del contenedor, que identifique el nombre de su procedencia. Para embalaje -Debe ser de plástico u otro material similar, de los reutilizable y con tapadera. Debe ser resistente y desechos sin aberturas o rendijas. bioinfecciosos -Debe tener bordes internos redondeados. -El material de su elaboración debe permitir ser desinfectado por calor o químicos sin perder sus propiedades durante su vida útil. -La desinfección debe realizarse después de cada jornada diaria de utilización. -Debe mantenerse cerrado con tapadera hermética, para su manipulación dentro y fuera

-Ser de color rojo

-Tener el símbolo universal de desecho

Fuente: Diagnóstico del Manejo Interno de los Desechos Sólidos Bioinfecciosos generados en las Facultades de Medicina, Ciencias Naturales y Matemáticas, Ciencias Agronómicas y Clínicas de los Establecimientos de Salud: Odontología, Bienestar Universitario, Fondo Universitario de Protección, Empresarial del ISSS y Veterinaria, de la Universidad de El Salvador, Municipio de San Salvador, Departamento de San Salvador, en el periodo de julio de 2014 a marzo de 2015. Tomado de la Norma Técnica para el Manejo de los Desechos Bioinfecciosos.

del establecimiento generador.

5.2.13 Medida 13: Manejo de desechos y residuos químicos

Descripción de la medida:

Para la eliminación de estos productos químicos, se colocan los recipientes en una caja forrada con una bolsa de plástico, cinta de la parte superior de la caja cerrada, escribir "basura

normal" en la caja y luego se coloca la caja al lado del contenedor de basura del laboratorio. Solamente las formas sólidas de estos productos químicos pueden ser eliminadas de esta manera. Los materiales sólidos, como puntas de pipeta, plástico, toallas, guantes, etc. O artículos que podrían rasgarla bolsa se debe colocaren un frasco de boca grande, que cuando esté lleno se debe cerrar y se coloca en la basura.

El envasado y correspondiente separación de los residuos químicos peligrosos es algo más complejo. Para ello, se emplean distintos tipos de bidones o recipientes, dependiendo del tipo de residuo y de la cantidad producida.

En la elección del tipo de envase se debe tomar en cuenta la posible incompatibilidad entre el envase y el residuo. Por ejemplo, en la utilización de envases de polietileno, es preciso tener en cuenta algunas recomendaciones, las más importantes de las cuales se resumen a continuación.

 Tabla 29

 Recomendaciones referentes al uso de envases de polietileno para el almacenamiento de residuos

Producto	Recomendación
Bromoformo y sulfuro de carbono	No utilizar
Acido butírico, acido benzoico, bromo y	No utilizar en periodos de almacenamiento
bromo-benceno	superior a un mes
Cloruro de amilio, cresoles, dietiléter, eter,	No utilizar con al producto a tampacatura
haluros de acido, nitrobenceno,	No utilizar con el producto a temperaturas
perclorotileno, tricloroetileno y tricloroetano	superiores a 40°C
Diclorobencenos. No utilizar en periodos de almacenaje	Superiores a un mes

Fuente: Fernández, María. Manual y gestión de residuos y seguridad en laboratorios ambientales.

La elección del tipo de envase también depende de cuestiones logísticas como la capacidad de almacenaje del laboratorio. Algunos tipos de posibles envases a utilizar son los siguientes: ⁶

Contenedores (garrafas) de polietileno de 5 o 30 litros de capacidad. Se trata de
polietileno de alta densidad resistente a la mayoría de los productos químicos. También
pueden emplearse envases originales procedentes de productos, siempre que estén
correctamente etiquetados y marcados.

 Bidones de polietileno de 60 y 90 litros de capacidad y boca ancha, destinados al material desechable contaminado.

• Cajas estancas de polietileno con un fondo de producto absorbente, preparadas para el almacenamiento y transporte de reactivos obsoletos y otros productos especiales.

-

⁶ Fuente: De Fex, Rafael. Manejo de sustancias químicas. Administradora de Riesgos profesionales, SURATEP. 1 edición. 200. Medellín Colombia.

 Envases de cartón rígido, de un solo uso, de 30 y 60 litros de capacidad, con una bolsa interior de polietileno y doble sistema de cierre. Homologados y rotulados para residuos peligrosos.

 Envases de seguridad, provistos de cortafuegos y compensación de presión, idóneos para productos muy inflamables (muy volátiles) o que desprendan malos olores.

5.2.14 Medida 14: Minimización de la cantidad y toxicidad de residuos y desechos de las practicas experimentales de laboratorios

Descripción de la medida:

Estas serán las medidas a tomar para minimizar la cantidad y la toxicidad de residuos y desechos que se generan. De los desechos generados muchos son considerados como tóxicos, los elementos que se deben tomar en cuenta son:

- a) Cambios en los reactivos utilizados: en este caso se buscan alternativas para la sustitución de productos tóxicos utilizados por otros que cumplan la misma función y sean más amigables al ambiente.
- b) Cambios de procedimientos y operación: medidas como el buen entrenamiento de los usuarios, control de inventarios, reducir número de fugas y derrames, aunque hay estándares con medidas establecidas el técnico puede reducir los volúmenes de productos tóxicos en sus marchas.

- c) Implementación de políticas rígidas de procedimientos: hay procedimientos que los encargados pueden seguir para la minimización de residuos y desechos tóxicos.
 - 1. Reducción de material toxico
 - 2. Utilización de productos que puedan ser compartidos por varias marchas para los parámetros, u otra marcha necesite algún solvente en común más diluido.
 - Comprar solo lo que se utilizara, para no generar reactivos vencidos o descompuestos por no contar con instalaciones adecuadas.
 - 4. Mantener inventarios actualizados.
 - d) Etiquetado de residuos peligrosos. Todos los residuos peligros deben colocarse una etiqueta para su respectiva identificación y facilitar su manejo y disposición final, evitando así riesgos de contaminación ambiental o por incompatibilidad con otros productos. Durante el manejo de estos residuos pasan por varias personas y la información que estos contengan en su etiqueta es fundamental para que en cada etapa que se le aplica al residuo. Es importante tener en cuenta, comprobar la adecuada etiqueta de recipientes y botella; etiquetar debidamente las soluciones preparadas en el laboratorio; no reutilizar envases para otros productos sin quitar la etiqueta original y no sobreponer etiquetas.

5.3 Programa de adecuación ambiental

Actividad del proyecto	Descripción del impacto ambiental generado	Medida ambiental	Descripción de la medida propuesta	Ubicación de la medida ambiental	Responsable de su ejecución	Resultado esperado
Desechos de agroquímicos	Alteración de la calidad del suelo y agua, Afectación de flora, fauna y población	Medida de corrección	Sistema manual de triple enjuague	UNIAGRO	UNIAGRO	Eliminar contaminación del suelo y agua Evitar efectos en la flora, fauna y población
Crianza de vacas	Alteración de la calidad del suelo, aire y agua, Afectación de la flora	Medida de mitigación	Uso de biodigestor	UNIAGRO	UNIAGRO	Eliminar la contaminación del suelo y agua
Crianza de cerdos	Alteración de la calidad del suelo, aire y agua	Medida de mitigación	Uso de biodigestor	UNIAGRO	UNIAGRO	Eliminar la contaminación del suelo y agua
Crianza de pollos de engorde	Alteración de la calidad del suelo, aire y agua	Medida de prevención	Compostaje	UNIAGRO	UNIAGRO	Eliminar la contaminación del suelo y agua
Crianza de cabras y pelibuey	Alteración de la calidad del suelo, aire y agua, Afectación de la flora	Medida de mitigación	Compostaje	UNIAGRO	UNIAGRO	Eliminar la contaminación del suelo y agua
Crianza de conejos	Alteración de la calidad del suelo, aire y agua, Afectación de la flora	Medida de prevención	Compostaje	UNIAGRO	UNIAGRO	Eliminar la contaminación del suelo y agua
Crianza de tilapias	Alteración de la calidad del suelo y agua	Medida de prevención	Secado y aplicación de lodos	UNIAGRO	UNIAGRO	Eliminar la contaminación del suelo y agua
Descarga de aguas residuales tratadas	Alteración de la calidad del suelo, aire y agua	Medida de corrección	Uso de humedal subsuperficial	Campus FMO	Administración y personal de mantenimiento	Eliminar la contaminación del suelo y agua
Generación de desechos solidos	Alteración de la calidad del suelo y agua	Medida de corrección	Separación de desechos solidos	Campus FMO	Administración y personal de mantenimiento	Eliminar la contaminación del suelo y agua

			Compostaje de residuos orgánicos Disposición de residuos inorgánicos			
Cafetines	Alteración de la calidad del suelo y agua, Afectación de la flora	Medida de corrección	Separación de desechos solidos Compostaje de residuos orgánicos Disposición de residuos inorgánicos	Cafetines	Administración y personal de mantenimiento	Eliminar la contaminación del suelo y agua
Prácticas de laboratorio de química	Alteración de la calidad del suelo, aire y agua, Afectación de la flora, fauna y población	Medida de prevención	Manejo y disposición de desechos y residuos químicos y punzocortantes	Laboratorio de química	Encargado del laboratorio de Química	Eliminar contaminación del suelo y agua Evitar efectos en la flora, fauna y población
Prácticas de laboratorio de biología	Alteración de la calidad del suelo, aire y agua, Afectación de la flora, fauna y población	Medida de prevención	Manejo y disposición de desechos bioinfecciosos y punzocortantes	Laboratorio de biología	Encargado del laboratorio de Biología	Eliminar contaminación del suelo y agua Evitar efectos en la flora, fauna y población
Prácticas de laboratorios de Medicina	Alteración de la calidad del suelo, aire y agua, Afectación de la flora, fauna y población	Medida de prevención	Manejo y disposición de desechos bioinfeccioso y punzocortantes	Laboratorios del edifico II de Medicina	Encargado de laboratorio de Medicina	Eliminar contaminación del suelo y agua Evitar efectos en la flora, fauna y población

5.4 Monitoreo de medidas de adecuación ambiental y de compensación

Medida ambiental	Parámetros a considerar	Lugar o punto de monitoreo	Frecuencia de monitoreo	Método de monitoreo	Interpretación de resultados	Retro alimentación
Manejo del estiércol de cabras y peli buey (1)	Volumen de estiércol	UNIAGRO	Semanal	Observación directa in situ	Aprovechamiento de los desechos	Condición de los desechos producidos
Manejo de la pollinaza (2)	Volumen de desechos	UNIAGRO	Mensual	Observación directa in situ	Aprovechamiento de los desechos	Condición de los desechos producidos
Manejo del estiércol de conejos (3)	Volumen de desechos	UNIAGRO	Semanal	Observación directa in situ	Aprovechamiento de los desechos	Condición de los desechos producidos
Manejo del estiércol de vaca (4)	Volumen de estiércol	UNIAGRO	Semanal	Observación directa in situ	Aprovechamiento de los desechos	Condición del estiércol producido
Manejo del estiércol de cerdo (5)	Volumen de estiércol	UNIAGRO	Semanal	Observación directa in situ	Aprovechamiento de los desechos	Condición del estiércol producido
Manejo del lodo residual del cultivo de tilapias (6)	Volumen de lodos	UNIAGRO	Mensual	Observación directa in situ	Aprovechamiento de los desechos	Condición de los lodos producidos
Manejo de los contenedores de agroquímicos (7)	Volumen de contenedores vacíos	UNIAGRO	Mensual	Observación directa in situ	Correcta disposición de los desechos	Verificar las condiciones de almacenamiento
Uso de humedales artificiales como tratamiento terciario (8)	Calidad del efluente	Punto de control	Semestral	Observación directa in situ Prueba de calidad de efluente	Mejorar la calidad del efluente	Garantizar las óptimas condiciones del sistema de tratamiento
Separación de desechos sólidos (9)	Verificar la correcta separación de los desechos solidos	Campus FMO	Diario	Observación directa in situ	Correcta disposición de los desechos	Condiciones de los desechos solidos

Compostaje de residuos orgánicos (10)	Verificar la correcta disposición de los residuos orgánicos	Cafetines Campus FMO	Diario	Observación directa in situ	Garantizar el proceso del compostaje	Verificar las condiciones de la compostera
Manejo y disposición de los residuos inorgánicos (11)	Volumen de desechos Verificar el correcto almacenamiento	Campus FMO	Semanal	Observación directa in situ	Correcta disposición de los desechos	Verificar las condiciones de almacenamiento
Manejo de desechos bioinfecciosos (12)	Volumen de desechos Verificar el correcto manejo y disposición de los desechos	Laboratorio de biología Laboratorios del edifico II de Medicina	Mensual	Observación directa in situ Cantidad de desechos y residuos producidos	Correcta disposición de los desechos bioinfecciosos	Verificar las condiciones de almacenamiento
Manejo de desechos y residuos químicos (13)	Volumen de desechos Verificar el correcto manejo y disposición de los desechos y residuos	Laboratorio de química Laboratorios del edifico II de Medicina	Mensual	Observación directa in situ Cantidad de desechos y residuos producidos	Correcta disposición de los desechos y residuos químicos	Verificar las condiciones de almacenamiento
Minimización de la cantidad y toxicidad de residuos y desechos de laboratorios (14)	Verificar la correcta aplicación de las medidas de minimización de desechos y residuos	Laboratorio de química Laboratorio de biología Laboratorios del edifico II de Medicina	Mensual	Observación directa in situ Cantidad de desechos y residuos producidos	Minimizar la cantidad y efecto los desechos y residuos de los laboratorios	Verificar las condiciones de almacenamiento

5.5 Cuadro de evaluación de factibilidad de las medidas ambientales propuestas

	Factibilidad	Factibilidad operativa		Factibilidad económica	
Medida Ambiental	Complejida d de la medida	Tipo de personal	Costos de ejecución	Costo de manteni miento	Factibilidad de tiempo
Manejo del estiércol de cabras y pelibuey (1)	Mínima	No calificado	Mínima	Mínima	Corto plazo
Manejo de la pollinaza (2)	Mínima	No calificado	Mínima	Mínima	Corto plazo
Manejo del estiércol de conejos (3)	Mínima	No calificado	Mínima	Mínima	Corto plazo
Manejo del estiércol de vaca (4)	Media	No calificado	Media	Media	Medio plazo
Manejo del estiércol de cerdo (5)	Media	No calificado	Media	Media	Medio plazo
Manejo del lodo residual del cultivo de tilapias (6)	Mínima	No calificado	Mínima	Mínima	Corto plazo
Manejo de los contenedores de agroquímicos (7)	Mínima	No calificado	Mínima	Mínima	Corto plazo
Uso de humedales artificiales como tratamiento terciario (8)	Media	No calificado	Mínima	Mínima	Largo plazo
Separación de desechos sólidos (9)	Mínima	No calificado	Mínima	Mínima	Corto plazo
Compostaje de residuos orgánicos (10)	Mínima	No calificado	Mínima	Mínima	Corto plazo
Manejo y disposición de los residuos inorgánicos (11)	Mínima	No calificado	Mínima	Mínima	Corto plazo
Manejo de desechos bioinfecciosos (12)	Media	Calificado	Mínima	Mínima	Medio plazo
Manejo de desechos y residuos químicos (13)	Media	Calificado	Mínima	Mínima	Medio plazo
Minimización de la cantidad y toxicidad de residuos y desechos de laboratorios (14)	Media	Calificado	Mínima	Mínima	Medio plazo

CAPITULO VI CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- Utilizando el método de Criterios Relevantes Integrados (CRI) se llegó a los resultados
 de que los mayores impactos ambientales generados por la FMO son las practicas
 experimentales en los laboratorios, la crianza de vacas y el vertimiento de las aguas
 residuales. Estas actividades generan un nivel de impacto severo y una probabilidad de
 ocurrencia moderada.
- El vertimiento de desechos químicos en fosa séptica inhibe la descomposición de la materia orgánica.
- La aplicación de buenas prácticas agrícolas y considerando la ficha de datos de seguridad de los productos agroquímicos disminuye considerablemente su impacto al medio ambiente.
- Las instalaciones de los establos en el campo de agronomía dificultan la limpieza y tratamiento de los desechos del ganado.
- El sistema de tratamiento de aguas grises del cafetín "Las Margaritas" y cafetín contiguo están en pésimas condiciones las tuberías, punto de control y pozo de absorción.
- La bodega del laboratorio de química no tiene condiciones óptimas para el almacenaje de los reactivos químicos y de sus residuos.
- La red de agua potable de la FMO es antigua y se sigue anexando nuevos edificios a la red por lo que ya no puede suplir la demanda actual.
- El filtro biológico de la fosa de la biblioteca su eficiencia es baja para el DBO y DQO.
 Por lo que el efluente no cumple con la norma técnica NSO 13.49.01:09.
- El efluente proveniente de los sanitarios del pabellón norte y sur no cumplen con la norma técnica NSO 13.49.01:09.
- La fosa que recibe las aguas residuales provenientes del sector de biología, laboratorios de biología y edifico "el Riñón" no cumple con la norma técnica NSO 13.49.01:09.

- El efluente de los edificios de medicina no cumple con la norma técnica NSO 13.49.01:09.
- El mantenimiento de las fosas sépticas actuales es nulo y son pocas las fosas sépticas que son limpiadas. Por lo que colapsan constantemente.
- Los restos de comida, los plásticos y derivados del plástico son los volúmenes de desechos que más se producen.
- No se obtuvo información clara sobre las medidas que se aplican a los desechos y residuos producto de las practicas experimentales de los laboratorios.
- De acuerdo con los informes fisicoquímico y bacteriológico el agua de la FMO no cumple los parámetros para uso humano.
- La unidad ambiental de la FMO no cuenta con sistemas de vigilancia, monitoreo y control de los niveles de contaminación.
- Se observa una falta de conciencia y educación ambiental en el comportamiento de la comunidad estudiantil respecto al manejo de los desechos sólidos.
- En la FMO no posee políticas ambientales que sirvan como base para la toma de decisiones con respecto de las actividades generadoras de impactos negativos en el ambiente.

6.2 RECOMENDACIONES

- Poner en práctica estrategias de reducción y reciclado de los desechos sólidos producidos por las actividades de funcionamiento de la FMO.
- Para los vertidos líquidos y desechos sólidos producidos en los laboratorios se recomienda hacer un estudio sobre los compuestos químicos resultantes de las prácticas para tomar medidas de prevención y minimización de residuos tóxicos generados de acuerdo con los resultados de la investigación.
- En las prácticas de laboratorio es necesario la aplicación de un control adecuado de las cantidades utilizadas de reactivos y llevar una bitácora de las cantidades de los desechos peligrosos generados y de las alternativas de disposición o tratamiento empleados.
- La Unidad Ambiental debe presentar mapas de riesgos y reportes con información de los factores contaminantes, manejo adecuado de desechos sólidos, identificación de lugares de riesgos de contaminación e información que se considere pertinente que estén disponibles a la comunidad universitaria y público en general.
- La Unidad Ambiental debe ser el encargado del diseño un sistema de vigilancia y monitoreo con ayuda de estudiantes y de personal capacitado de la FMO.

BIBLIOGRAFIA

- Aguilera, F. (2020). Comparación de los valores del material particulado PM2.5 y PM10 medidos en Facultad Multidisciplinaria Oriental y los establecidos en la Norma Salvadoreña NSO 13.11.01:01 en el período comprendido de Marzo a Septiembre de 2019.
- Aguirre, S., Calderón, O. & Meza, A. (2012). Caracterización física de los residuos sólidos de la Facultad Multidisciplinaria Oriental, Universidad de El Salvador, 2012.

 Universidad de El Salvador.
- Alcaldía Municipal de San Miguel. (2004). *Ordenanza para la Gestión Ambiental del municipio de San Miguel.*
- Alvarenga, A., Cruz, H., Portillo, H. & Portillo, O. (2016). Evaluación del impacto hídrico que se genera en el acuífero subterráneo de la cuenca del rio El Jute del municipio de San Miguel, por la explotación de pozos de uso industrial y abastecimiento de agua potable. Universidad de El Salvador.
- Amaya, J. & Rodríguez, A. (2008). *Propuesta de un manual para el manejo integral de los desechos químicos generados en los laboratorios de la Universidad de El Salvador*. Universidad de El Salvador.
- Baños, D., Carillo, L., López, C., Portillo, C.& Sáenz, N. (2020). *Análisis comparativo del rendimiento de tilapia de la línea hibrido GIFT (Oreochromis niloticus) utilizando estanques sobre suelo con geomembrana blanca vs negra.*
- Benitez, L., Portillo, H. & Rivera, N. (2014). *Diseño del sistema de conducción de aguas*residuales, propuesta para su depuración, y ensayos de viabilidad en discontinuo

 para codigestión de estiércol bovino con aguas residuales en la universidad de el

 salvador facultad multidisciplinaria oriental, febrero 2014. Universidad de El

 Salvador.

- Buroz, E. (1990). La gestión ambiental: Marco de referencia para las evaluaciones de impacto ambiental. Fundación Polar, Caracas
- Canizales, C., Marmol, J., Rodríguez, R. & Salgado, V. (2009). *Propuesta urbano-*arquitectónica de polideportivo de la Facultad Multidisciplinaria Oriental.
 Universidad de El Salvador.
- Chavarría, S. & Zepeda, H. (2019). *Diseño fotovoltaico y distribución eléctrica subterránea*de la Facultad Multidisciplinaria Oriental de la Universidad de El Salvador.

 Universidad de El Salvador.
- Claros, R., Guevara, A. & Pacas, N. (2016). Aplicación de fotogrametría aérea en levantamientos topográficos mediante el uso de vehículos aéreos no tripulados.

 Universidad de El Salvador.
- Código de Salud. Decreto L. № 955, del 28 de abril de 1988, publicado en el Diario Oficial № 86, Tomo 299, del 11 de Mayo de 1988.
- **Código Municipal**. Decreto Legislativo N° 274 Publicado en el Diario Oficial N° 23, Tomo N° 290, del 5 de febrero de 1986 (El Salvador).
- Código Penal. Decreto Legislativo No. 270 de fecha 13 de febrero de 1973, publicado en el Diario Oficial No. 63, Tomo 238, de fecha 30 de marzo de 1973.
- Constitución de la Republica de El Salvador [Const]. Decreto Nº 38. Publicado en el Diario Oficial el 16 de Diciembre de 1983, No. 234, tomo 281.
- Coria, Ignacio Daniel. 2008. *El estudio de impacto ambiental: características y metodologías*. Invenio, vol. 11, núm. 20, junio, 2008, pp. 125-135 Universidad del Centro Educativo Latinoamericano Rosario, Argentina.
- EPA (Environmental Protection Agency). 2006. *Global Anthopogenic Non-CO₂ greenhouse gas emissions: 1990-2020*. United States Environment Protection Agency, USA. pp:

 274.

- Espinoza, G. (2002). *Gestión y Fundamentos de Evaluación de Impacto Ambiental. Santiago, Chile*. ANDROS Impresores.
- Flores, R., Valladares, P. & Villegas, W. (2013). *Propuesta de tratamiento y disposición final*de los residuos químicos generados en el laboratorio de calidad de aguas del

 Ministerio de Medio Ambiente y Recursos Naturales. Universidad de El Salvador.
- Fuentes, J., Merlos, E. & Paniagua, D. (2009). *Propuesta para el tratamiento de las aguas*residuales de la Facultad Multidisciplinaria Oriental de la Universidad de El

 Salvador. Universidad de El Salvador.
- Galicia, Y. & Miranda, D. (2008). *Propuesta de una guía para el tratamiento de desechos*químicos generados en el laboratorio de la Facultad de Química y Farmacia de la

 Universidad de El Salvador. Universidad de El Salvador.
- García, S. I. y Lazovski, J. 2011. *Guía de Uso Responsable de Agroquímicos". 1ra ed. Ministerio de Salud de la Nación. Programa Nacional de Prevención y Control de las Intoxicaciones*. Buenos Aires
- Iglesias Martínez, Luis. 1995. El estiércol y las practicas agrarias respetuosas con el medio ambiente.
- Lemus, M. & Zaldaña, J. (2009). *Propuesta de un tratamiento fotocatalítico de aguas*residuales de producción de un laboratorio farmacéutico. Universidad de El

 Salvador.
- León, V., Ramírez, G. & Rivera, D. (2020). Diseño de un sistema de gestión y tratamiento para los residuos y desechos peligrosos generados en los laboratorios académicos de la Escuela de Ingeniería Química e Ingeniería de Alimentos de la Facultad de Ingeniería y Arquitectura de la Universidad de El Salvador. Universidad de El Salvador.
- Martí Herrero J. 2008. *Biodigestores familiares: Guía de diseño y manual de instalación*.

 GTZ-Energía. Bolivia.

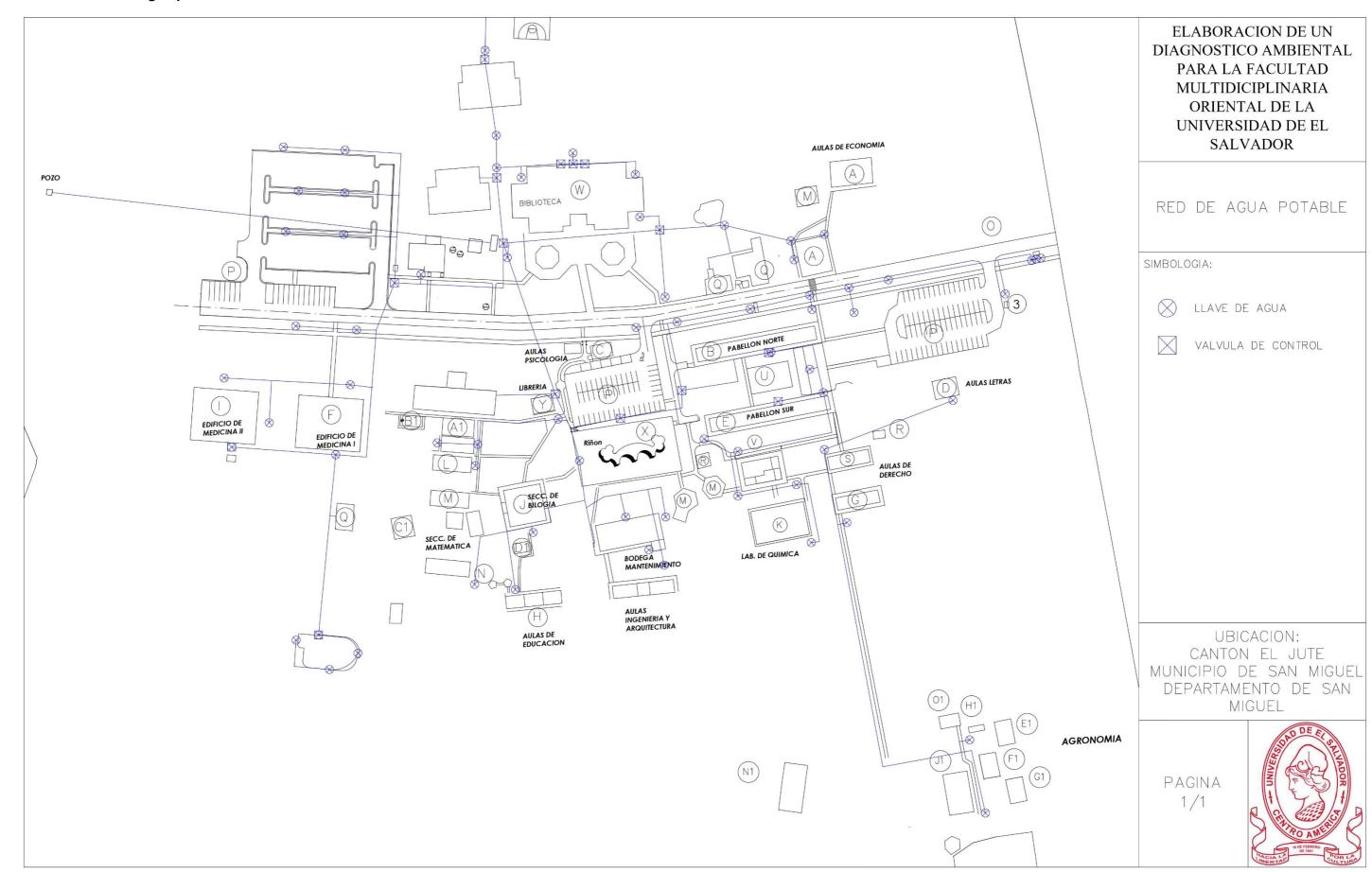
- Martí Herrero J. 2019. *Biodigestores Tubulares: Guía de Diseño y Manual de Instalación*.

 Redbiolac. Ecuador. ISBN: 978-9942-36-276-6
- Martínez, C., Morales, F. & Reyes, G. (2019). *Estudio de Evaluación de Impacto Ambiental en la Facultad de Ingeniería y Arquitectura de la Universidad de El Salvador.*Universidad de El Salvador.
- Miller, J. J. 2001. *Impact of intensive livestock operations on water quality. Proc. Western*Canadian. Dairy Seminar 13: 405-416.
- Miner, J. R., F. J. Humenik, and M. R. Overchash. 2000. *Managing Livestock Wastes to Preserve Environmental Quality. Environmental Quality*. Iowa State Univertisy

 Press. Ames, IA, USA. pp: 318.
- Ministerio de Medio Ambiente y Recursos Naturales. (2019). *Reglamento Especial de Normas Técnicas de Calidad Ambiental.*
- Norma Oficial Salvadoreña O3.07.01.99. (Segunda actualización). Publicada en el Diario Oficial el 12 de Junio de 2009, tomo 383 Numero 109.
- Powers, W. 2009. *Environmental challenges ahead for the U.S. dairy industry. In*: Proc. 46th Florida Dairy Production Conference, Gainsville, FL, USA. p. 13-24.
- Reddy, K. R., R. H. Kadlec, E. Flaig, and P. M. Gale. 1999. *Phosphorus retention in streams*and wetlands: a review. Crit. Rev. Environ. Sci. Thechnol. 29: p.83-146.
- Reglamento General de la Ley del Medio Ambiente. Decreto Ejecutivo No. 39 Publicado en el Diario Oficial Nº 79, Tomo No. 339, del 4 de mayo de 1998.
- Rivera, K., Sánchez, E. & Vigil, O. (2015). *Diagnostico cualitativo de los procesos y*procedimientos administrativos y académicos en la comunidad universitaria de la

 Facultad Multidisciplinaria Oriental, Universidad de El Salvador, 2015. Universidad de El Salvador.
- Rodríguez, Claudia. 2002. Cursos de Introducción a la Producción Animal. FAV, UNRC

Sampieri, R., Collado, C. & Lucio, P. (2014). *Metodología de la investigación*. (6° Edición, p. 92). México: McGraw Hill.

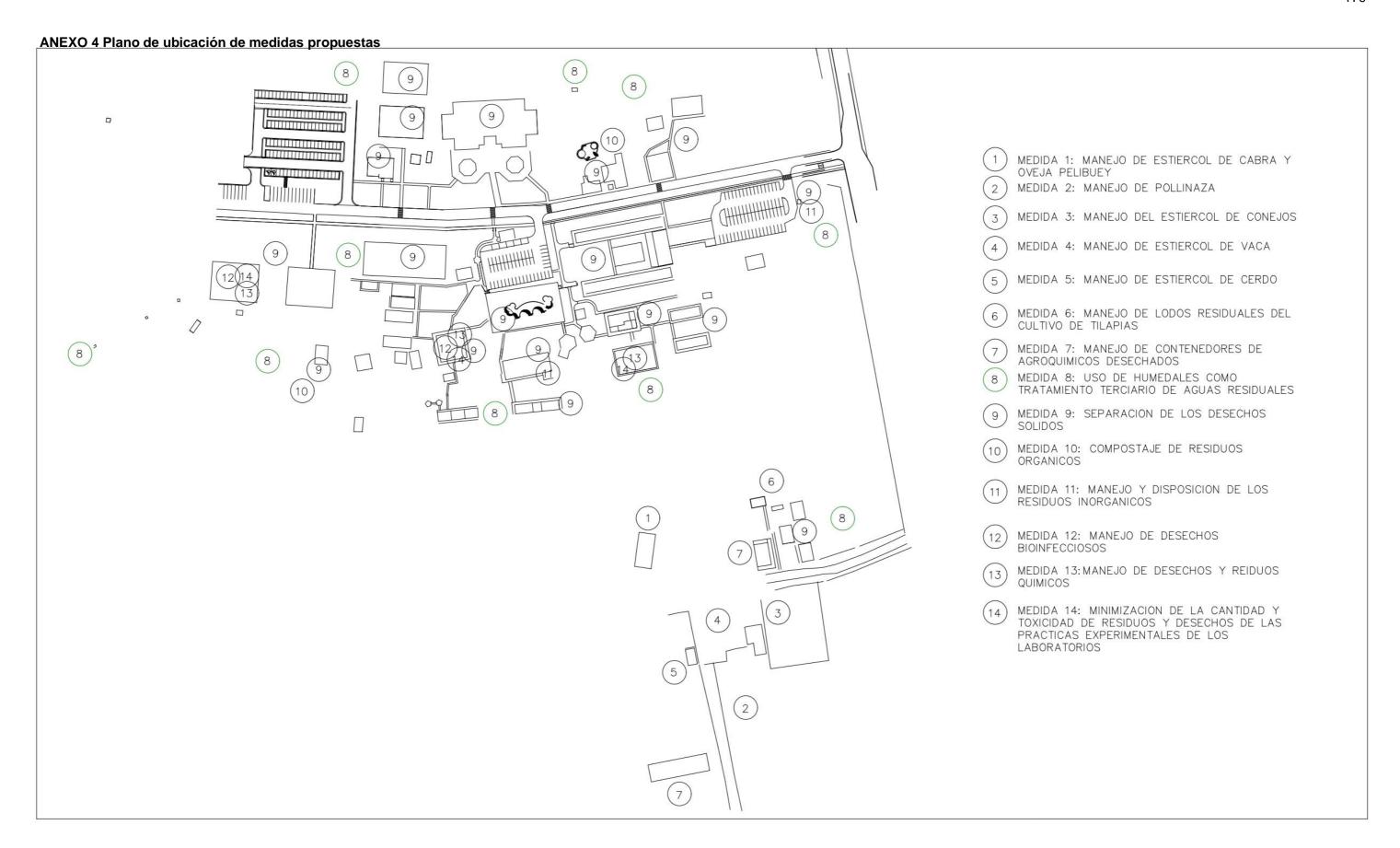

Universo Porcino. Producción de excretas porcinas y contaminación ambiental.

http://www.aacporcinos.com.ar/articulos/manejo_porcino_03-


2013_produccion_de_excretas_porcinas_y_contaminacion_ambiental.html

ANEXOS

ANEXO 1 Plano de red de agua potable de la FMO



ANEXO 2 Plano de red de aguas residuales de la FMO

ANEXO 3 Ubicación de impactos identificados

ANEXO 5 Cálculo de caudal máximo medio de la FMO

En la FMO existen 12 zonas que poseen un sistema sanitario como se puede observar en la tabla que describe a continuación.

Tabla 30

Cantidad de artefactos sanitarios por unidad de análisis

Unidad de análisis	Tipo de mueble	No de piezas	TOTAL
	Urinarios	6	
Edificio El Riñon	Retretes	6	20
	Lavamanos	8	
Edificio de Medicina 1	Retretes	14	26
	Lavamanos	12	20
	Urinarios	4	
Edificio de Medicina 2	Retretes	16	44
Edificio de Medicina 2	Lavabos	8	44
	Lavamanos	16	
	Urinarios	10	
Edificio de la	Retretes	30	56
biblioteca	Lavamanos	16	
Degas al sestada dal	Urinarios	7	
Baños al costado del	Retretes	22	45
auditorio 1	Lavamanos	16	
	Urinarios	2	
Sector de agronomía	Retretes	4	8
	Lavamanos	2	
	Retretes	2	
Sector de biología	Lavabos	1	5
	Lavamanos	2	
Sector de química	Lavabos	4	4
	Urinarios	2	
Edificio Minerva	Retretes	8	14
	Lavamanos	4	

Unidad de análisis	Tipo de mueble	No de piezas	TOTAL
	Urinarios	2	
Aulas de posgrado	Retretes	7	15
	Lavamanos	6	
Cafetines (al norte del	Francisco	4	4
auditorio 1)	Fregadero	4	4
Cafetines al sur de	Fregadero	2	0
medicina	Lavamano	1	3

Caudal instantáneo mínimo para cada aparato

Conocidos los datos, el primer paso es determinar el caudal instantáneo mínimo para cada aparato, que obtenemos de la tabla a continuación.

Tabla 31Gasto por artefacto sanitario

Caudal instantaneo minimo
(l/s)
0.05
0.10
0.15
0.10

Fuente: DB HS4: suministro de agua. Codigo Tecnico de la Edificacion. España

A continuación, obtenemos el caudal instalado en cada zona, como la suma de los caudales instalados mínimos de cada aparato, tomados de la tabla del apartado anterior. En las tablas siguientes tenemos los detalles del cálculo de caudal:

Tabla 32

Cálculo del caudal total probable por unidad de análisis

			Q por	Q	
Unidad de análisis	Tipo de mueble l	No de piezas	aparato	probable	TOTAL
			(L/s)	(L/s)	
Edificio El Riñon	Urinarios	6	0.15	0.9	1.9

	Retretes	6	0.1	0.6	
	Lavamanos	8	0.05	0.4	
Edificio de Medicina	Retretes	14	0.1	1.4	
1	Lavamanos	12	0.05	0.6	2
	Urinarios	4	0.15	0.6	
Edificio de Medicina	Retretes	16	0.1	1.6	2.0
2	Lavabos	8	0.1	0.8	3.8
	Lavamanos	16	0.05	0.8	
Edificio de la	Urinarios	10	0.15	1.5	
biblioteca	Retretes	30	0.1	3.0	5.3
Dibiloteca	Lavamanos	16	0.05	0.8	
Baños al costado del	Urinarios	7	0.15	1.05	
auditorio 1	Retretes	22	0.1	2.2	4.05
auditorio i	Lavamanos	16	0.05	0.8	
	Urinarios	2	0.15	0.3	
Sector de agronomía	Retretes	4	0.1	0.4	0.8
	Lavamanos	2	0.05	0.1	
	Retretes	2	0.1	0.2	
Sector de biología	Lavabos	1	0.1	0.1	0.4
	Lavamanos	2	0.05	0.1	
Sector de química	Lavabos	4	0.1	0.4	0.4
Edificio de aulas	Urinarios	2	0.1	0.2	
	Retretes	8	0.1	8.0	1.3
nuevo	Lavamanos	4	0.05	0.2	
	Urinarios	2	0.1	0.2	
Aulas de posgrado	Retretes	7	0.1	0.7	1.3
	Lavamanos	6	0.05	0.3	
Cafetines (al norte del auditorio 1)	Fregadero	4	0.1	0.4	0.4
Cafetines al sur de	Fregadero	2	0.1	0.2	0.25
medicina	Lavamano	1	0.05	0.05	0.25

Lo siguiente calcular el caudal simultáneo (también llamado caudal máximo o caudal de cálculo) mediante el coeficiente de simultaneidad a través de la fórmula: $K_V = \frac{1}{\sqrt{n-1}}$

Siendo:

KV: Coeficiente de simultaneidad (adimensional)

n: Número de aparatos (unidades)

Tabla 33Caudal máximo por unidad de análisis

Unidad de análisis	Qmin unitario (L/s)	Factor K	Q _{MAX} (L/s)
Edificio El Riñon	1.9	0.2294	0.43586
Edificio de Medicina 1	2	0.2	0.4
Edificio de Medicina 2	3.8	0.1525	0.5795
Edificio de la biblioteca	5.3	0.1348	0.7147
Baños al costado del auditorio 1	4.05	0.1508	0.61074
Sector de agronomía	0.8	0.378	0.3024
Sector de biología	0.4	0.5	0.2
Sector de química	0.4	0.5774	0.23096
Edificio Minerva	1.3	0.2774	0.5795
Aulas de posgrado	1.3	0.2673	0.34749
Cafetines	0.4	0.5774	0.23096
Cafetines medicina	0.25	0.7071	0.1768
Caudal máximo promedio			4.81

ANEXO 6 Diseño de biodigestor tubular

Determinación de las dimensiones del biodigestor

Una vez conocido el volumen líquido de biodigestor requerido, es necesario darle una forma, y está vendrá determinada por las dimensiones de la zanja. Para cada circunferencia de plástico disponible e inclinación del talud de la zanja hay unas medidas de zanja óptimas.

Tabla 34Parámetros de dimensionamiento de zanjas de biodigestores tubulares a partir del ángulo α y el radio de la circunferencia disponible de manga tubular

α (°)						A _{zanja}	A _{biogas}	A _{TOTAL}
desde la	%VL	%VB	a (m)	b (m)	p (m)	(m²)	(m ²⁾	(m ²)
vertical						(111)	(111	(111)
0	88	12 x r	1.49 x r	1.49 x r	1.57 x r	2.34 x r ²	0.32 x r ²	2.65 x r ²
0	83	17 x r	1.41 x r	1.41 x r	1.57 x r	$2.22 \ x \ r^2$	$0.45 \times r^2$	$2.67 \times r^2$
0	80	20 x r	1.34 x r	1.57 x r	1.57 x r	$2.10 \times r^2$	$0.53 \times r^2$	$2.63 \times r^2$
7.5	80	20 x r	1.23 x r	1.54 x r	1.54 x r	$2.20 \ x \ r^2$	$0.55 \times r^2$	$2.75 \times r^2$
15	76	24 x r	1.02 x r	1.49 x r	1.49 x r	$2.12 \times r^2$	$0.69 \times r^2$	$2.80 \text{ x } r^2$
30	75	25 x r	0.72 x r	1.33 x r	1.33 x r	1.98 x r ²	$0.66 \times r^2$	$2.64 \times r^2$
45	65	35 x r	0.43 x r	1.07 x r	1.07 x r	1.61 x r ²	$0.86 \times r^2$	$2.47 \times r^2$

Fuente: Martí Herrero J. 2019. *Biodigestores Tubulares: Guía de Diseño y Manual de Instalación.* Redbiolac. Ecuador. ISBN: 978-9942-36-276-6

En muchos casos están disponibles en el mercado plásticos de diferentes anchos de rollos (o sea, de circunferencias), y cuando se trabaja con geomembranas se tiene mayor libertad para disponer de la circunferencia que uno desea.

Los biodigestores que tengan relaciones L/D mayores a 10 o L/D menores a 5 quedarán descartados, por no considerarse biodigestores tubulares.

Biodigestor para estiércol de vaca

Cálculo de estiércol disponible al día.

Considerando que el ganado es pastoreado solo se puede recoger el 25% del estiércol producido por animal a lo largo del día

Estiércol disponible: 3190
$$\frac{kg}{dia} \times 25\% = 797.5 \frac{kg}{dia}$$

Cálculo de la carga diaria con relación 1:3

$$C_D = 797.5 \frac{litros}{dig} + 2392.5 \frac{litros}{dig} = 3190 \frac{litros}{dig}$$

Cálculo de volumen liquido

$$V_L = \left(3190 \ \frac{litros}{dia}\right) (25 \ dias) = 79750 \ litros = 79.75 \ m^3$$

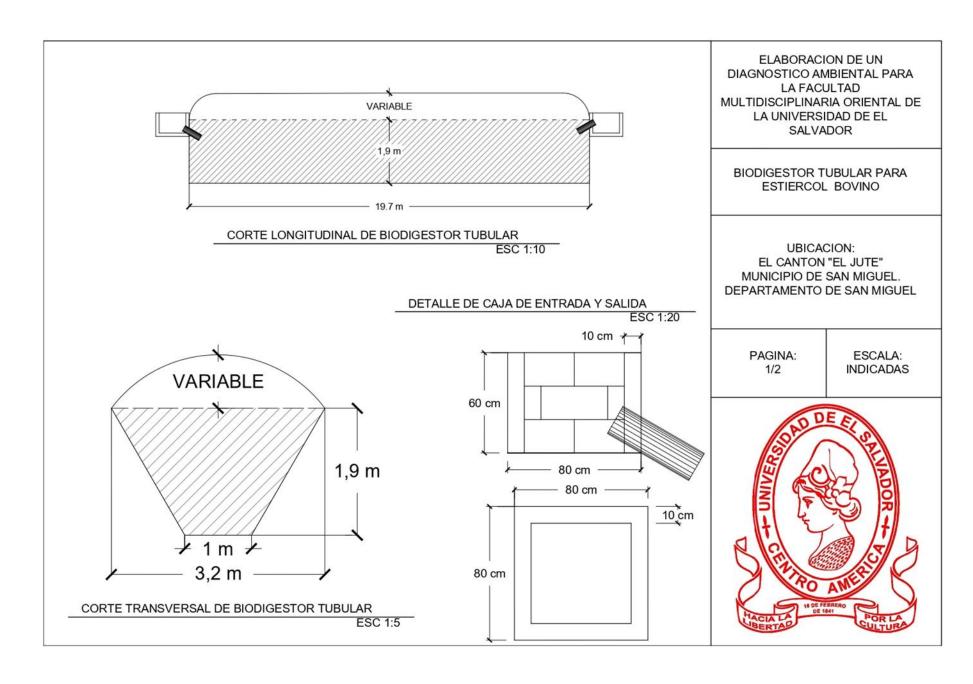
Biodigestor para estiércol de cerdo

Estiércol diario disponible: 98 $\frac{lb}{dia}$

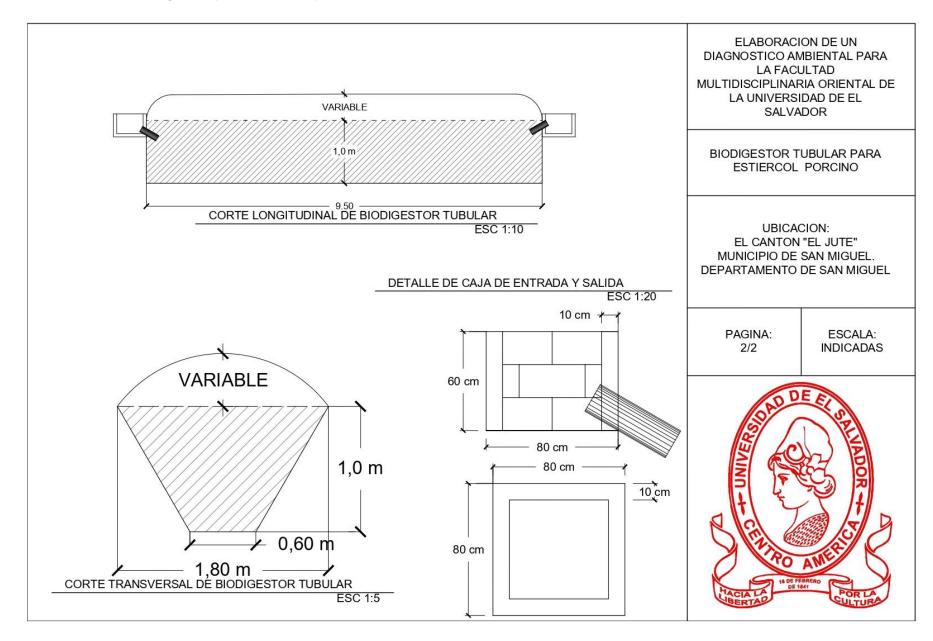
Cálculo de la carga diaria con relación 1:4

$$C_D = 98 \frac{litros}{dia} + 392 \frac{litros}{dia} = 482 \frac{litros}{dia}$$

Cálculo de volumen liquido


$$V_L = \left(482 \frac{litros}{dia}\right) (25 \ dias) = 12050 \ litros = 12.05 \ m^3$$

A continuación, se presenta las dimensiones de diseño de zanja para cada biodigestor de acuerdo con la siguiente tabla


Tabla 35Dimensiones de diseño de biodigestor

V(m³)	α(°)	C(m)	r(m)	a(m)	b(m)	p(m)	A _{zanja} (m²)	L(m)	D(m)	L/D
79.75	30	9	1.43	1.03	3.23	1.90	4.05	19.7	2.86	6.9
12.05	30	5	0.80	0.6	1.81	1.04	1.2672	9.51	1.6	5.9

ANEXO 7 Plano de biodigestor para estiércol bovino

ANEXO 8 Plano de biodigestor para estiércol porcino

ANEXO 9 Dimensionamiento de humedal artificial

Con el fin de evaluar la eficiencia en la remoción de contaminantes presente en las aguas residuales de la FMO, se obtendrán las dimensiones necesarias para la construcción del humedal artificial. Según el Instituto Nicaragüense de acueductos y alcantarillados (2008), para determinar el tamaño del humedal artificial, se debe primero determinar la temperatura mínima del ambiente del sitio propuesto, la cantidad de DBO producido actualmente, y el nivel de DBO deseado para el agua del efluente artificial.

Tomando en cuenta el dato del caudal base determinado en el ANEXO 5 y los parámetros de diseño nos permitirá calcular el tamaño del humedal artificial con los siguientes indicadores que se presentan a continuación.

Constante de Temperatura

El modelo general de diseño para cualquier tipo de humedal (superficial, subsuperficial y sistema de plantas acuáticas) corresponde a una ecuación cinética de primer orden en la que intervienen las concentraciones de afluente y efluente del contaminante en remoción, la constante de temperatura y el tiempo de retención, indicado en la ecuación:

$$K_T = K_{20} (\theta^{(T_W - 20)})$$

Dónde:

KT: Velocidad constante a la temperatura T (d-1).

K20: 1.104.

 θ : Coeficiente de temperatura a 20°C.

Tw: Temperatura mínima del mes más frío.

Teniendo los parámetros:

K20 = 1.104.

 $\theta = 1.06$.

 $Tw = 23^{\circ}C$

Sustituyendo en la ecuación

$$K_T = 1.104 (1.06^{(23-20)})$$
 $K_T = 1.315$

Tiempo de retención (residencia hidráulica).

El tiempo de residencia hidráulica (t) de un humedal de tratamiento es el tiempo promedio que permanece el agua en el humedal, expresado como el volumen medio dividido por la tasa media de salida. Si se desarrolla un cortocircuito, el tiempo de residencia efectivo puede diferir significativamente del tiempo de residencia calculado.

$$t = -\frac{\ln\left(\frac{DBO}{DBO_0}\right)}{K_T}$$

Donde:

DBO: Concentración del DBO a la salida.

DBOo: Concentración del DBO a la entrada.

KT: Velocidad constante a la temperatura T (d⁻¹).

Teniendo los valores:

 $DBO = 60 \, mg/L$

 $DBOo = 341.82 \ mg/L$

KT = 1.315 d - 1

Sustituyendo en la ecuación

$$t = -\frac{\ln\left(\frac{60}{341.82}\right)}{1.315}$$

$$t = 1.32 \ dias \cong 2 \ dias$$

Tasa de carga orgánica.

Según el Instituto Nicaragüense de acueductos y alcantarillados (2008), la ecuación 3.3 determinará la masa de DBO por área por día que el sistema recibirá (g DBO/ m2 -día). En general la tasa no debe de exceder 11.2 g DBO/ m2 -día.

$$L_{org} = \frac{C \times y \times n}{t}$$

Donde:

C: es el nivel de DBO del agua del efluente.

y: es la profundidad del humedal artificial.

n: la porosidad efectiva del sustrato.

t: tiempo de retención hidráulica.

Teniendo los valores:

C = 60 mg L/.

y = 1.20 m.

n = 0.35

t = 3 dias

Sustituyendo en la ecuación

$$L_{org} = \frac{60 \ ^{g}/_{m^{3}} \times 1.20 \ m \times 0.35}{2 \ dia} = 12.6 \ \frac{g \ DBO}{m^{2} - dia}$$

Área superficial del terreno.

Tras la obtención del caudal, se debe determinar el área superficial del terreno que delimita la extensión necesaria que ocupará el humedal artificial mediante la ecuación:

$$A_{s} = \frac{Q[(\ln DBO_{5})_{e} - (\ln DBO_{5})_{s}]}{K_{T}(y)(n)}$$

Dónde:

As: Área Superficial.

Q: Caudal.

DB05_e: Concentración del contaminante al ingreso.

DB05_s: Concentración del contaminante al Salida.

KT: Constante de temperatura en el humedal.

y: Profundidad del Humedal.

n: Porosidad promedio de las capas filtrantes del humedal.

Teniendo los valores:

 $Q = 207.792 \ m3/ \ dia$.

 $(DBO5)e = 341.82 \ mg/l.$

 $(DBO5)s = 60 \ mg/l.$

 $KT = 1.315 d^{-1}$.

y = 1.20 m.

$$A_s = \frac{207.792 \frac{m^3}{dia} \left[\ln 341.82 \frac{mg}{L} - \ln 60 \frac{mg}{L} \right]}{1.315(1.20)(0.35)} = 654.62 m^2$$

Ancho del humedal artificial.

Con base al área calculada se determinan la dimensión del ancho del humedal artificial a escala real, estableciendo una relación largo/ancho de 3:1, mediante la ecuación

$$W = \sqrt{\frac{A_s}{R_A}}$$

Dónde:

W: Ancho del Humedal

As: Área Superficial R

A: Es la proporción, como longitud/ancho.

Teniendo los valores:

$$As = 654.62 m^2$$

RA = 1/3.

Sustituyendo en la ecuación

$$W = \sqrt{\frac{654.62}{3}} = 14.77 \approx 15 \ m$$

Longitud del humedal artificial.

La longitud (L) del humedal artificial, se calcula con base al área superficial obtenida (As).

Estableciendo una relación longitud/ancho establecida en el apartado 3.2.5, y usando la ecuación

$$L = \frac{A_s}{W}$$

Dónde:

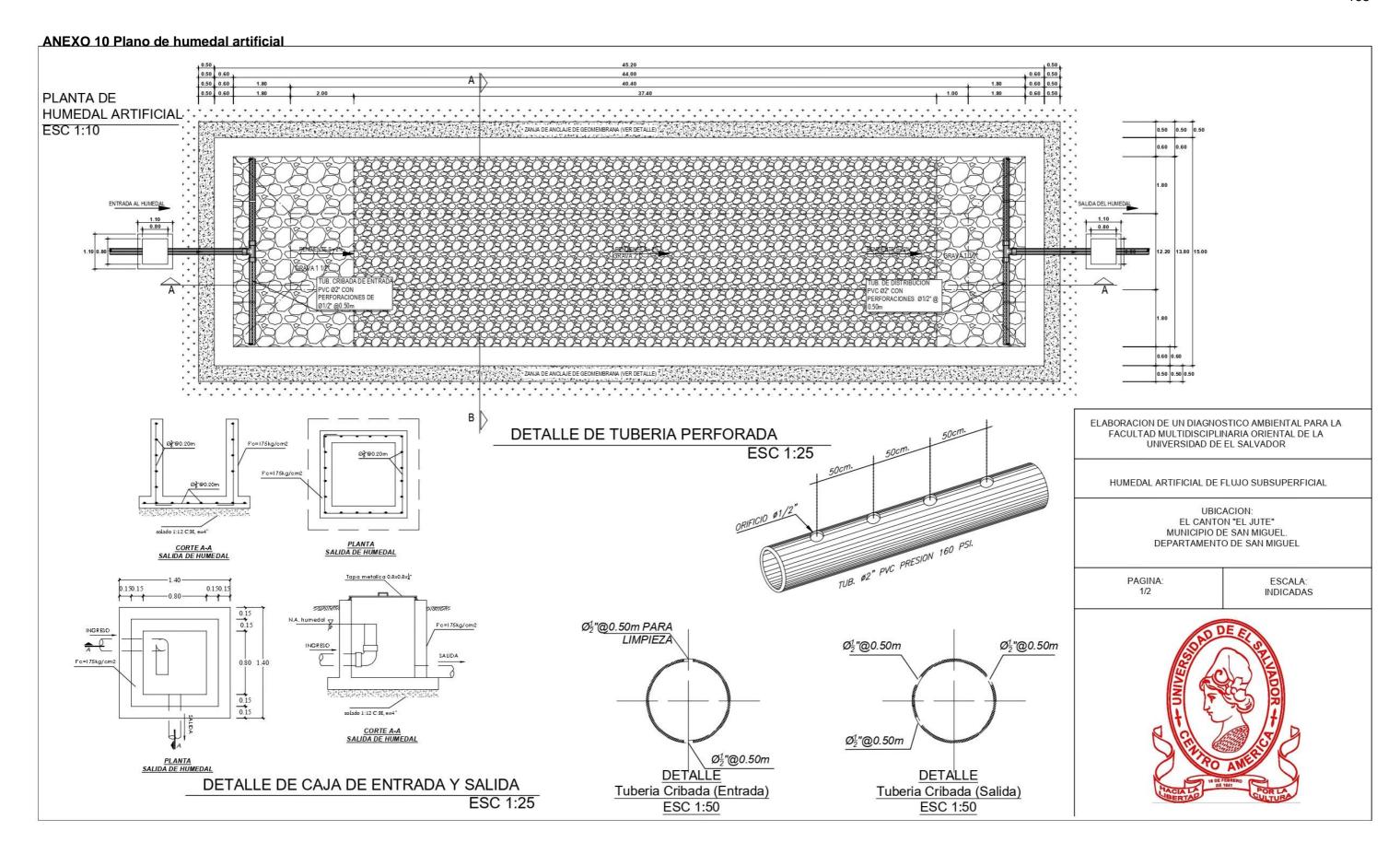
L: Longitud del humedal artificial.

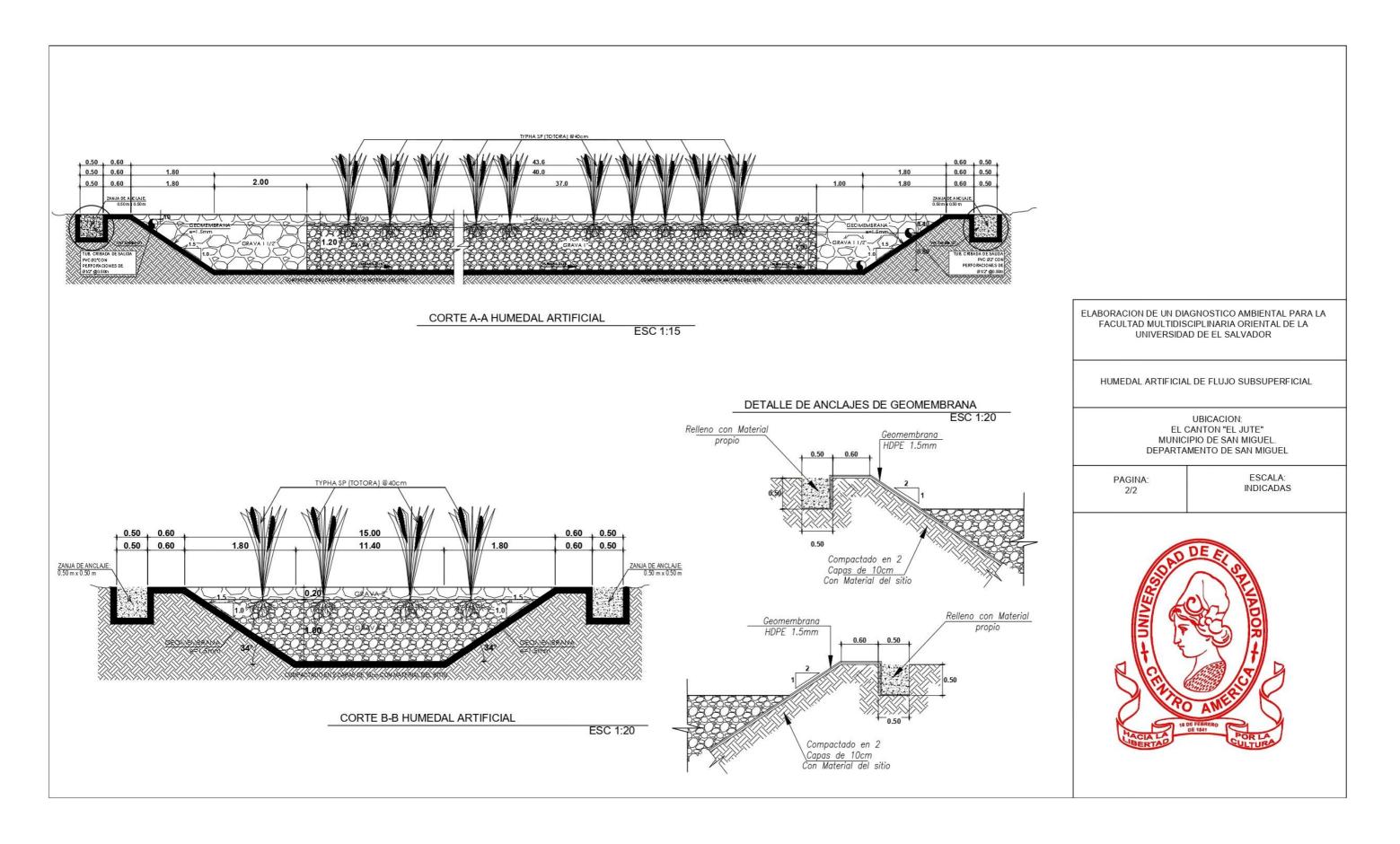
W: Ancho del Humedal A

s : Área Superficial

Teniendo los valores:

W = 15 m.


 $As = 654.62 \ m^2$.


Sustituyendo en la ecuación obtenemos:

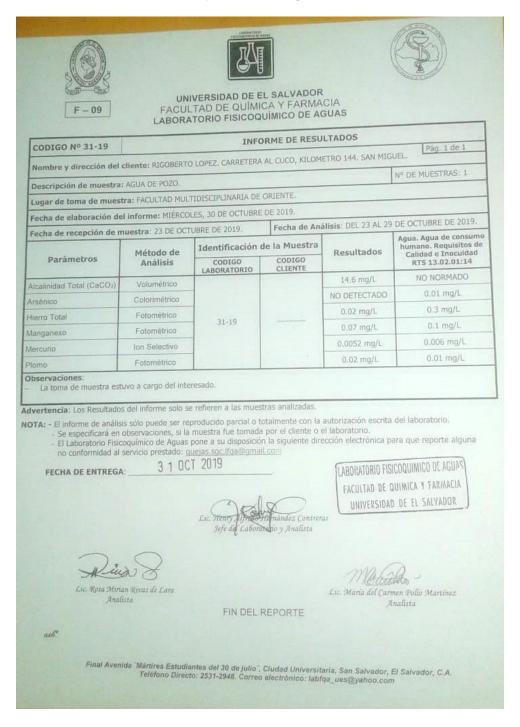
$$L = \frac{654.62 \ m^2}{15 \ m} = 43.6 \ m$$

Pendiente Hidráulica.

Este parámetro es necesario para establecer la diferencia en elevación de la superficie libre por unidad de longitud necesaria para que el flujo del agua pase a través del humedal artificial, según el Ministerio de Salud de El Salvador (2014), el valor para la pendiente hidráulica suele ser del 1% (0.01 m/m) para el dimensionamiento del humedal artificial.

ANEXO 11 Población total de estudiantes por carrera inscritos en el Ciclo I-2020

DEPARTAMENTOS	ALUMNOS	NSCRITOS	TOTAL
	Masculino	Femenino	IOIAL
Licenciatura en Anestesiología e Inhaloterapia	97	139	236
Ingeniería Industrial.	99	40	139
Doctorado en Medicina.	677	839	1516
Licenciatura en Ciencias Jurídicas.	179	239	418
Licenciatura en Laboratorio Clínico.	112	260	372
Licenciatura en Fisioterapia y Terapia Ocupacional.	43	184	227
Licenciatura en Sociología.	35	35	70
Ingeniería Eléctrica.	38	2	40
Ingeniería Agronómica.	160	44	204
Arquitectura.	151	117	268
Ingeniería Mecánica.	34	1	35
Licenciatura en Psicología	93	258	351
Licenciatura en Química y Farmacia.	29	63	92
Licenciatura en Matemática	53	50	103
Licenciatura en Ciencias Químicas.	17	16	33
Licenciatura en Física.	24	10	34
Licenciatura en Biología.	41	56	97
Licenciatura en Mercadeo Internacional.	82	211	293
Profesorado en Idioma Inglés para Tercer Ciclo de Educación Básica y Educación Media.	49	61	110
Profesorado en Ciencias Sociales para Tercer Ciclo de Educación Básica y Educación Media.	29	14	43
Profesorado en Biología paraTercer Ciclo de Educación Básica y Educación Media	12	15	27
Profesorado en Física para Tercer Ciclo de Educación Básica y Educación Media	14	11	25
Profesorado en Química paraTercer Ciclo de Educación Básica y Educación Media	13	12	25
Profesorado en Matemática para Tercer Ciclo de Educación Básica y Educación Media.	78	89	167
Profesorado en Educación Inicial y Parvularia	0	52	52
Profesorado en Educación Básica para Primero y Segundo ciclo	23	50	73
Licenciatura en Educación Inicial yParvularia	0	42	42
Licenciatura en Ciencias de la Educación en la Especialidad de Primero y Segundo Ciclo de Educación Básica	108	279	387
Licenciatura en Ciencias de la Educación, Especialidad Lenguaje y Literatura	28	93	121
Licenciatura en Ciencias de la Educación, Especialidad Administración Escolar	88	114	202
Licenciatura en Ciencias de la Educación, Especialidad Matemática	54	66	120
Licenciatura en Economía.	7	8	15
Licenciatura en Contaduría Pública.	127	127	254


Licenciatura en Administración de Empresas.	175	237	412
Ingeniería Civil.	250	70	320
Ingeniería de Sistemas Informáticos.	217	47	264
Licenciatura en Letras	25	54	79
Licenciatura en Lenguas Modernas :Especialidad en Francés e Inglés	142	213	355
Técnico en Agricultura Sostenible	30	14	44
Técnico en Gestión del DesarrolloTerritorial	5	6	11
Técnico en Turismo Ecológico y Cultural	8	12	20
Técnico en Veterinaria y Zootecnia	16	12	28
Especialidad Médica en Cirugía General	4	0	4
Especialidad Médica en Medicina Interna	1	1	2
Especialidad Médica en Medicina Pediátrica	1	2	3
Maestría en Administracion Financiera	15	13	28
Maestría en Profesionalización de la Docencia Superior	14	17	31
Maestría en Métodos y Técnicas de Investigación Social	7	9	16
Maestría en Derecho Penal Económico	13	6	19
TOTAL	3518	4313	7831

Fuente: Sistema Prometeo Secretaria de Asuntos Académicos

ANEXO 12 Informe de analisis microbiologico del agua de la FMO

Ciudad Universitana, Final 25 Aven	da Norte, San Salvador, El Salvad		,00) 2011 2020
	INFORME DE ANÁLISIS		
Nombre de la muestra: Agu	a de Pozo	Código:	20191014-01
Punto de muestreo: Salida d	lel pozo		
Procedencia: San Miguel			
(NMP), Método de Pla Método: Pseudomonas aeruginos	mes Totales y Fecales por el l ca Vertida para el Recuent a por el mètodo de ausencia/pr	o Bacteriano, D esencia (BAM)	ro más Probable eterminación de
Fecha de Muestreo: 14	I-10-2019 Hora	de Muestreo:	******
Persona que tomó la muestra:			
reisona que tomo la muestra.			
Descripción: Líquido incoloro, tr	ansparente, sin olor	ESPECI	EICACIONES*
Descripción: Líquido incoloro, tra DETERMINACIÓN			FICACIONES*
Descripción: Líquido incoloro, tr	ansparente, sin olor		FICACIONES*
Descripción: Líquido incoloro, tri	ansparente, sin olor. RESULTADOS	< 1.1 N	
Descripción: Líquido incoloro, tr DETERMINACIÓN Bacterias coliformes totales Bacterias coliformes fecales Escherichia coli	RESULTADOS > 23 NMP / 100 mL	< 1.1 N	MP / 100 mL
Descripción: Líquido incoloro, tr DETERMINACIÓN Bacterias coliformes totales Bacterias coliformes fecales	RESULTADOS > 23 NMP / 100 mL > 23 NMP / 100 mL	< 1.1 N < 1.1 N	NMP / 100 mL
Descripción: Líquido incoloro, tra DETERMINACIÓN Bacterias coliformes totales Bacterias coliformes fecales Escherichia coli Conteo de bacterias heterótrofas aerobias y	RESULTADOS > 23 NMP / 100 mL > 23 NMP / 100 mL > 23 NMP / 100 mL	< 1.1 N < 1.1 N < 1.1 N	NMP / 100 mL NMP / 100 mL
Descripción: Líquido incoloro, tri DETERMINACIÓN Bacterias coliformes totales Bacterias coliformes fecales Escherichia coli Conteo de bacterias heterótrofas aerobias y mesófilas Microorganismos patógenos:	RESULTADOS > 23 NMP / 100 mL > 23 NMP / 100 mL > 23 NMP / 100 mL 336 UFC / mL Presencia	< 1.1 N < 1.1 N < 1.1 N	NMP / 100 mL NMP / 100 mL NMP / 100 mL O UFC / mL

ANEXO 13 Informe de analisis fisicoquimico del agua de la FMO

ANEXO 14 Matriz de interacciones actividades de la FMO vs Factores ambientales

								A	ctividad	es					
Factores ambientales		Elementos ambientales	Cultivos agrícolas	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Vertimiento de aguas residuales	Limpieza y mantenimiento de	Cafetines	Prácticas de Iaboratorio de química	Prácticas de Iaboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosforo	Emisiones de gases y CO ₂		6	11		18			29					
Medio fisico	Atmosfera	Control de olores		7	12	15	19	23		30					
	Agua	Aguas superficiales	1	8	13	16	20	24	27	31	33	35	38	43	48
	Suelo	Calidad del suelo	2	9	14	17	21	25	28	32	34	36	39	44	49
Medio biotico	Flora	Flora terrestre	3	10			22	26				37	40	45	50
Medio	Fauna	Fauna terrestre	4										41	46	51
Medio socioeconó mico	Social	Salud e higiene ocupacional	5										42	47	52

ANEXO 15 Matriz de Intensidad de impactos

								A	ctividad	es					
Factores ambientales		Elementos ambientales	Desechos de agroquímicos	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Descarga de aguas residuales	Generación de desechos solidos	Cafetines	Prácticas de Iaboratorio de química	Prácticas de laboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosfera	Emisiones de gases y CO ₂		5	5		2			5					
Medio fisico	Almostera	Control de olores		5	5	2	2	2		5					
	Agua	Aguas superficiales	5	8	8	2	5	5	5	8	5	5	8	8	8
	Suelo	Calidad del suelo	8	8	8	5	2	5	5	8	5	5	8	8	8
Medio biotico	Flora	Flora terrestre	2	8			2	5				5	8	5	5
biotico	Fauna	Fauna terrestre	2										5	5	5
Medio socioeconó mico	Social	Salud ocupacional	5										8	8	8

ANEXO 16 Matriz de Duración de Impactos

								A	ctividad	es					
	actores bientales	Elementos ambientales	Desechos de agroquímicos	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Descarga de aguas residuales	Generación de desechos solidos	Cafetines	Prácticas de Iaboratorio de química	Prácticas de Iaboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosfera	Emisiones de gases y CO ₂		2	2		2			2					
Medio fisico	Almosiera	Control de olores		2	2	2	2	2		2					
fisico	Agua	Aguas superficiales	2	2	2	2	2	2	2	2	2	2	5	5	5
	Suelo	Calidad del suelo	5	2	2	2	2	2	2	2	2	2	5	5	5
Medio biotico	Flora	Flora terrestre	2	2			2	2				2	2	2	2
biotico	Fauna	Fauna terrestre	2										2	2	2
Medio socioeconó mico	Social	Salud ocupacional	2										2	2	2

ANEXO 17 Matriz de Extensión de Impactos

								A	ctividad	es					
	actores bientales	Elementos ambientales	Desechos de agroquímicos	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Descarga de aguas residuales	Generación de desechos solidos	Cafetines	Prácticas de Iaboratorio de química	Prácticas de laboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosfera	Emisiones de gases y CO ₂		2	2		2			2					
Medio fisico	Almosiera	Control de olores		2	2	2	2	2		2					
fisico	Agua	Aguas superficiales	5	5	2	2	5	2	2	2	2	2	2	2	2
	Suelo	Calidad del suelo	5	5	2	2	5	2	2	2	2	2	2	2	2
Medio biotico	Flora	Flora terrestre	2	2			5	2				2	2	2	2
biotico	Fauna	Fauna terrestre	2										2	2	2
Medio socioeconó mico	Social	Salud ocupacional	5										2	2	2

ANEXO 18 Matriz de Reversibilidad de Impactos

								A	ctividad	es					
	actores bientales	Elementos ambientales	Desechos de agroquímicos	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Descarga de aguas residuales	Generación de desechos solidos	Cafetines	Prácticas de Iaboratorio de química	Prácticas de laboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosfera	Emisiones de gases y CO ₂		2	2		2			2					
Medio fisico	Almostera	Control de olores		2	2	2	2	2		2					
fisico	Agua	Aguas superficiales	2	2	2	2	2	2	2	5	2	2	5	5	5
	Suelo	Calidad del suelo	5	5	5	2	2	2	2	5	2	2	5	5	5
Medio biotico	Flora	Flora terrestre	5	2			2	2				2	5	2	5
biotico	Fauna	Fauna terrestre	2										2	2	2
Medio socioeconó mico	Social	Salud ocupacional	2										2	2	2

ANEXO 19 Matriz de Incidencia de Impactos

								Α	ctividade	es					
	actores bientales	Elementos ambientales	Desechos de agroquímicos	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Descarga de aguas residuales	Generación de desechos solidos	Cafetines	Prácticas de Iaboratorio de química	Prácticas de Iaboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosfera	Emisiones de gases y CO ₂		5	5		2			5					
Medio	Almosiera	Control de olores		5	5	2	2	2		5					
Medio fisico	Agua	Aguas superficiales	5	5	5	2	2	2	2	10	5	5	10	10	10
	Suelo	Calidad del suelo	5	10	10	2	2	2	2	10	5	5	10	10	10
Medio biotico	Flora	Flora terrestre	2	5			2	2				5	5	2	5
biotico	Fauna	Fauna terrestre	2										2	2	2
Medio socioeconó mico	Social	Salud ocupacional	5										5	5	5

ANEXO 20 Matriz de Magnitud de Impactos

								A	ctividad	es					
	actores bientales	Elementos ambientales	Desechos de agroquímicos	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Descarga de aguas residuales	Generación de desechos solidos	Cafetines	Prácticas de Iaboratorio de química	Prácticas de Iaboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosfera	Emisiones de gases y CO ₂		3.2	3.2		2			3.2					
Medio fisico	Almosiera	Control de olores		3.2	3.2	2	2	2		3.2					
fisico	Agua	Aguas superficiales	4.4	5.6	4.4	2	4.4	3.2	3.2	4.4	3.2	3.2	5	5	5
	Suelo	Calidad del suelo	6.2	5.6	4	3.2	3.2	3.2	3.2	4.4	3.2	3.2	5	5	5
Medio biotico	Flora	Flora terrestre	2	4.4			3.2	3.2				3.2	4.4	3.2	3.2
biotico	Fauna	Fauna terrestre	2										3.2	3.2	3.2
Medio socioeconó mico	Social	Salud ocupacional	4.4										4.4	4.4	4.4

ANEXO 21 Matriz de Valor Índice Ambiental

								A	ctividad	es					
	actores bientales	Elementos ambientales	Desechos de agroquímicos	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Descarga de aguas residuales	Generación de desechos solidos	Cafetines	Prácticas de Iaboratorio de química	Prácticas de Iaboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosfera	Emisiones de gases y CO ₂		3.11	3.11		2			3.11					
Medio fisico	Atmostera	Control de olores		3.11	3.11	2	2	2		3.11					
fisico	Agua	Aguas superficiales	3.78	4.38	3.78	2	3.24	2.66	2.66	5.20	3.11	3.11	5.63	5.63	5.63
	Suelo	Calidad del suelo	5.70	6.03	4.91	2.66	2.66	2.66	2.66	5.20	3.11	3.11	5.63	5.63	5.63
Medio biotico	Flora	Flora terrestre	3.26	3.78			2.66	2.66				3.11	4.62	2.66	3.81
biotico	Fauna	Fauna terrestre	2										2.66	2.66	2.66
Medio socioeconó mico	Social	Salud ocupacional	3.78										3.78	3.78	3.78

VALOR DE VIA TOTAL: 3.55

ANEXO 22 Matriz de Severidad de Impacto

								A	ctividade	es					
	actores bientales	Elementos ambientales	Desechos de agroquímicos	Crianza de vacas	Crianza de cerdos	Crianza de pollos de engorde	Crianza de cabras y pelibuey	Crianza de conejos	Crianza de tilapias	Descarga de aguas residuales	Generación de desechos solidos	Cafetines	Prácticas de Iaboratorio de química	Prácticas de Iaboratorio de biología	Prácticas de Iaboratorios de Medicina
	Atmosfera	Emisiones de gases y CO ₂		9.95	9.95		4			9.95					
Medio fisico	Almosiera	Control de olores		9.95	9.95	4	4	4		9.95					
fisico	Agua	Aguas superficiales	16.63	24.53	16.63	4	14.26	8.51	8.51	22.88	9.95	9.95	28.15	28.15	28.15
	Suelo	Calidad del suelo	35.34	33.77	19.64	8.51	8.51	8.51	8.51	22.88	9.95	9.95	28.15	28.15	28.15
Medio biotico	Flora	Flora terrestre	6.52	8.8			8.51	8.51				9.95	20.33	8.51	12.19
biotico	Fauna	Fauna terrestre	4										8.51	8.51	8.51
Medio socioeconó mico	Social	Salud ocupacional	16.63										16.63	16.63	16.63

VALOR DE SEVERIDAD TOTAL: 13.95

ANEXO 23 Listado de reactivos químicos para laboratorio

UNIVERSIDAD DE EL SALVADOR
FACULTAD MULTIDISCIPLINARIA DE ORIENTE

DEPARTAMENTO DE CIENCIAS NATURALES Y MATEMATICA

UNIVERSIDAD DE EL SALVADOR
FACULTAD MULTIDISCIPLINARIA ORIENTAL
CORRESPONDENCIA RECISIDA
PISCHA: 18 OCT 2021
HORA: 11 O

Ciudad Universitaria de Oriente, 18 de octubre de 2021

Lic. Juan Ernesto Gómez Jefe de Administración Académica FMO-UES

Reciba un cordial saludo y deseo de éxito en sus funciones diarias

Por este medio y según solicitud recibida a mi correo a usted remito listado actualizado de reactivos que se encuentran en el Laboratorio de Biología y Laboratorio de Química de la FMO.

Sin más que agregar.

Atentamente,

"HACIA LA LIBERTAD POR LA CULTURA"

Mtra. Karla Maria Mejja Ortiz

Jefa del Departamento de Ciencias Naturales y Matemática FMO-UES

Universidad de el salvador Facultad multidisciplinaria oriental Departamento de Ciencias Naturales y Matemática Sección de Biología

.

Inventario de Reactivos Ciclo I/2016

(A)

NOMBRE	EXISTENCIA
1- Ácido Hidroclorhídrico	200 ml
2- Alcohol Etílico Absoluto	8 lts
3- Ácido Sulfúrico	1 lts
4- Acético Anhídrido	1 lts
5- Ácido Nítrico	8 ½ lts
6- Alcohol Amílico	5 lts
7- Acetona	4 lts
8- Ácido Clorhídrico	200 ml
9- Alcohol Isopropilico	500 ml
10- Ácido Acético	2 lts
11- Ácido Oleico	500 ml
12- Ácido Láctico	600 ml
16- Alcohol Butílico	
14- Ácido Esteárico	400 gr
15- Ácido Oxálico	400 gr
16- Ácido Sulfamilico	400 gr
17- Ácido Molibdico	25 gr
18- Acetato de Cobre	500 gr
19- Ácido Bórico	1 kg
20- Ácido Salicílico	10 gr
21- Ácido Cítrico	20 gr
22- Azul de metileno	50 gr
23- Azul de anilina	
24- Almidón	
25- Alcohol Bencílico	1 lts
26- Aceite de Inmersión	1800 ml
27- Acetato de Sodio	250 gr
28- Azufre	25 gr
29- Azul de metileno indicador	100 gr

(B) NOMBRE **EXISTENCIA** 1- Bórax 400 gr 2- Benceno _____ _____ 5 Lts 3- Bicarbonato de Potasio ______500 gr 4- Bicarbonato de Sodio 500 gr (C) NOMBRE **EXISTENCIA** 1- Cloruro de Sodio _____ 2500 gr 2- Cloruro de Benzalconio _______150 ml 4- Cloruro de Manganeso ______ 400 gr 5- Cloruro de Calcio ______ 2000 gr 6- Cloruro de Potasio ______ 1000 gr 7- Cloruro de Amonio ______ 500 gr 8- Carbonato de Calcio ______ 600 gr 9- Cianuro de Potasio ______ 200 gr 10- Cloruro de Zinc ______ 1000 ml 11- Cloruro de Cobre ______ 250 gr 12- Carmín _____ 35 gr 13- Cloruro de Cobalto ______ 500 gr 14- Cloruro de Magnesio ______ 20 gr 15- Cloruro de Mercurio 270 gr 16- Cloruro de Estaño ______ 50 gr 17- Cloruro de Acetona ______ 50 ml 18- Cloruro de sodio ______ 500 gr 19- Carbón Activado ______ 25 gr 20- Cloroformo 4 Lts 21- Citrato de Sodio _____ 1400 gr 22- Carbonato de Sodio _____ _____ 1700 gr (D) NOMBRE **EXISTENCIA** 1- Dextrosa ___ _____ 500 gr 2- D (+) Glucosa_____ _____ 250 gr 3- 4 Dimetilamino Benzaldehído ______ 170 gr 4- Diclorofenol ______ 100 ml 5- D (-) Manitol ______ 1 kg

	(E)	
NON	MBRE	EXISTENCIA
1-	Etanol Absoluto	1 Lts
2-	Éter Dietilico	1 Lts
3-	Éter de Petróleo	5 Lts
4-	Etanol Etílico	500 ml
5-	Etanol	5 Lts
6-	Eosina	75 gr
	(F)	
AOIA	MBRE	EXISTENCIA
	1- Fenol	
	2- Fosfato de sodio	
	3- Fosfato de Potasio Monobásico	
	4- Fucsina de diamante	
	5- Ferrocianuro de Potasio	
	6- Fucsina	
	7- Fucsina nova	
	8- Fosfato ácido de Sodio	
	(G)	
NON	MBRE	EXISTENCIA
:	1- Gelatina en polvo	1400g
	2- Glicerina	1
3	3- Glucosa	20g
4	4- Giemsa	100ml
	(H)	
NON	MBRE	EXISTENCIA
	1- Hidróxido de Sodio	
	2- Hidróxido de Potasio	
	3- Hematoxilina	
	(1)	
NON	MBRE	EXISTENCIA
	1- Ioduro de Potasio	1250g
	2- lodo	1Kg
	3- Índigo carmín	50g

		(L)	
NOME	BRE		EXISTENCIA
1-	Lugol		200ml
	Lactosa		
	Lactofenol azul algodón		
		(M)	
NOME	DE.	(M)	EVICTENCIA
	Metanol		EXISTENCIA
1-	Wetallol		
		(N)	
NOME	BRE		EXISTENCIA
1-	Nitrato de Potasio		500g
2-	Nitrato de Calcio		250g
	Nigrosina		
4-	1-Naphtol		1200g
5-	Naranja de Metilo		100g
6-	1-Naftilamina		100g
7-	Nitrito de Potasio		250g
8-	Nitrato de Lib		100g
	Nitrofrusider de Sodio		
10	- Nitrato de Sodio		500g
		(0)	
NOME	BRE		EXISTENCIA
	Oxido de Cromo		
	Oxalato de amonio		
			13006
		(P)	
NOME	BRE		EXISTENCIA
	Permanganato de Potasio		
	Pararosanilin		
	Peróxido de Hidrogeno		
-			200/111
NON	ans.	(R)	
NOME			EXISTENCIA
	Rojo Neutro		
2-	Rojo de Metilo		30g

3-	Rojo de Mercurio	100g
	(S)	
NOME	BRE	EXISTENCIA
1-	Sulfato de Cobre	1550g
	Sulfato de Sodio	
	Sacarosa	
	Safranina	
	Sudan III	
	Sulfato fémico	
	Sulfato de Magnesio	
	Sulfato de Potasio	
	Sulfato de Zinc heptahidratado	
	- Sulfato de amonio	
	- Sulfato de Manganeso	
	(T)	
NOME	BRE	EXISTENCIA
1-	Tartrato de Sodio y Potasio	5100g
2-	Tolueno	450ml
3-	Tetraborato de Sodio	250g
4-	Trifeniltetrazolio Cloruro	5g
5-	Tiroxido de Molibdeno	50g
	(U)	
NOME	BRE	EXISTENCIA
1-	Urea	800g
	Urea base Agar	
	60	
NOME	(V)	EVICTENCIA
	Verde de Malaquita oxalato	EXISTENCIA 110g
	Vesubina	
	Verde Claro amarillento	
	Violeta de Genciana	10g

UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA ORIENTAL DEPARTAMENTO DE CIENCIAS NATURALES Y MATEMATICA SECCION DE QUIMICA

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
1	AMONIACO	
2	AMONIO SULFATO	
3	AMONIO NITRATO	
4	HIDROGENO FOSFATO DIAMONIO	
5	CLORURO DE AMONIO	
6	ACETOFENONA	
7	ANTIMONIO CLORURO	
8	AMONIO CARBONATO	
9	AMONIO BROMURO	
10	AMONIO ACETATO	
11	ACETANILIDA	
12	ACETAMIDA	
13	ANHIDRIDO ACETICO	
14	ACETONA	
15	ALUMINIO GRANALLAS	

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: A

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
1	ALUMINIO SULFATO 8 H ₂ O	
2	ALUMINIO CLORURO	
3	ALMIDON SOLUBLE A R	
4	ACETATO DE ETILO	
5	ANARANJADO IV	
6	ANARANJADO II	
7	AMARILLO DE ALIZARINA	

UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA ORIENTAL DEPARTAMENTO DE CIENCIAS NATURALES Y MATEMATICA SECCION DE QUIMICA

8	ACETICO GLACIAL ACIDO
9	AZUFRE
10	ALUMINIO METALICO EN POLVO
11	ANARANJADO DE METILO
12	ALUMINIO EN CINTAS
13	AMILICO – n – NORMAL ALCOHOL
14	AMONIO OXALATO
15	AMONIO HEPTAMOLIBDATO

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: A

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	ANILINA (FENILAMINA)	
	AMONIO TIOCIANATO	
	ANTRONA	
	ACETALDEHIDO	
	ACETILO CLORURO	
	ALUMINIO NITRATO	
	ALIZARINA	
	ANTRACENO	
	ALFANAFTOL	
	ARSENICO TRIOXIDO	
	ANTIPIRINA	
	AMONIO DICROMATO	
	ASCORBICO ACIDO	
	ARABINOSA	
	ARGININA	

UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA ORIENTAL DEPARTAMENTO DE CIENCIAS NATURALES Y MATEMATICA SECCION DE QUIMICA

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: A

NOMBRE DEL REACTIVO	CLASIFICACIÓN
ALUMNIO K Y SULFATO	
ALUMINIO AMONIO SULFATO	
AZUL DE METILENO	
ALUMINIO TRICLORURO ANHIDRO	
ACETYL CETONA	
ANARANJADO II	
ALUMINIO TRIOXIDO	
ASCORBICO ÁCIDO	
ACIDO -1- AMINO 2-NAFTOL 4-SULFONICO	
AZUL DE TIMOL	
	ALUMNIO K Y SULFATO ALUMINIO AMONIO SULFATO AZUL DE METILENO ALUMINIO TRICLORURO ANHIDRO ACETYL CETONA ANARANJADO II ALUMINIO TRIOXIDO ASCORBICO ÁCIDO ACIDO -1- AMINO 2-NAFTOL 4-SULFONICO

N^{o}	NOMBRE DEL REACTIVO	CLASIFICACION
	BARIO CLORURO	
	BARIO NITRATO	
	BARIO OXIDO	
	BENZOICO ACIDO	
	BARIO HIDROXIDO	
	BARIO CARBONATO	
	BROMO	
	BENCENO (CRISTALIZABLE)	
	BENCENO (BENCINA DE PETROLEO)	
	BUTILICO – n – NORMAL ALCOHOL	
	BROMOFENOL AZUL	
	BROMO TYMOL AZUL	

BORICO ACIDO	
BETA – NAFTOL	
BENZILAMINA	

NOMBRE DEL REACTIVO	CLASIFICACION
BROMURO BENCENO	
BENZALDEHIDO	
BENCILO CLORURO	
BISMUTO YODURO	
BENCILICO (ALCOHOL)	
BENCIDINA	
BUFFER P H 4	
BUFFER PH 7	
BENZOILO CLORURO	
BUTIRALDEHIDO	
BISMUTO III NITRATO	
BENZALACETO FENONA	
BENZALDEHIDO P – DIMETILAMINO	
BULO BLANCO (POLVO)	
BUTANOL ISO	
	BENZALDEHIDO BENCILO CLORURO BISMUTO YODURO BENCILICO (ALCOHOL) BENCIDINA BUFFER P H 4 BUFFER PH 7 BENZOILO CLORURO BUTIRALDEHIDO BISMUTO III NITRATO BENZALACETO FENONA BENZALDEHIDO P – DIMETILAMINO BULO BLANCO (POLVO)

unidad: Laboratorio de Qumica — fecha: 31/05/21 hoja: ${f B}$

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
1	BUTIRICO ACIDO	
2	BUTANOL SEC.	
3	BUFFER P H 10	9.1
4	ISOBUTIL METIL CETONA	
5	BUTENOICO 2 – ACIDO	

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: C

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	CLORHIDRICO ACIDO	
	CALCIO CLORURO ANHIDRO	
	CALCIO NITRATO	
	CALCIO HIDROXIDO	
	CALCIO OXIDO	
	CALCIO CARBONATO	
	CALCIO ACETATO	
	CADMIO NITRATO	
	CALCIO HIPOCLORITO	
	COBALTO CLORURO	
	COBALTO NITRATO	
	CLOROFORMO	
	COBRE NITRATO (3 H ₂ O)	
	COBRE CLORURO (2 H ₂ O)	
	COBRE SULFATO (5H ₂ O)	

UNIDAD: LABORATORIO DE QUMICA	FECHA: 31/05/21	HOJA:	

NOMBRE DEL REACTIVO	CLASIFICACION
CARBON BISULFURO	
CICLOHEXANO	·
CISTEINA	
CITRICO ACIDO	
CARBONO TETRACLORURO	
CARBON	
CUPRICO ACETATO	
CALCIO SULFATO	
CRISTAL VIOLETA	
COBRE II OXIDO	
CAOLIN (BORO BLANCO)	
CROMO III CLORURO	
CLORO BENCENO	
CALCIO CLORURO	
DIHIDRATADO	
CALCIO CARBURO	
	CARBON BISULFURO CICLOHEXANO CISTEINA CITRICO ACIDO CARBONO TETRACLORURO CARBON CUPRICO ACETATO CALCIO SULFATO CRISTAL VIOLETA COBRE II OXIDO CAOLIN (BORO BLANCO) CROMO III CLORURO CLORO BENCENO CALCIO CLORURO DIHIDRATADO

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: C

NOMBRE DEL REACTIVO	CLASIFICACION
CLORURO DE TIONILO	
COBRE SULFATO ANHIDRIDO	
CICLOHEXANOL	
CELULOSA CROMATOGRAFIA PARA	
CASEINA	
CERA BLANCA	
	CLORURO DE TIONILO COBRE SULFATO ANHIDRIDO CICLOHEXANOL CELULOSA CROMATOGRAFIA PARA CASEINA

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21_HOJA: **D**

NOMBRE DEL REACTIVO	CLASIFICACION
DEXTROSA HIDRATADA	
2 – 4 DINITROFENIL HIDRACINA	
D XILOSA	
DIFENILAMINA	
D (+) GALACTOSA	
DIMETIL GLIOXINA	
DEXTROSA MONOHIDRATADA	
DEXTROSA ANHIDRA	
	DEXTROSA HIDRATADA 2 – 4 DINITROFENIL HIDRACINA D XILOSA DIFENILAMINA D (+) GALACTOSA DIMETIL GLIOXINA DEXTROSA MONOHIDRATADA

Nº	NOMBRE DEL REACTIVO	CLASIFICACION	
	ETER ETILICO		
	ESTAÑO (IV) CLORURO 5 H ₂ O		
	ETANOL 90		
	EOSINA		
	ESTEÁRICO ACIDO		
	ESTAÑO (POLVO)		
	EDTA		
	ETER DE PETROLEO		
	ESTRONCIO CLORURO		
	ETIL METIL CETONA		

]	ESTAÑO II CLORURO	
1	ETILO BENZOATO	
1	ESTAÑO CLORURO (II)	
1	ESTRONCIO NITRATO (ANHIDRIDO)	
]	ETANOL DESNATURALIZADO	
_		

NOMBRE DEL REACTIVO	CLASIFICACION
ETILEN GLICOL	
EBULLICION PERLAS	
ESTAÑO CLORURO 2 H₂O	
ETANOL FÓRMULA	
ETILEN DINITRILO	
	ETILEN GLICOL EBULLICION PERLAS ESTAÑO CLORURO 2 H ₂ O ETANOL FÓRMULA

NOMBRE DEL REACTIVO	CLASIFICACION
FENOLFTALEINA	
FENOL	
FOSFORO ROJO	
FOSFORICO ACIDO	
FUMARICO ACIDO	
FORMICO ACIDO	
FORMALDEHIDO	
ACIDO FOSFOMOLIBDICO	
FOSFOTUNGTICO ACIDO	
FENIL HIDRACINA	
	FENOLFTALEINA FENOL FOSFORO ROJO FOSFORICO ACIDO FUMARICO ACIDO FORMICO ACIDO FORMALDEHIDO ACIDO FOSFOMOLIBDICO FOSFOTUNGTICO ACIDO

FLORO GLUCINA	
FRUCTOSA - D	

unidad: Laboratorio de Qumica $\,$ fecha: 31/05/21 hoja: G

NOMBRE DEL REACTIVO	CLASIFICACION
GLUCOSA ANHIDRIDA	
GLUCOSA MONOHIDRATADA	
GLUTAMICO ACIDO	
GLICOOLL	
GRASA PARA GRIFOS	
GLICINA	
GENCINA VIOLETA	
GLICEROL	
GALACTOSA – D	
	GLUCOSA ANHIDRIDA GLUCOSA MONOHIDRATADA GLUTAMICO ACIDO GLICOOLL GRASA PARA GRIFOS GLICINA GENCINA VIOLETA GLICEROL

unidad: Laboratorio de Qumica $\,$ fecha: $\underline{_{31/05/21}}$ hoja: H

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	HIDROGENO PEROXIDO	
	HIERRO LIMADURAS	
	HIERRO III NITRATO 9 H ₂ O	
	HIERRO III CLORURO 6 H₂O	
	HIERRO III SULFATO 7 H ₂ O	
	HIERRO SULFATO Y AMONIO 12 H ₂ O	
	HIDROXIQUINOLINA 8 -	
	HIDROQUINONA 1	
	HIERRO II CLORURO 4 H ₂ O	

HIDROXILAMINA	
HIERRO SULFATO Y AMONIO 6 H ₂ O	
HEXANO	

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: I

Noo	NOMBRE DEL REACTIVO	CLASIFICACION
	YODO	
	INDICADOR AZUL (PAPEL)	
	INDICADOR ROJO (PAPEL)	
	IODOFORMO POLVO	
	ISO AMILICO ALCOHOL	
	INDICADOR pH 9	
	ISOPROPILICO ALCOHOL	
	IODO RESUBLIMADO	
	IODOFORMO	

unidad: Laboratorio de Qumica $\,\,$ fecha: $\underline{_{31/05/21}}$ hoja: L

NOMBRE DEL REACTIVO	CLASIFICACION
LITHIUM CLORURO	
LITIO NITRATO	
LUBRICANTE (BOMBA DE VACIO)	
LITIO CARBONATO	
LACTOSA	
LACTICO ACIDO	
	LITHIUM CLORURO LITIO NITRATO LUBRICANTE (BOMBA DE VACIO) LITIO CARBONATO LACTOSA

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	MAGNESIO SULFATO (H ₂ O)	
	METANOL	
	MAGNESIO CLORURO	
	MAGNESIO (CINTAS)	
	MAGNESIO (POLVO)	
	MANGANESO (POLVO) DIÓXIDO	
	MANGANESO CLORURO (6 H ₂ O)	
	MAGNESIO SULFATO . 1H ₂ O	
	MALEICO ACIDO	
	MERCURIO	
	MERCURIO OXIDO	
	MERCURIO NITRATO	
	MERCURIO CLORURO	
	MOLIBDICO ACIDO	
	MUREXIDA	

NOMBRE DEL REACTIVO	CLASIFICACION
MAGNESIO SULFATO (H ₂ O)	
MAGNESIO NITRATO (6 H ₂ O)	
MALTOSA (H ₂ O)	
METILO IODURO	
MERCURIO METALICO	
MAGNESIO ACETATO (4H ₂ O)	
	MAGNESIO SULFATO (H ₂ O) MAGNESIO NITRATO (6 H ₂ O) MALTOSA (H ₂ O) METILO IODURO MERCURIO METALICO

MAGNESIO II NITRATO (4H ₂ O)	
MANOSA D (+)	

	CLASIFICACION
NITRICO ACIDO	
NEOPENTANO	
N – DIMETIL ANILINA	
NIQUEL SULFATO	
NEGRO DE ERIOCROMO	
NITROBENCENO	
NIQUEL II CLORURO (6 H ₂ O)	
NAFTALENO	
NIQUEL NITRATO (6 H ₂ O)	
NINHIDRINA	
NITROPRUSIATO DE SODIO	
NITROFENOL	
4 – NITROFENOL. IND.	
	NEOPENTANO N – DIMETIL ANILINA NIQUEL SULFATO NEGRO DE ERIOCROMO NITROBENCENO NIQUEL II CLORURO (6 H ₂ O) NAFTALENO NIQUEL NITRATO (6 H ₂ O) NINHIDRINA NITROPRUSIATO DE SODIO NITROFENOL

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21_HOJA: O

N^{o}	NOMBRE DEL REACTIVO	CLASIFICACION
	OXALICO ACIDO	
	O – TOLUIDINA	
	OLEICO ACIDO	

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: P

Nº	NOMBRE DEL REACTIVO	CLASIFICACION	
	PLOMO II NITRATO		
	PLOMO DIOXIDO		
	PLOMO SULFATO		
	PLOMO (PULVERIZADO)		
	PARAFINA SÓLIDA		
	PLOMO ACETATO		
	PLATA NITRATO		
	PLATA ACETATO		
	POTASIO CROMATO		
	POTASIO DICROMATO		
	POTASIO IODATO		
	POTASIO IODURO		
	POTASIO PERMANGANATO		
	POTASIO BIYODATO		
	POTASIO NITRATO		

UNIDAD: LABORATORIO DE QUMICA FECHA:31/05/21 HOJA: P

N^{o}	NOMBRE DEL REACTIVO	CLASIFICACION
	POTASIO CLORATO	
	POTASIO BROMURO	
	POTASIO HIDROXIDO	
	POTASIO BISULFITO	
	POTASIO CLORURO	
	POTASIO FERROCIANURO 3 H ₂ O	
	POTASIO FERRICIANURO	
	POTASIO FOSFATO	
	MONOBASICO	
	POTASIO TIOSIANATO	
	POTASIO Y SODIO TARTRATO	
	POTASIO METABISULFITO	
	PICRICO ACIDO	
	PROPANOL NORMAL	
	PENTANO	
	POTASIO SULFATO	

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: P

NOMBRE DEL REACTIVO	CLASIFICACION
PARAFINA LIQUIDA	
POTASIO CARBONATO ANHIDRO	
PARADICLORO BENCENO	
PIRIDINA	
PLATA SULFATO	
POTASIO CIANURO	
POTASIO NITRITO	
POTASIO ACETATO	
PLOMO II SULFITO	
POTASIO CARBONATO MONOHIDRATADO	
PERCLORICO ACIDO	
PEPSINA	
PROPIONALDEHIDO	
POTASIO HIDROGENOFTALATO	
	PARAFINA LIQUIDA POTASIO CARBONATO ANHIDRO PARADICLORO BENCENO PIRIDINA PLATA SULFATO POTASIO CIANURO POTASIO NITRITO POTASIO ACETATO PLOMO II SULFITO POTASIO CARBONATO MONOHIDRATADO PERCLORICO ACIDO PEPSINA PROPIONALDEHIDO

UNIDAD: LABORATORIO DE QUMICA FECHA: 31/05/21 HOJA: P

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	POTASIO FOSFATO	
	POTASIO FOSFATO DIBASICO	
	PERCLORICO ACIDO	
	PROPIONICO ACIDO	
	PROPANOL 1 – 2 – METIL	
	POTASIO OXALATO.	
	POTASIO BICARBONATO	

UNIDAD: LABORATORIO DE QUMICA	FECHA: 31/05/21	ноја: R
		_

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	ROJO DE METILO	
	ROJO DE FENOL	
	RESORCINOL	

N^{o}	NOMBRE DEL REACTIVO	CLASIFICACION
	SULFURICO ACIDO	
	SODIO SULFATO	
	SODIO CARBONATO	
	SODIO TIOSIANATO	
	SODIO TIOSULFATO	
	SODIO METALICO	
	SODIO METABISULFITO	
	SODIO BISULFITO	
	SODIO HIDROXIDO	
	SODIO BROMURO	
	SODIO BICARBONATO	
	SODIO ACETATO	77
	SODIO OXALATO	
	SODIO NITROPRUSIATO	
	SODIO PEROXIDO	

UNIDAD: LABORATORIO DE QUMICA FECHA:31/05/21 HOJA: S

NOMBRE DEL REACTIVO	CLASIFICACION
SILICA GEL	
SALICILICO ACIDO	
SODIO CLORURO	
SODIO YODURO	
SODIO CARBONATO MONOHIDRATATO	
SODIO CITRATO BIHIDRATADO	
SODIO TUNGSTATO	
SODIO TETRABORATO	
SODIO NITRITO	
SODIO BENZOATO	
SODIO DICROMATO	
SODIO NITRATO	
SEMICARBOCIDA HIDROCLORICA	
SAPONINA BLANCA PURA	
	SILICA GEL SALICILICO ACIDO SODIO CLORURO SODIO YODURO SODIO CARBONATO MONOHIDRATATO SODIO CITRATO BIHIDRATADO SODIO TUNGSTATO SODIO TETRABORATO SODIO NITRITO SODIO BENZOATO SODIO DICROMATO SODIO NITRATO SODIO NITRATO

NOMBRE DEL REACTIVO	CLASIFICACION	
SILICA GEL COPN INDEC. DE HUMEDAD		
SODIO ARSENATO ACIDO 7 H ₂ O		
SODIO SULFITO ANHIDRO		
SODIO COBALTINITRITO		
SODIO FOSFATO DIBÁSICO ANHIDRO		
SULFURICO ACIDO FUMANTE		
SODIO ARSENICO		
SODIO FOSFATO MONOBASICO		
SODIO BISMUTATO		
SODIO NITROPRUSIATO		
SODIO FOSFATO DIBASICO 2 H ₂ O		
SODIO FOSFATO TRIBASICO		
SODIO METAPIRIODATO		
	SILICA GEL COPN INDEC. DE HUMEDAD SODIO ARSENATO ACIDO 7 H ₂ O SODIO SULFITO ANHIDRO SODIO COBALTINITRITO SODIO FOSFATO DIBÁSICO ANHIDRO SULFURICO ACIDO FUMANTE SODIO ARSENICO SODIO FOSFATO MONOBASICO SODIO BISMUTATO SODIO NITROPRUSIATO SODIO FOSFATO DIBASICO 2 H ₂ O SODIO FOSFATO TRIBASICO	SILICA GEL COPN INDEC. DE HUMEDAD SODIO ARSENATO ACIDO 7 H ₂ O SODIO SULFITO ANHIDRO SODIO COBALTINITRITO SODIO FOSFATO DIBÁSICO ANHIDRO SULFURICO ACIDO FUMANTE SODIO ARSENICO SODIO FOSFATO MONOBASICO SODIO BISMUTATO SODIO NITROPRUSIATO SODIO FOSFATO DIBASICO 2 H ₂ O SODIO FOSFATO TRIBASICO

unidad: laboratorio de qumica $\,$ fecha: $\underline{31/05/21}$ hoja: S

Nº	NOMBRE DEL REACTIVO	CLASIFICACION	
	SODIO FLUORURO		
	SODIO TETRABORATO 10 (H ₂ O)		
	TIOSULFATO DE SODIO		
	SULFATIAZOL		
	DITIONITO DE SODIO		
	SODIUM FOSFATO TRIBASICO		

UNIDAD: LABORATORIO DE QUMICA FECHA: $\frac{31/05/21}{1}$ HOJA: T

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	TIOACETAMIDA	
	TANICO ACIDO	
	TOLUENO	
	TARTARICO ACIDO	
	TERBUTILICO ALCOHOL	
	THIOUREA	
	TINOL	
	TRICLORO ACETICO ACIDO	
	TARTRATO EMILICO	
	TRI ETANOL AMINA	
	TIROSINA	
	TRIPTOFANO C ₁₁ H ₁₂ N ₂ O ₂	

unidad: Laboratorio de Qumica $\,$ fecha: 31/05/21 hoja: U

N	NOMBRE DEL REACTIVO	CLASIFICACION	
	UREA		
	URANILO ACETATO 2 H₂O		

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	VERDE DE MALAQUITA	
	VIOLETA CRISTAL	

Nº	NOMBRE DEL REACTIVO	CLASIFICACION
	XILOL	

NOMBRE DEL REACTIVO	CLASIFICACION
ZINC (GRANALLAS)	
ZINC CLORURO (SECO) ANHIDRO	
ZINC SULFATO 7 H ₂ O	
ZINC PULVERIZADO	
ZINC NITRATO 4 H ₂ O	
ZINC CLORURO. 2 H ₂ O	
ZINC OXIDO.	
	ZINC CLORURO (SECO) ANHIDRO ZINC SULFATO 7 H ₂ O ZINC PULVERIZADO ZINC NITRATO 4 H ₂ O ZINC CLORURO. 2 H ₂ O