UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA MECÁNICA

Trabajo de graduación

CARACTERIZACIÓN DE PROCESOS Y EQUIPOS PARA EL SISTEMA DE PURIFICACIÓN DE AGUA TIPO II CON ELECTRODEIONIZADOR

PRESENTADO POR:

BR. EDWIN ERNESTO MIRANDA ARGUETA

Para optar al título de:

INGENIERO MECÁNICO

CIUDAD UNIVERSITARIA, ABRIL 2022

UNIVERSIDAD DE EL SALVADOR

RECTOR		:			
M. S	Sc. ROGER	ARMA	ANDO A	RIAS AI	LVARADO
SECRETARIO GI	ENERAL	:			
M.Sc. I	RANCISC	O ANT	ONIO A	LARCÓ	N SANDOVA
FACI	ULTAD DE	INGEN	NIERÍA	Y ARQU	JITECTURA
DECANO		:			
	PhD. E	EDGAR	ARMA	NDO PE	ÑA
SECRETARIO		:			
	Ing. JUI	LIO AL	BERTO	PORTI	LLO
]	ESCUELA	DE INC	GENIER	ÍA MEC	CÁNICA
DIRECTOR INT	ERINO		:		
Ing.	FRANCISO	CO ALI	FREDO 1	DE LEÓ	N TORRES

UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA MECÁNICA

Trabajo de Graduación previo a la opción al Grado de:

INGENIERO MECÁNICO

Título :
CARACTERIZACIÓN DE PROCESOS Y EQUIPOS PARA EL SISTEMA DE
PURIFICACIÓN DE AGUA TIPO II CON ELECTRODEIONIZADOR
Presentado por : BR. EDWIN ERNESTO MIRANDA ARGUETA
Γrabajo de Graduación Aprobado por:
Docente Asesor :

M.Sc. e Ing. LEYLA MARINA JIMÉNEZ MONROY

San Salvador, abril 2022

Traba	io	de	Grad	luación	A	nro	bado	por
TIUUU	10	uc	Orac	uucion	7 A	PIO	ouuo	POL

Docente Asesor :

M.Sc. e Ing. LEYLA MARINA JIMÉNEZ MONROY

AGRADECIMIENTOS

Agradezco a Dios por guiarme por el camino del estudio, salir adelante y por brindarme salud. A mis padres por los consejos, ánimo y apoyo en todo momento quienes siempre se preocuparon por mi bienestar y mi educación.

Al apoyo constante de mi familia quienes aportaron más de un granito de arena de diferentes maneras desde el inicio hasta el final para que esta meta se cumpliera.

A mis docentes que durante la carrera fueron ejemplo de profesionalismo y por compartir sus conocimientos, que ahora con orgullo serán utilizados para contribuir en el desarrollo del país.

A los compañeros, amigos de la universidad y del trabajo por apoyarnos mutuamente cada año en el aprendizaje y en el crecimiento personal.

Edwin Ernesto Miranda Argueta

INDICE

INT	RODU	JCCIÓN	1
1.1	An	ntecedentes del sistema	2
1.	1.1	Historia	2
1.2	Eta	apas del proceso de obtención de agua tipo II con electrodeionizador	4
1.	2.1	Generalidades	4
1.	2.2	Sistema de Pretratamiento de agua	6
1.	2.3	Sistema de Producción de agua tipo III	6
1.	2.4	Sistema de producción de agua tipo II	8
1.	2.5	Sistema de producción de agua tipo I	11
1.	2.6	Equipos	13
1.3	As	pectos metrológicos	22
1.	3.1	Vocabulario técnico y generalidades en metrología	22
1.3.2	2	Sistema de confirmación metrológica	28
1.	3.3	Registros	30
1.	3.4	Trazabilidad	33
1.4	Re	equisitos Metrológicos en reglamento centroamericano RCTA	36
E	l artíci	ulo 9.2.1 comprende los siguientes aspectos:	36
Capi	ítulo 2	2 Diagnóstico del proceso de purificación de agua tipo II	37
2.1 \$	Simbo	ología y diagrama de flujo del proceso de obtención de agua	40
2.	1.1 Si	mbología para flujogramas según la ISO 9000	40
2.	2.1 D	iagrama de flujo del proceso de obtención de agua tipo II	40
2.2 1	Diagn	óstico del estado actual del equipo	42
2.	2.1 Et	tapa del pretratamiento	43
2.	2.2 Et	tapa del tratamiento	46
2.	2.3 Et	tapa de purificación de agua con electrodeionizador	49
2.3	Caract	erización de equipo en un sistema de agua con electrodeionizador	53
2.	3.1 Ca	aracterización etapa del pretratamiento	53
2.	3.2 Ca	aracterización de la etapa de tratamiento	57
2.	3.3 Ca	aracterización de la etapa de purificación de agua	62
2.4	De	eterminación de magnitudes críticas del proceso	66

2.4.1 Análisis de modos y efectos de mediciones	66
2.4.2 Determinación de magnitudes críticas del proceso sistema pretratamiento	70
2.4.3 Determinación de magnitudes críticas de la etapa de tratamiento	73
2.4.4 Determinación de magnitudes críticas de la etapa de purificación de agua	77
Capítulo 3 Sistema de confirmación metrológica	84
INTRODUCCIÓN	84
3.1 Diseño del plan de confirmación de confirmación metrológica	85
Sección 1 Generalidades de las actividades de mantenimiento y calibración	90
Sección 2 Mantenimiento preventivo para electrodeionizador	95
Sección 3 Medidores de presión	103
Sección 4 Medidores de conductividad	118
Sección 5 Medidores de pH	126
Sección 6 Medidores de ORP	134
Sección 7 Medidores de sílice	142
Sección 8 Medidores de flujo	149
Sección 9 Medidores de humedad relativa	158
Sección 10 Cartas de trazabilidad	166
CONCLUSIONES	174
RECOMENDACIONES	176
Referencias bibliográficas	177
Anexo 1	180

INTRODUCCIÓN

Uno de los reactivos más comunes utilizados en los laboratorios es el agua, la cual se requiere que contenga un mínimo de impurezas, con objeto de aumentar la confiabilidad de los resultados al eliminar el sesgo en los resultados, así como interferencias o reacciones colaterales.

El estudio desarrollado inicia con la presentación de los conceptos y fundamentos relacionados con la caracterización de procesos y equipos para el sistema de purificación de agua tipo II con electrodeionizador, donde se pretende dar a conocer los equipos utilizados y su forma de funcionamiento para la producción de agua, así como una introducción teórica de carácter metrológico.

La segunda parte comprende el diagnóstico de los equipos, a fin de conocer su funcionamiento y los aportes que hacen en las distintas etapas del pulimiento del agua hasta llegar a la producción de agua tipo II. Inicia con la obtención del agua cruda o de pozo, desde donde el agua es llevada a un sistema de pretratamiento el cual se encarga de filtrarla, potabilizarla y eliminar minerales. Después, el agua es tratada en un sistema de osmosis inversa e impulsada por una bomba de alta presión para eliminar hasta el 90% de sales presentes. Por último, el agua producto recibe un pulimiento preciso ingresando en un módulo electrodeionizador con resinas y un campo eléctrico sobre ellas provocando que los iones presentes en el agua sean rechazados y dé como resultado agua pura para diferentes usos en la industria farmacéutica, en la generación de energía y otros.

En el tercer capítulo, se estudian las operaciones requeridas para garantizar que los equipos e instrumentos de medición utilizados en el sistema de purificación de agua tipo II con electrodeionizador proporcionen datos confiables y precisos. Se describen las operaciones y acciones necesarias del sistema de confirmación metrológica que permita tener un adecuado control y mantenimiento sobre los equipos de medición que intervienen en el proceso productivo de agua pura.

CAPÍTULO 1 MARCO TEÓRICO

1.1 Antecedentes del sistema

1.1.1 Historia

El agua es una fuente de vida para los seres vivos y, los seres humanos a lo largo de la historia han almacenado y distribuido agua para cubrir sus necesidades. Podríamos pensar que el tratamiento de agua purificada es una invención reciente, sin embargo, es el fruto de perfeccionar las técnicas utilizadas desde hace miles de años.

Entre los años 4 000 y 2 000 a.c. según "La historia del tratamiento del agua potable" se utilizaban diversos métodos de potabilización, como hervir el agua, ponerla al sol, filtrarla a través del carbón leña o almacenarla en depósitos de cobre. Los egipcios, por ejemplo, purificaban el agua hirviéndola sobre el fuego, calentándola al sol o sumergiendo una pieza de hierro caliente dentro de la misma, comúnmente el agua hervida atravesaba un depósito de arena o grava para luego dejarla enfriar, como se muestra en la figura 1.

Figura 1 Tratamiento de agua por los egipcios A.C.

Además, dejaban reposar el agua durante meses en vasijas de barro para que se precipitaran las partículas e impurezas, en ocasiones incorporaban ciertas sustancias minerales y vegetales para facilitar la precipitación de estas partículas y aclarar el agua, entre ellas la piedra de alumbre, que hoy en día se sigue usando para procesos de coagulación del agua.

Los griegos tampoco ignoraban estas prácticas de purificación del agua, como consta en los escritos de Hipócrates (460-354 a.c.) según "La historia del tratamiento del agua potable" ¹⁹ sobre la salud pública, en los que recomienda que el agua se hierva y se cuele antes de beber.

Los primeros métodos de tratamiento de agua trataban principalmente de mejorar sus características físicas: eliminar su turbidez, color, olor o sabor desagradable. Posteriormente cuando se descubrió una conexión clara entre el agua y ciertas enfermedades, la mayor preocupación fue hacer que el agua estuviera libre de microorganismos nocivos y fuera segura para el consumo humano.

En 1748, el francés J.A. Nollet, con sus trabajos sobre la difusión a través de membranas de animales, descubrió el fenómeno de ósmosis o proceso físico natural basado en el movimiento del agua a través de una membrana semipermeable, para eliminar minerales y partículas grandes del agua. Cien años después, en 1855, Adolf Fick dio a conocer sus leyes, que describen de forma aproximada, la difusión a través de las membranas. Las primeras explicaciones teóricas sobre la ósmosis fueron dadas por Jacobus Henricos Van´t Hoff en 1887, quien también introdujo el concepto de presión osmótica.

La investigación de campo sufrió un nuevo impulso en 1968, con la invención y patentamiento de la configuración espiral para módulos de membranas y, en 1971, con la fabricación de una membrana de fibra hueca con poliamida aromática.

El proceso de purificación de agua con electrodeionizador se atribuye a Morse y Pierce quienes, en 1903 al introducir un par de electrodos en cámaras interior y exterior de un dializador de laboratorio, aceleraron el proceso de separación de electrolitos al aplicar voltaje y eliminaron más rápido las impurezas electrolíticas. Pauli aplicó los diseños para reducir la concentración de polarización.

En 1998, según la publicación de Condorchem Envitech "Obtención de agua ultrapura por electrodeionización" ¹ se comenzó a emplear la tecnología de electrodeionización en conjunto a un equipo de ósmosis inversa en el diseño de sistemas básicos de deionización.

1.2 Etapas del proceso de obtención de agua tipo II con electrodeionizador.

1.2.1 Generalidades

Existen diferentes tipos de sistemas de purificación de agua, dependiendo de la cantidad y calidad de agua que se necesita producir se eligen los equipos y se configuran de manera integral. El sistema de producción está conformado por diferentes equipos en el que, cada uno realiza un proceso de pulimiento del agua, como se muestra en la figura 2.

Como se observa en la figura 2, para la obtención de agua tipo II existen métodos por intercambio iónico por resina directamente del sistema del pretratamiento y del agua permeada de osmosis inversa. Por otro lado, un sistema que sustituye el intercambio iónico por resinas es el sistema con electrodeionizador utilizando un campo eléctrico que separa las sales del agua produciendo agua deionizada de calidad tipo II; el agua ultra pura utiliza un sistema muy similar al electrodeionizador con la diferencia que la calidad de agua producida es mayor y se le clasifica como agua ultra pura tipo I.

Condorchem Envitech "Obtención de agua ultrapura por electrodeionización" Tratamiento de aguas, Electrodesionización Recuperado de www.condorchem.com

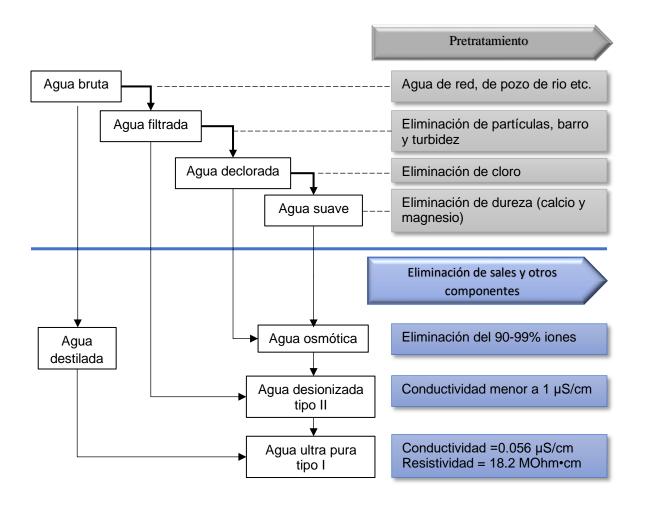


Figura 2 Esquema general del tratamiento de agua por etapas

Un sistema para purificación de agua con electrodeionizador necesita mantener especificaciones constantes de agua, por lo tanto, para caracterizar los equipos necesarios para un sistema de purificación de agua tipo II con electrodeionizador de 500 L/h se seleccionan los equipos con la capacidad necesaria para producir agua purificada de manera constante.

1.2.2 Sistema de Pretratamiento de agua

A esta etapa se le llama pretratamiento debido a que es parte de un proceso de preparación de agua, como el mostrado en la figura 3, para un tratamiento de agua por osmosis inversa. En la etapa de pretratamiento se encuentra un filtro de arena encargado de remover partículas mayores a 5 micras, una columna de carbón encargado de remover orgánicos y cloro, un suavizador encargado de remover la dureza del agua y una lámpara UV como método de desinfección en línea sin contacto directo con el agua.

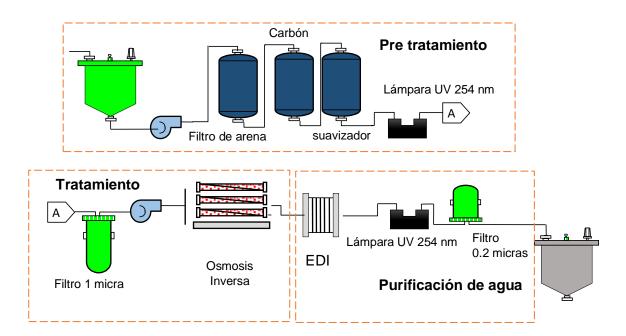


Figura 3 Esquema de sistema de purificación de agua tipo II con electrodeionizador

1.2.3 Sistema de Producción de agua tipo III

El sistema de producción de agua tipo III es conocido como el proceso de producción de agua tratada, esta calidad de agua tiene bastantes aplicaciones en la industria de alimentos, cosméticos, veterinaria entre otros.

El sistema encargado de remover más del 90% de las sales disueltas en el agua y de producir agua tipo III es el sistema de osmosis inversa. El principio consiste en presurizar el agua sobre una superficie porosa (membrana), tal como se muestra en la figura 4, en la cual solo podrá atravesar el agua dejando atrás una concentración de sales y minerales obteniéndose agua producto con conductividad menor o igual a 4 μS/cm cumpliendo un criterio de la calidad de agua tipo III según la ASTM D1193 2018 "Especificaciones Estándar para agua grado reactivo. Sociedad Americana de pruebas y materiales" ².

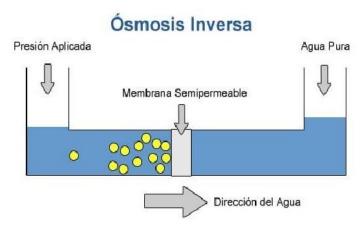


Figura 4 Principio físico de la osmosis inversa

Una bomba de alta presión se encarga de elevar la presión del agua, la presión a la que la membrana es capaz de permear agua pura hacia el otro lado del compartimiento se le llama presión osmótica y es un parámetro termodinámico con el que se controla la calidad y cantidad del agua producida y la vida de la membrana, que debe ser capaz de soportar presiones mayores a la osmótica ya que a altas presiones puede sufrir daños irreversibles.

La membrana también debe soportar temperaturas de 45°C y, para el sistema de purificación de agua con electrodeionizador se debe de utilizar una membrana con el menor paso de sales posible por las membranas.

ASTM D1193-2018, (American Society for Testing and Materials), Standard Specification for Reagent Water, Recuperado de www.wasserlab.com

1.2.4 Sistema de producción de agua tipo II

Este tipo de agua es recomendada para la mayoría de pruebas analíticas y generales de laboratorios, tales como los análisis hematológicos, serológicos y microbiológicos, así como métodos químicos en los que específicamente no se indique o se haya comprobado que se requiere agua de calidad Tipo I. La ASTM D 1193:2018² recomienda que esta calidad de agua esté siempre libre de impurezas orgánicas.

En este sistema se suele instalar una lámpara ultravioleta como método preventivo de desinfección y un filtro microbiológico de 0.2 micras para retener cualquier desprendimiento de resina del electrodeionizador o fragmento de tubería que sea una fuente de contaminación en el agua producto del electrodeionizador.

El equipo posee un compartimiento que contiene resinas de intercambio iónico empaquetadas en un espacio entre membranas. Se le llama membrana aniónica a la que tiene carga positiva permeable a aniones, repele cationes y membrana catiónica a la que posee carga negativa, permeable a cationes y repele aniones.

Las membranas son impermeables al agua, solamente los iones pueden atravesar las membranas gracias a un campo eléctrico que se genera entre las dos placas con polaridad negativa y otra positiva como se muestra en la figura 5. Según el modelo de funcionamiento de la membrana marca "Ionpure"³, el voltaje de corriente continua crea una corriente a través de las resinas que arrastra cationes hacia el cátodo y aniones hacia el ánodo; los iones, al encontrarse en la siguiente cámara de flujo son arrastrados por la corriente de rechazo quedando la cámara de flujo diluido libre de un gran porcentaje de iones.

ASTM D1193-2018, (American Society for Testing and Materials), Standard Specification for Reagent Water, Recuperado de www.wasserlab.com

Evocua 2020, EDI modules, Recuperado de "www.Evocua, Ionpure, productos Ion Cedi" Tratamiento de agua potable, procesos de desinfección.

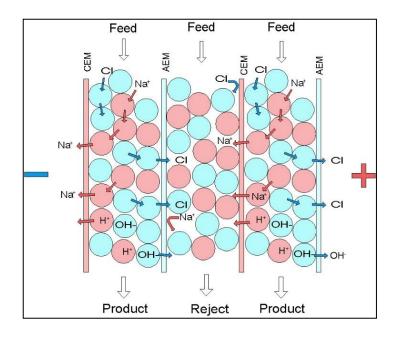


Figura 5 Método de electrodeionización

Existen otros métodos de purificación de agua, como por ejemplo la técnica de purificación de agua a través de resinas de camas separadas. Esta técnica utiliza un sistema pretratamiento y un sistema desmineralizador con tanques de resinas catiónica y aniónica, los cuales necesitan regeneración química con base ácida y alcalina, la figura 6 representa un esquema del sistema con desmineralizador de camas separadas.

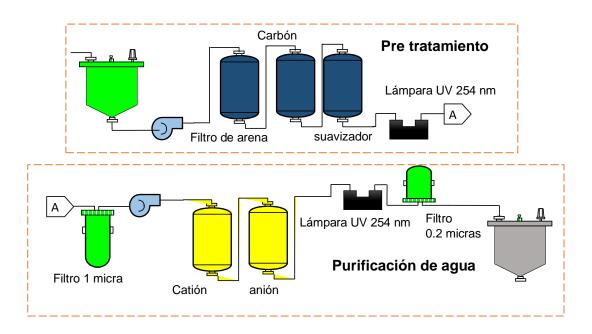
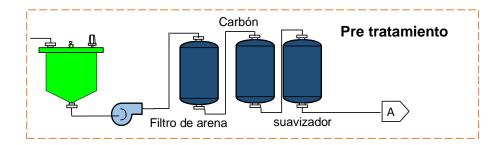



Figura 6 Sistema desmineralizador de camas separadas

Los destiladores de la figura 7 también son un método muy conocido para la purificación de agua, el problema de este método son los altos consumos de energía y agua de descarte ya que ronda más del 80% del agua total de ingreso, en este proceso también se requiere de un sistema de pretratamiento de agua para evitar incrustaciones en los equipos y ciclos cortos de mantenimiento.

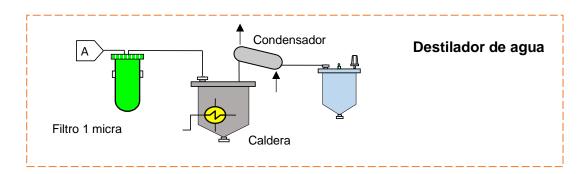


Figura 7 Sistema con destilador

Ventajas del proceso de purificación de agua tipo II con electrodeionizador:

- No se necesitan químicos para regeneración de resina a excepción de suavizador ya que requiere de salmuera, por lo que se ahorran gastos por compras de químicos y procesos de neutralización de agua de descarte
- La producción de agua es de manera rápida, continua y con parámetros estables
- El costo de energía eléctrica es bajo en comparación al sistema con destilador
- El agua de descarte no necesita una neutralización de químicos a diferencia de los desmineralizadores con resinas y la cantidad de agua de descarte es menor en comparación al sistema con destilador.

1.2.5 Sistema de producción de agua tipo I

Este sistema, mostrado en la figura 8, es un método de obtención de agua ultra pura, usualmente utilizada para la fabricación de inyectables. El agua tipo I es una forma de clasificar el agua de

acuerdo a su calidad y es una de las sustancias más pura utilizadas en los laboratorios farmacéuticos.

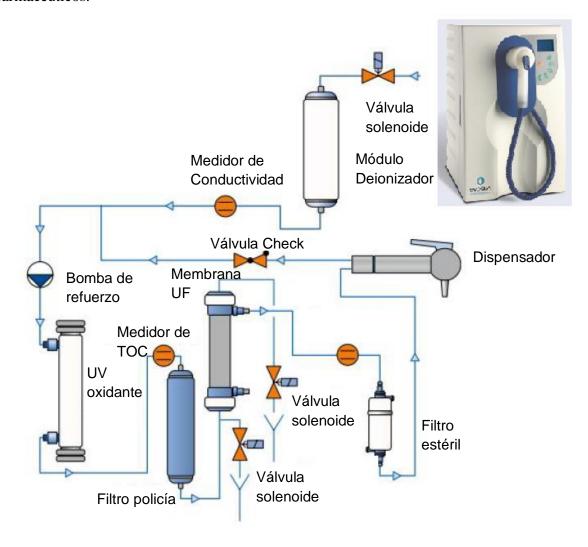


Figura 8 Equipo de generación de agua ultrapura

Según la ASTM D 1193:2018² es usada para procedimientos que requieren máxima exactitud y precisión, tales como espectrometría atómica, fotometría de llama, soluciones buffer de referencia y reconstrucción de materiales ionizados como estándares. Es de aclarar que, en las versiones del estándar de los años 2006 y 2018, ya no se especifican las aplicaciones de los diferentes tipos de agua.

1.2.6 Equipos

Los equipos más utilizados para el tratamiento de agua han ido evolucionando y hay de diferentes tipos. En general, se necesitan tanques de almacenamiento para la recolección de agua a tratar, una serie de filtros de pulimiento del agua y un sistema de purificación o un desmineralizador de agua, un sistema de tuberías adecuado y controlado por válvulas e instrumentos de medición para el control del proceso.

Los principales equipos utilizados en el proceso de purificación de agua con electrodeionizador son los siguientes:

Equipos de etapa pretratamiento:

1. Filtros de arena

Los filtros de arena, suelen estar conformados por un tanque de fibra de vidrio o de acero inoxidable, poseen una capa de grava y una de arena, mediante una válvula manual o automática el agua se distribuye desde la parte superior del filtro hasta la parte inferior donde el agua filtrada es recolectada y enviada como agua filtrada hacia la siguiente etapa.

Dependiendo del tipo de filtración se pueden colocar distintos sustratos, como arena verde, turbidex (mineral de alumino-silicato) o grava. La composición del filtro y la calidad del agua también regulan la frecuencia del retro-lavado. El retro-lavado es el paso del flujo de agua en

ASTM D1193-2018, (American Society for Testing and Materials), Standard Specification for Reagent Water, Recuperado de www.wasserlab.com

contraflujo normal, para descargar las impurezas absorbidas por la arena. Un modelo de filtro se muestra en la figura 9.

Figura 9 Filtro de arena

2. Suavizadores

Este está conformado por un tanque de fibra de vidrio o tanque de acero inoxidable, son llenados al 60% de su volumen con resina catiónica base sodio, también cuentan con una válvula manual o automática y un sistema de distribución para extraer el agua suave producida y un depósito para salmuera.

Como su nombre lo sugiere, los suavizadores utilizan resina catiónica para suavizar el agua, es decir para disminuir la dureza del agua expresada en concentración de carbonato de calcio (CaCO₃). Como se muestra en la figura 10, la resina debe ser regenerada con salmuera, ya que el principio de funcionamiento de los suavizadores es por el intercambio iónico, intercambiando sodio por calcio y magnesio.

Figura 10 Suavizador

3. Columna de carbono

Las columnas de carbono usan carbón activado para remover impurezas en el agua a través de absorción química, ver figura 11. Las columnas de carbono, son ampliamente usados en la industria alimenticia, ya que aun en falla no añaden impurezas perjudiciales para el consumo humano. También son usados, en la producción de las bebidas alcohólicas como el vodka.

El carbón activado funciona a través de las fuerzas de Van der Walls, las placas de carbón activado inducen la formación de dipolos en las moléculas orgánicas, lo que genera que las moléculas se atraigan y permanezcan juntas y por lo tanto precipiten fuera de la solución.

La variación de la forma y la porosidad de los gránulos, así como el tipo de carbón, tienen un gran efecto en la eficiencia del filtro y los tiempos del retro-lavado requerido, debido a que los filtros de carbón deben ser retro-lavados constantemente, este factor es crítico en la eficiencia total del filtro.

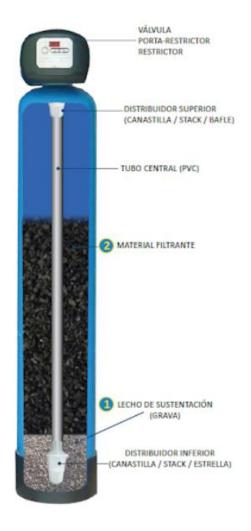


Figura 11 Columna de carbón

4. Lámpara Ultravioleta

Los sistemas utilizan el método de desinfección por luz ultravioleta, ver figura 12, funcionan mediante la radiación o iluminación hacia el flujo de agua con una o más lámparas de silicio de cuarzo, con una longitud de onda de 200 a 300 nanómetros. Este proceso de desinfección no cambia las propiedades del agua, es decir no altera químicamente la estructura del fluido tratado ofreciendo un proceso de desinfección limpio, seguro y efectivo. Se garantiza la eliminación entre un 99.9% y el 99.99% de los agentes patógenos.

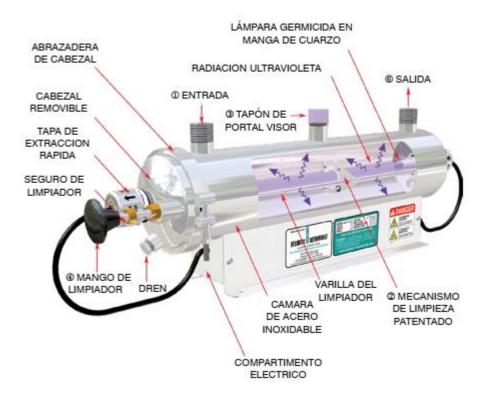


Figura 12 Partes principales de Lámpara Ultravioleta

5. Dosificadora de cloro

Como se muestra en la figura 13, es un equipo accionado por bombas de diafragma o de pistón que succionan la solución de cloro o incluso el mismo sistema puede utilizarse para dosificar otro tipo de químico como desincrustante o soda. Para la dosificación de cloro se necesita un sensor que indique los porcentajes de cloro y así lograr dosificar la cantidad necesaria según la especificación.

Figura 13 Bomba dosificadora de químicos

Equipos de etapa de tratamiento de agua

Osmosis inversa: en esta etapa se encuentra la osmosis inversa y es un equipo conformado por componentes de medición y de procesos como los mostrados en la figura 14 y se describen de la siguiente manera:

- 1. Membrana de osmosis: es el componente encargado de permear agua por medio de la presión de la bomba y el material es de poliamida con un tamaño de poro de hasta 0.2 μm
- 2. Bomba de presión: es una bomba de refuerzo para elevar la presión hasta un rango de operación de la membrana de 120-180 psi
- 3. Manómetros: son instrumentos de medición para controlar la operación del equipo de osmosis inversa.
- 4. Medidor de flujo: es un instrumento para medir la producción de agua permeada y el agua de descarte normalmente en litros por minuto LPM
- Sensor de conductividad: es un instrumento para medir la conductividad del agua en μS/cm en línea el cual es un parámetro indicador de la calidad de agua

6. Válvula solenoide: es un componente utilizado para la automatización del equipo y por medio de una señal eléctrica es accionada y abre el paso de agua a una presión preestablecida

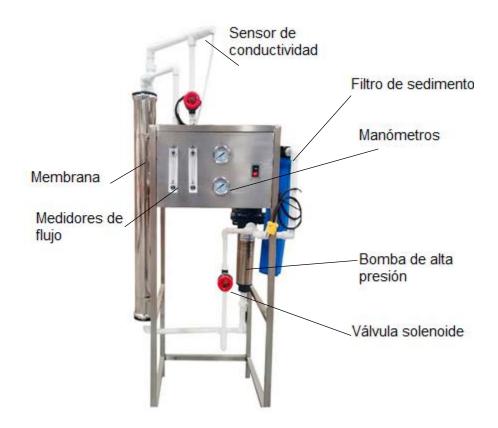


Figura 14 Osmosis inversa

Equipos de etapa de purificación de agua:

El módulo electrodeionizador de la figura 15 es el principal en este proceso, pero también requiere de otros componentes para llevar a cabo el proceso de manera correcta como lo recomienda el fabricante, los manómetros y los medidores de flujo son instrumentos de medición de la operación del equipo de manera indispensable.

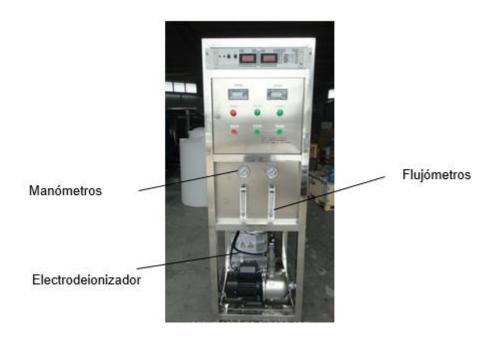


Figura 15 Equipo electrodeionizador EDI 500 L/h

En la figura 16 se muestra un esquema de un diagrama de flujo típico para un electrodeionizador de 500 L/h, los componentes están en permanente contacto con el agua de producción, las válvulas regulan el flujo de agua a través de la tubería, el conductivímetro mide en línea la conductividad del agua permeada o agua producto del equipo.

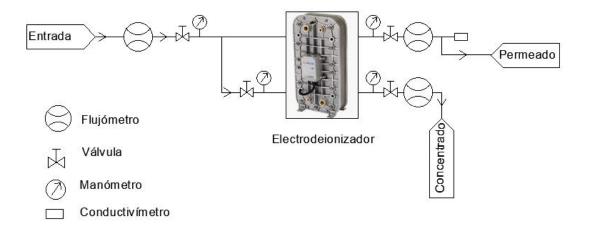


Figura 16 Diagrama de flujo para el Electrodeionizador 500 L/h

Usualmente, este equipo es acompañado por una lámpara ultravioleta (mostrada previamente en la figura 12) y un filtro microbiológico de 0.2 µm, véase la figura 17, a la salida del agua producida, debido a que el equipo no posee un mecanismo capaz de controlar los parámetros microbiológicos.

Figura 17 Filtro microbiológico

1.3 Aspectos metrológicos

1.3.1 Vocabulario técnico y generalidades en metrología

Según la norma ISO 9004:2018⁴ en sus cláusulas 8.2.1, 8.4.5, 10.2.1 los datos de las mediciones son importantes, tanto en las actividades de gestión de los procesos como para detectar desviaciones y en la toma de decisiones basadas en los hechos. La alta dirección debería asegurarse de la eficaz y eficiente medición, recuperación y validación de los datos, para asegurar el desempeño de la organización y la satisfacción de las partes interesadas. Esto debería incluir la revisión de la validez y del proceso de las mediciones y el uso previsto de los datos para asegurarse del valor para la organización.

Asimismo, la ISO 9000:2015 en la cláusula 2.3.6.4⁴ establece que los datos y la información deben ser suficientemente precisos, fiables y seguros.

Planificación y control operacional

La ISO 9001:2015, Sistemas de gestión de calidad establece en la cláusula 8.5.1 que "la organización debe implementar condiciones controladas para la producción y prestación del servicio, incluyendo actividades de entrega y posterior a la entrega."

Entre las condiciones controladas, se deben incluir:

- Las actividades de seguimiento y medición en las etapas apropiadas para verificar que se cumplen los criterios para el control de los procesos y los elementos de salida de los procesos, y los criterios de aceptación de los productos y servicios
- La disponibilidad y el uso de los recursos de seguimiento y medición

^{4.} ISO 9004:2018," Gestión de la calidad", clausula 8.2.1, 8.4.5, 10.2.1.

^{5.} ISO 9001:2015 "Sistemas de gestión de calidad" cláusula 8.5.1, 2.3.6.4 edición 2015

Los puntos esenciales de esta cláusula se reducen a lo siguiente:

- Todos los equipos de inspección, medición y ensayo importantes para la calidad deben ser periódicamente calibrados de acuerdo a un adecuado Sistema de confirmación metrológica
- La *incertidumbre* de las medidas debe ser *conocida* y razonablemente menor que las tolerancias a verificar

Para ello, cuando sea necesario asegurarse de la validez de los resultados, el equipo debe:

- a) Calibrarse o verificarse a intervalos especificados o antes de su utilización, comparado con los patrones de medición trazables, o patrones de medición nacionales, o internacionales; cuando no existan tales patrones deben de registrarse la base utilizada para la calibración o verificación.
- b) Ajustarse o reajustarse según sea necesario.
- c) Identificarse para poder determinar el estado de calibración.
- d) Protegerse contra ajustes que pudieran invalidar el resultado.
- e) Protegerse contra los daños y el deterioro durante la manipulación, mantenimiento y almacenamiento.

Además, la organización debe evaluar y registrar la validez de los resultados de las mediciones anteriores, cuando se detecte que el equipo no está conforme con los requisitos. La organización debe tomar acciones apropiadas sobre el equipo y sobre cualquier producto afectado. Deben mantenerse registros de los resultados, de la calibración y la verificación.

Vocabulario técnico

En general según el Vocabulario Internacional de Metrología VIM⁶, el vocabulario es un "diccionario terminológico que contiene las denominaciones y definiciones que conciernen a uno o varios campos específicos" (BS ISO 1087-1:2019, 3.7.5). por lo que el Vocabulario Internacional de Metrología (VIM) concierne a lo referente a metrología, abarcando los principios relativos a las magnitudes y unidades. Es fundamental tener claro el significado de los conceptos metrológicos para el desarrollo de un Sistema de Confirmación Metrológica, en la presente investigación, con enfoque a equipos de medición en un sistema de purificación de agua con electrodejonizador.

A continuación, se enlistan varios términos metrológicos⁷ que serán utilizados en los capítulos siguientes:

- Ajuste: conjunto de operaciones realizadas sobre un sistema de medida para que proporcione indicaciones prescritas, correspondiente a valores dados a la magnitud a medir. Adecuar un equipo dentro de un estado de funcionamiento adecuado para su uso.
- Dial: dispositivo fijo o móvil donde va montada la escala
- Calibración: operación que, bajo condiciones estables, en una primera etapa, una relación entre los valores y sus incertidumbres de medida asociadas obtenidas a partir de los patrones de medidas, y las correspondientes indicaciones con sus incertidumbres asociadas y, en una segunda etapa, utiliza esta información para establecer una relación que permita obtener un resultado de medida a partir de una indicación.

^{6.} JCGM 200:2012, Vocabulario internacional de metrología 3ra Edición, CEM Centro Español de metrología, España

^{7.} AKRIMET (2020), Términos metrológicos, recuperado de www.akrimet.com

- Confirmación metrológica: conjunto de operaciones requeridas para asegurar que un elemento del equipo de medición este conforme con los requisitos del para el uso intencionado. La confirmación metrológica normalmente incluye, calibración y/o verificación, cualquier ajuste necesario y posterior recalibración así como cualquier operación necesaria de sellado y etiquetado requerido.
- Condición de repetitividad: condición de medida, dentro de un conjunto de condiciones
 que incluye el mismo procedimiento de medida, los mismos operadores, el mismo sistema
 de medida, las mismas condiciones de operación y el mismo lugar, así como mediciones
 repetidas del mismo objeto o un objeto similar en un periodo corto de tiempo.
- Escala: parte de un instrumento que consiste en un conjunto de marcas, eventualmente acompañadas de números o valores de la magnitud.
- Error de medida: diferencia entre un valor medido de una magnitud y el valor de una referencia.
- Incertidumbre de medida: parámetro no negativo que caracteriza la dispersión de los valores atribuidos a un mensurando, a partir de información que se utiliza.
- Instrumento de medición: dispositivo utilizado para realizar mediciones, solo o asociado a uno o varios dispositivos suplementarios.
- Mantenimiento: es el conjunto de operaciones que le permiten al equipo encontrarse en perfectas condiciones de uso, este mantenimiento puede ser preventivo o correctivo.
- Medición: proceso que consiste en obtener experimentalmente uno o varios valores que pueden atribuirse razonablemente a una medición.

- Metrología: ciencia de las mediciones y sus aplicaciones. (incluye todos los aspectos prácticos de las mediciones, cualesquiera que sean sus incertidumbres de medida y su campo de aplicación).
- Mensurando: magnitud que se desea medir, la especificación del mesurando requiere del conocimiento de la naturaleza y descripción del estado del fenómeno, en VIM segunda edición el mesurando está definido como "magnitud en particular sujeta a medición".
- Patrón de medida: realización de una magnitud dada, con un valor determinado y una incertidumbre de medida asociada, tomada como referencia.
- Patrón internacional de medida: patrón reconocido por firmantes de un acuerdo internacional con la intención de ser utilizado mundialmente.
- Patrón nacional: reconocido por una autoridad nacional, para servir, en un estado o economía, como base para la asignación de valores a otros patrones, de magnitud de la misma naturaleza.
- Patrón de medida de trabajo: patrón utilizado habitualmente para calibrar o verificar instrumentos o sistemas de medida.
- Patrón primario: patrón establecido mediante un procedimiento de medida primario o creado como un objeto, elegido por convenio.
- Patrón secundario: patrón establecido por medio de una calibración respecto al patrón primario de una magnitud de la misma naturaleza.
- Resolución: mínima variación de la longitud medida que da lugar a una variación perceptible de la indicación correspondiente.

- Sensor: elemento de un sistema de medida directamente afectado por la acción del fenómeno, cuerpo o sustancia portador de la magnitud a medir.
- Señal: magnitud funcionalmente relacionada con aquella que representa al mensurando, la cual es sucesivamente transformada desde un estímulo hasta una respuesta, la cual puede desplegarse visualmente
- Transductor de medida: dispositivo utilizado en medición, que hace corresponder a una magnitud de entrada una magnitud de salida, según una relación determinada ejemplo un transformador de corriente eléctrica, un electrodo para pH, una lámina bimetálica etc.
- Trazabilidad metrológica: propiedad de un resultado de medida, por el cual el resultado puede relacionarse con una referencia mediante una cadena interrumpida y documentada de calibraciones, cada una de las cuales contribuye a la incertidumbre de medida.
- Transductor: dispositivo utilizado en medición que hace corresponder a una magnitud de entrada una magnitud de salida, según una relación determinada
- Procedimiento de medición: descripción detallada de una medición conforme a uno o más principios de medidas dado, basado en un modelo de medida, y que incluye los cálculos necesarios para obtener un buen resultado de medida.
- Reparación: es la acción tomada sobre un equipo de medida para llevarlo a la condición de aceptable para su utilización prevista.
- Resultado de una medición: valor atribuido a una magnitud a medir, obtenido por una medición

1.3.2 Sistema de confirmación metrológica

De acuerdo con la norma ISO 10012-1:2003 ⁸ se define como "El conjunto de operaciones necesarias para asegurar que el equipo de medición cumple con los requisitos para su uso previsto".

En tal sentido, las etapas del proceso de confirmación metrológica son:

- Calibración: este proceso es realizado usualmente por laboratorios preferentemente acreditados quienes entregan un certificado de calibración, donde reportan los errores o correcciones y la incertidumbre de la medición del equipo.
- ii. Verificación metrológica: es el procedimiento mediante el cual se interpretan los resultados obtenidos en el certificado de calibración para determinar si el equipo cumple con los requisitos para los cuales la empresa lo tiene destinado.
- iii. Evaluación de conformidad: una evaluación de conformidad determina si un instrumento se encuentra conforme o no a los requisitos, establecidos por la evaluación de consistencia utilizando los datos (error e incertidumbre) proporcionados por el certificado de calibración.

Según la norma ISO/IEC 17025:2018⁹, al emitir conformidad frente a una especificación, se debe establecer la regla de decisión junto con su nivel de riesgo. En la norma ISO 14253-1 ¹⁰ se establecen los criterios para determinar la conformidad de los resultados de un instrumento de medición, los cuales basados en la relación entre la tolerancia y la incertidumbre de medida, pueden ser conforme, no conforme o ambiguo de acuerdo a lo que se ilustra en la figura 18.

ISO 10012:2003 International Standard Measurement management system-Requirements for measurement processes and measuring equipment fist edition 2003-04-15

^{9.} ISO/IEC 17025:2018 "Requisitos generales para la competencia de los laboratorios de ensayo y calibración" en el anexo A y nota 1, España

^{10.} ISO 14253-1:2017 "Geometrical product specifications (GPS)-Inspection by measurement of work pieces and measuring equipment – part 1: Decision rules for verifying conformity or nonconformity with specifications.

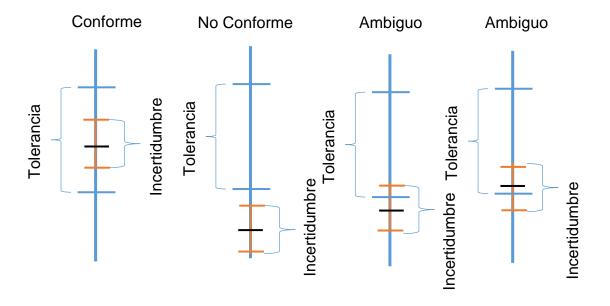


Figura 18 Elementos para realizar la evaluación de conformidad

De la figura 18 podemos concluir:

- Si el intervalo E ± U se encuentra dentro de los límites de la tolerancia, el resultado es conforme.
- Si el intervalo E ± U se encuentra fuera de los límites de la tolerancia, el resultado es no conforme.
- Si el resultado $E \pm U$ se cruza con los límites de la tolerancia, el resultado es ambiguo.

En caso ambiguo, el usuario del instrumento debe definir las reglas para aclarar el resultado. Algunas de estas reglas pueden ser:

 Conforme sujeto a verificación, cuando el error se encuentra dentro de los límites de la tolerancia. ii. No conforme sujeto a verificación, cuando el error se encuentra fuera de los límites de la tolerancia.

Cuando dicho equipo no se encuentra conforme con las especificaciones establecidas se deben de tomar las decisiones y acciones correspondientes a las actividades a realizar una vez se conoce el resultado de evaluación de conformidad del equipo de medición como por ejemplo ajustes, reparación o mantenimiento.

De acuerdo con la OIML D 10:2007 "Lineamientos para la determinación de intervalos de calibración de los instrumentos de medición" los factores a tomar en cuenta al seleccionar el intervalo son:

- Las recomendaciones dadas por el fabricante del equipo y especificaciones del equipo
- Extensión del tiempo de uso contemplando el grado de severidad que implica el uso del equipo (uso esporádico, moderado, riguroso, etc.)
- Las condiciones ambientales y de operación a las cuales ha sido sometido el equipo,
 las cuales pueden ser: temperatura, humedad, las vibraciones entre otras.
- La exactitud de la medición con la que se requiere que trabaje el equipo
- Seguimiento estadístico de las desviaciones

1.3.3 Registros

Diferentes normas ISO como la 17025:2018, 9001:2015 y la 10012:2003 abordan el tema de los registros en cuanto a los equipos de medición.

^{11.} OIML D 10:2007 "Lineamientos para la determinación de intervalos de calibración de los instrumentos de medición", Organización internacional de metrología legal, Australia.

En la norma ISO 10012:2003⁸ se establece:

Se mantendrán registros de la marca, tipo, y número de serie (u otra identificación) de todo el equipo de medición relevante (incluyendo patrones), demostrando la capacidad de medición de cada elemento del equipo de medición.

Las condiciones ambientales deben ser registradas, ya que los patrones y el equipo de medición deben ser calibrados en un ambiente controlado para asegurar hasta donde sea necesario la validez de los resultados. Y cuando sea necesario aplicar las correcciones correspondientes

Elaboración de informe de inspección:

La elaboración de informe de inspección consiste en hacer un informe final de la confirmación metrológica del equipo de medición reportando todas las actividades ejecutadas a lo largo del proceso.

Los informes suelen contener lo siguiente:

- Inspección inicial: es la descripción del estado en el que se encontraba el equipo antes de comenzar el proceso de confirmación metrológica, dicha descripción se debe realizar tanto física como para su estado operacional.
- Servicios de mantenimiento y/o reparación: son los detalles de cada uno de los mantenimientos y/o reparación realizados al equipo durante la confirmación metrológica.
- Ajuste: en caso de que el equipo haya requerido de un ajuste, es necesario reportar los resultados de la calibración antes de realizar dicho ajuste.

ISO 10012:2003 International Standard Measurement Management System-Requirements for measurement processes and measuring equipment first edition 2003-04-15

- Declaración de conformidad: es el informe del estado del equipo con respecto a la evaluación de consistencia.
- Observaciones: son todas las interpretaciones con respecto al uso del equipo, informes y resultados.
- Intervalo de calibración: indica la fecha para la próxima calibración del equipo de medición.
- Informe de inspección: la elaboración de informe de inspección consiste en hacer un informe final de la confirmación metrológica del equipo de medición reportando todas las actividades ejecutadas a lo largo del proceso.

El informe de inspección generalmente se encuentra acompañado de etiquetas, como la mostrada en la figura 19 o sellos. Las etiquetas indican el estado de calibración en que se encuentra el equipo.

COMPLEJO INDUSTRIAL LAGUNA CONTROL DE CALIDAD FQ-ET-001 EQUIPO VERIFICADO
FECHA DE VERIFICACION:
EQUIPO:
MARCA: MODELO:
SERIE:
ÀREA EN QUE SE LOCALIZA:
PRÒXIMA VERIFICACIÒN:
ANALISTA QUIEN VERIFICA:
RESTRICCIONES DEL EQUIPO:

Figura 19 Ejemplo actividad de liberación por medio de etiqueta

 Sellado para integridad: El acceso a dispositivos ajustables cuyo manejo afecte el funcionamiento, debe ser controlado mediante sellado y resguardo a fin de prevenir alteraciones por parte de personal no autorizado. Los sellos deben diseñarse de tal forma que el desajuste sea evidente, siendo consiente que no todos los equipos de medición son susceptibles a ser sellados.

En la norma ISO 17025:2018, la cláusula 6.4.139 establece:

Se deben conservar registros de los equipos que pueden influir en las actividades del laboratorio. Los registros deben incluir al menos lo siguiente:

- i. La identificación del equipo incluida la versión de software y del firmware
- ii. El nombre del fabricante, la identificación del tipo y el número de serie u otra identificación única
- iii. La evidencia de la verificación de que el equipo cumple los requisitos especificados
- iv. La ubicación actual
- Las fechas de la calibración, los resultados de las calibraciones, los ajustes, los criterios de aceptación y la fecha de la próxima calibración o el intervalo de calibración
- vi. La documentación de los materiales de referencia, los resultados, los criterios de aceptación, las fechas pertinentes y el período de validez
- vii. El plan de mantenimiento y el mantenimiento llevado a cabo hasta la fecha, cuando sea pertinente para el desempeño del equipo
- viii. Los detalles de cualquier daño, mal funcionamiento, modificación o reparación aplicada al equipo

1.3.4 Trazabilidad

Todo el equipo de medición debe ser calibrado utilizando patrones trazables a patrones nacionales o internacionales y que sean consistentes con las recomendaciones de la Conferencia General de Pesas y Medidas CGPM.

ISO/IEC 17025:2018 "Requisitos generales para la competencia de los laboratorios de ensayo y calibración" en el anexo A y nota 1, España

En la norma ISO/IEC 17025:2018 "Requisitos generales para la competencia de los laboratorios de ensayo y calibración", la nota 1 define trazabilidad metrológica como la propiedad de un resultado de medición por la cual el resultado puede relacionarse con una referencia mediante una cadena ininterrumpida y documentada de calibraciones, cada una de las cuales contribuye a la incertidumbre de medición.

Se entiende que el requisito de trazabilidad está incluido por la intención de lograr la equivalencia entre mediciones del proveedor y del cliente, independiente del lugar y tiempo en que ambos midan, y mejor aún, de que cualquier proveedor, cliente, autoridad, etc., obtengan resultados equivalentes de mediciones del mismo mensurando.

Como se describió en el apartado anterior, la trazabilidad está indisolublemente ligada a la incertidumbre. De hecho, es plausible que ambos requisitos, trazabilidad de una medición e incertidumbre de la misma, se conjuguen con la idea de que el valor más confiable del mensurando representado por el patrón nacional o internacional esté contenido en el intervalo determinado incertidumbre de la medición hecha a pie de máquina. En este caso, las dos mediciones, a pie de máquina y la obtenida del patrón nacional pueden ser calificadas como equivalentes en este sentido.

Aplicando el mismo razonamiento a las mediciones del cliente se concluyen las condiciones de equivalencia de las mediciones del cliente con las del proveedor a través del uso de patrones nacionales. Además, cuando hay trazabilidad a patrones nacionales la equivalencia se da automáticamente entre todas las mediciones trazables al patrón nacionales

9. ISO/IEC 17025:2018 "Requisitos generales para la competencia de los laboratorios de ensayo y calibración" en el anexo A, clausula 6.4.13 y nota 1, España

En resumen, la trazabilidad cumple: si A es trazable a N (está en la clase de equivalencia de N), y B (está en la clase de equivalencia de N) es trazable a N, entonces A es equivalente a B dentro de la clase de equivalencia a N.

En la figura 20 se muestra un ejemplo de una carta de trazabilidad metrológica de un laboratorio de México de acuerdo a los lineamientos de la norma 17025:2017 "Requisitos generales para la competencia de los laboratorios de ensayo y calibración".

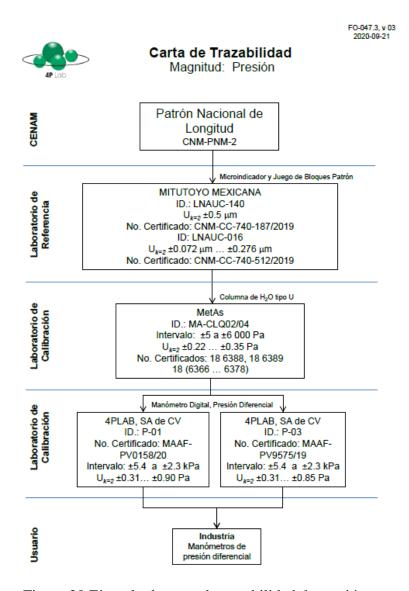


Figura 20 Ejemplo de carta de trazabilidad de presión

1.4 Requisitos Metrológicos en reglamento centroamericano RCTA

La guía de verificación del reglamento técnico centroamericano RTCA 11.03.42.07¹² "Reglamento técnico de buenas prácticas de manufactura para la industria farmacéutica, productos farmacéuticos y medicamentos de uso humano" establece en la sección 9.2 la calibración de equipos de medición.

El artículo 9.2.1 comprende los siguientes aspectos:

- a) Se debe de realizar la calibración de instrumentos de medición y dispositivos de registros o cualquier otro, que garantice la calidad de los productos. Esta calibración debe ser a intervalos convenientes y establecidos de acuerdo con un programa que contenga como mínimo: frecuencias, límites de exactitud, precisión y previsiones para acciones preventivas y correctivas. Los instrumentos que no cumplan con las especificaciones establecidas no deben de usarse. Deben mantenerse los registros escritos de esas inspecciones, verificaciones y calibraciones.
- b) Las calibraciones para cada equipo y dispositivos de seguimiento y medición deben de realizarse usando patrones de referencia certificados. Se debe de contar con un sistema de calibración periódica y verificación externa de los equipos.
- Todo laboratorio de productos farmacéuticos debe de contar con un sistema de tratamiento de agua que le permita obtener agua de calidad que cumpla con las especificaciones de los libros oficiales
- d) Los sistemas de suministro, tratamiento de agua, el agua tratada debe ser monitoreada.
 Deben mantenerse los registros del monitoreo y de las acciones realizadas.

^{12.} MINECO, CONACYT, MIFC, SIC y MEIC. 2007, "Reglamento técnico centroamericano RTCA 11.03.42:07" "Productos farmacéuticos medicamentos de uso humano buenas prácticas de manufactura para la industria farmacéutica" Calibración capítulo

Capítulo 2 Diagnóstico del proceso de purificación de agua tipo II

En este segundo capítulo se presenta un método para el diagnóstico de equipos de un sistema de producción de agua tipo II con electrodeionizador, para ello es importante conocer las especificaciones que exige la calidad de agua teniendo en cuenta las especificaciones que exigen los equipos encargados de purificar el agua.

También se caracterizan los equipos necesarios para un sistema de purificación de agua tipo II, de acuerdo a la capacidad de diseño en este caso para un electrodeionizador de 500 L/h, se describen en su gran mayoría los componentes con su respectiva dimensión y disponibilidad en el mercado.

A partir de la caracterización de los equipos se procede a hacer una evaluación para identificar las magnitudes críticas dentro del proceso de producción de agua purificada, la evaluación se lleva a cabo con ayuda del método AMEM para cada una de las etapas, etapa de pretratamiento, etapa de tratamiento y etapa de purificación de agua.

Además, se presenta un diagrama de flujo para comprender de manera fácil y rápido como es el proceso de pulimiento de agua con cumplimiento de calidad de agua tipo II según ASTM D 1193:2018

Para este capítulo será de ayuda el conocimiento del significado de algunas siglas utilizadas

comúnmente para los equipos o instrumentos de medición en el proceso de purificación de agua

tipo II.

Siglas

EDI: electrodeionizador

FCE: conductividad de alimentación equivalente

HR: humedad relativa

OR: osmosis reversa

ORP: potencial de óxido reducción

pH: potencial de hidrogeno

TOC: carbono orgánico total

UFC: unidades formadoras de colonias

EU: unidad de endotoxina

También se presentan algunos conceptos utilizados por el fabricante del equipo

electrodeionizador y en las etapas de tratamiento de agua, con el objetivo de comprender los

cuadros de diagnósticos.

38

Conceptos

- **Agua potable:** aquella apta para el consumo humano y que cumple con los parámetros físicos, químicos, microbiológicos establecidos bajo norma NSO 13.07.01:08¹³
- Agua tratada: corresponde al agua cuyas características han sido modificadas por medio de procesos físicos, químicos, biológicos o cualquiera de sus combinaciones
- **Diluido:** se le llama al fluido de agua tratada que será deionizada por medio del electrodeionizador
- Concentrado: se le llama al fluido de arrastre para los iones extraídos del agua diluida
- Cloro libre: es la concentración de cloro que sirve para desinfectar el agua
- Cloro total: es la suma de cloro libre y cloro combinado que implica las reacciones con orgánicos presentes en el agua
- **Dureza total:** se le llama a la presencia de calcio, magnesio, estroncio y bario en forma de carbonato o bicarbonato en el agua
- Parámetro: es aquella característica que es sometida a medición
- **Producto:** se le llama al agua producida por el electrodeionizador en su mayoría libre de iones y con baja conductividad eléctrica
- **Rechazo:** se le llama al agua de desecho por el electrodeionizador cargado de iones extraídos del agua producto por medio del campo eléctrico

^{13.} Santiago G., Carlos A., Celia M., Rubén A., Diana B., Víctor M., Thelma A., Héctor D., Ricardo H. y Eliú F., 2008, NSO 13.07.01:08, "Agua Potable", segunda actualización, Normativa salvadoreña, El Salvador

2.1 Simbología y diagrama de flujo del proceso de obtención de agua

2.1.1 Simbología para flujogramas según la ISO 9000

Para comprender de mejor manera el proceso de obtención de agua tipo II, se construye un diagrama de flujo utilizando las representaciones de la figura 22 con su respectivo significado.

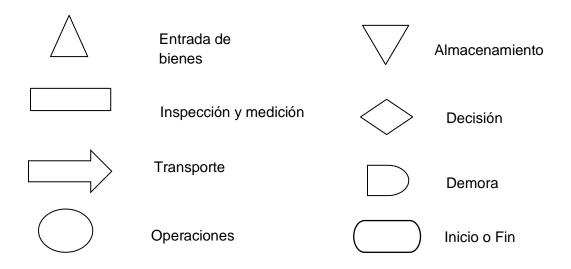


Figura 22 Simbología para uso de diagrama de flujo 14

2.2.1 Diagrama de flujo del proceso de obtención de agua tipo II

El proceso de obtención de agua tipo II comprende la secuencia de actividades desde la obtención de agua cruda o agua no tratada hasta el almacenamiento de agua purificada.

El proceso se compone por 3 etapas, pretratamiento, tratamiento y purificación de agua, cada una de ellas está condicionada a la capacidad del equipo y a las especificaciones de agua a cumplir. En caso de una desviación de las especificaciones, las acciones a emprender pueden ser realizadas por personas o programadas automáticamente por medio de sensores. El diagrama de flujo para el proceso de obtención de agua tipo II se presenta en la figura 23.

^{14.} Maribel S. 2009, "Guía para la elaboración de diagramas de flujo" International Organization for Standardization ISO 9000, Mideplan

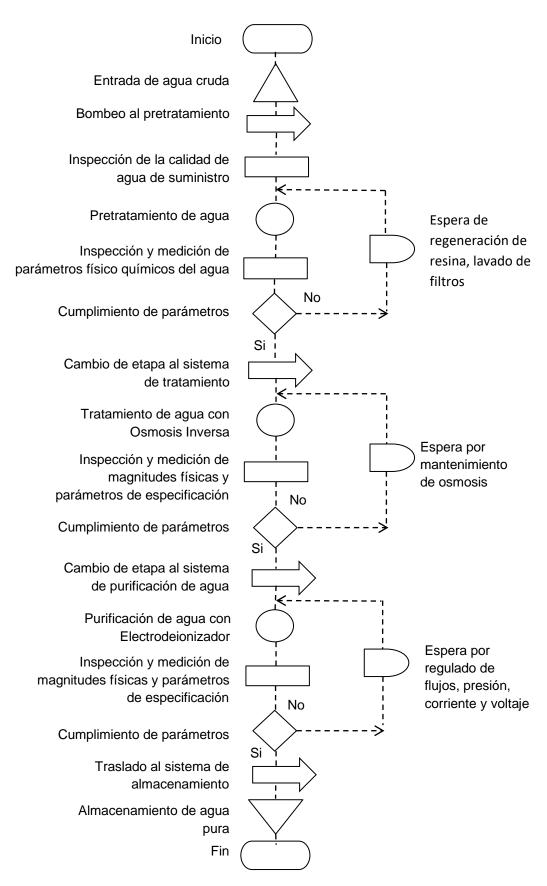


Figura 23 Diagrama de flujo etapas del proceso de producción de agua tipo II

2.2 Diagnóstico del estado actual del equipo

En el proceso de producción de agua tipo II se requiere un control de parámetros de la calidad del agua, parámetros físico químicos y termodinámicos, los cuales son necesarios ya que los procesos de filtración funcionan y se preservan bajo parámetros de especificación lo cual también contribuye a la detección de desviaciones del proceso.

Los equipos tienen especificaciones que cumplir, la Tabla 1 basada en la ASTM D 1193:2018" Sociedad Americana de Pruebas y Materiales" ² muestra que la conductividad eléctrica del agua tipo III debe ser de 4.0 μS/cm a 25°C, por lo tanto la osmosis inversa debe trabajar en un rango de presión para producir agua con dicha conductividad, y para el agua tipo II el valor debe ser de 1.0 μS/cm y para que esto se cumpla debe controlarse la presión de ingreso, el flujo y los parámetros físico químicos según la propia especificación del fabricante de los electrodeionizadores.

Tabla 1 Especificaciones estándar para el agua de calidad de reactivo (ASTM D1193-2018 Sociedad Americana de Pruebas y Materiales²)

Parámetro	Tipo I	Tipo II	Tipo III
Conductividad eléctrica μS/cm 25°C	0.056	1.0	4.0
Resistividad eléctrica MΩ-cm 25°C	18.2	1.0	0.25
рН	-	-	-
TOC (µg/L)	10	50	200
Sodio (µg/L)	1	5	10
Sílice (µg/L)	3	3	500
Cloro (µg/L)	1	5	10

ASTM D1193-2018, (American Society for Testing and Materials), Standard Specification for Reagent Water, Recuperado de www.wasserlab.com

La medición de los parámetros debe de ser constante y de acuerdo a la necesidad, por tanto, el diagnóstico del sistema puede realizarse analizando la hoja de registro de parámetros. El equipo de medición debe garantizar la trazabilidad de las mediciones, del mismo modo, el personal a cargo de las mediciones debe ser capacitado para detectar un problema con un parámetro fuera de especificación y notificar y documentar la no conformidad.

2.2.1 Etapa del pretratamiento

Al iniciar esta etapa se inyecta cloro y se impulsa agua a través de los filtros de arena, carbón y sedimentos, los cuales se encargan de remover las partículas grandes del agua incluyendo el cloro para su posterior tratamiento en el filtro suavizador, en donde las resinas hechas de perlas de polímero base sodio realizan el intercambio iónico del sodio por calcio y magnesio disminuyendo así la dureza del agua.

Criterios a evaluar de la etapa pretratamiento:

- a) Verificar los parámetros fisicoquímicos dentro del rango permitido según la normativa salvadoreña NSO 13.07.01:08 ¹³ para cloro residual debe ser como límite máximo de 1.1 ppm con el propósito principal de reducir al 99.99% de patógenos.
- b) El siguiente criterio es mantener los parámetros de operación de presión y flujo adecuados para alimentar el sistema, la resina catiónica de suavizador requiere de una presión mínima de 20 psi y, según ficha técnica debe poseer un flujo de operación por cada unidad

^{13.} Santiago G., Carlos A., Celia M., Ruben A., Diana B., Victor M., Thelma A., Hector D., Ricardo H. y Eliú F., 2008, NSO 13.07.01:08, "Agua Potable", segunda actualización, Normativa salvadoreña, El Salvador

de área de 4.1 a 18.44 gpm/ft² (4-45 m/h), de igual manera el medio filtrante de carbón posee un rango para retro lavado de 10 a 12 gpm/ft² y el filtro de arena 12.04 a 19.91 gpm/ft² (0.49-0.81 m/min) para servicio

- c) Verificar los parámetros de esta etapa en un periodo máximo de 1 semana y mantener un registro de dichos parámetros.
- d) Verificar los tiempos de lavado de los filtros de arena, carbón y la regeneración de resina para suavizador.

El diagnóstico de esta etapa es tan importante como en todas las demás ya que cualquier valor fuera de especificación puede ser el origen de una falla en los equipos posteriores a esta etapa del proceso de obtención de agua, en la tabla 2 se detalla un cuadro de diagnóstico para los valores a evaluar en esta etapa de pretratamiento de agua.

Tabla 2 Cuadro de diagnóstico de la etapa de pretratamiento

Descripción	Equipo de medición	Especificación	Calibración	Tipo de medición	Lectura	Revisa
Presión de ingreso	Manómetro	3 bar (40 psi)	No	En línea	-	-
Cloro de ingreso a 7 pH	Medidor de ORP	1 ppm (≤700 mV)	Si	En línea	-	-
Flujo de agua potable de ingreso	Contador de litros	16-20 LPM	No	En línea	-	-
Dureza de entrada	Kit de medición	≤ 500 ppm	No	Manual	-	-
Conductividad	Celda de conductividad	≤ 1000μS/cm	Si	En línea	-	-
pH (Potencial de Hidrogeno)	Electrodo para pH	5-8 pH	Si	En línea	-	-

2.2.2 Etapa del tratamiento

En esta etapa los parámetros de operación se vuelven más críticos ya que los parámetros fisicoquímicos pueden ocasionar el deterioro del equipo, por ejemplo, el ingreso de cloro y dureza a las membranas, afectan directamente al rendimiento de la osmosis inversa.

Por otro lado, las presiones y flujo son monitoreados para controlar el estado del equipo ya que una disminución en el flujo a través del tiempo es el resultado del deterioro de las membranas de osmosis, de igual forma el aumento en la conductividad del flujo permeado amerita una inspección del funcionamiento del equipo.

Los equipos de medición en esta etapa contribuyen en su mayoría a la preservación del equipo, un medidor de dureza a la entrada tiene la función de apagar o mostrar una alerta en el equipo de la presencia de dureza. En algunos casos se podría encontrar dos sensores de potencial de reducción de la oxidación (ORP) en línea de manera preventiva ya que, si alguno presenta una desviación en las lecturas, el siguiente sensor podría tener la lectura correcta y apagar el equipo si fuese necesario.

Criterios a evaluar de la etapa tratamiento:

a) Verificar magnitudes físicas y químicas de entrada y salida, en especial la ausencia de cloro, según ficha técnica de una membrana de osmosis inversa "BW 4040 ES" Anexo 1, ésta soporta una concentración máxima de 0.1 ppm de cloro total. También se debe monitorear la conductividad eléctrica en línea de la calidad de agua producida como un indicador de resultado del proceso.

- b) Verificar especificaciones operativas de presión de ingreso, presión de osmosis inversa, flujo de permeado y rechazo según ficha técnica de la membrana de osmosis inversa.
- c) Monitorear y registrar los parámetros de operación esta etapa en un periodo máximo de 24 horas, debido a la alta probabilidad de falla de componentes por la calidad de agua de ingreso y la delicadeza de los equipos posteriores a esta etapa.
- d) Los instrumentos de medición de esta etapa deben mostrar una lectura confiable de manera que permitan tomar acciones para la preservación de los equipos y la producción de la calidad de agua esperada. En algunos casos se podría encontrar dos sensores de ORP en línea de manera preventiva ya que si alguno presenta una desviación en las lecturas el siguiente sensor podría tener la lectura correcta y apagar el equipo si fuese necesario.

De acuerdo a los criterios planteados anteriormente en la tabla 3 se muestran los valores a evaluar para esta etapa de tratamiento de agua en el proceso de obtención de agua tipo II, en la cual según el parámetro está seleccionado el instrumento de medición, la especificación de referencia a cumplir y la condición actual del instrumento en lo referente a calibración.

Tabla 3 Cuadro de diagnóstico de la etapa de tratamiento

Descripción	Equipo de medición	Especificación	Calibración	Tipo de medición	Lectura	Revisa
Presión de ingreso	Manómetro	3 bar (40 psi)	No	En línea	-	-
Cloro de ingreso a 7 pH	Medidor de ORP	0 ppm (≤200 mV)	Si	En línea	-	-
Flujo de agua permeada	Flujómetros	6-8 LPM	No	En línea	-	-
Flujo de agua concentrada	Flujómetros	6-8 LPM	No	En línea		
Dureza de entrada	Kit de medición	0 ppm	Si	En línea	-	-
Conductividad	Celda de conductividad	≤ 4µS/cm	Si	En línea	-	-
Presión de osmosis	Manómetro	8-15 bar (120-220 psi)	Si	En línea	-	-
Humedad relativa HR	Higrómetro	70%	Si	Externo	-	-
Sílice de ingreso OR	Medidor sílice	≤ 70 ppm	Si	Externo	-	-

2.2.3 Etapa de purificación de agua con electrodeionizador

En esta etapa el agua es desmineralizada con el electrodeionizador por lo que la calidad de agua de ingreso es monitoreada con mayor frecuencia, al igual que las presiones y flujos de ingreso, debido a los costos que implica un daño en el módulo electrodeionizador.

Si durante esta etapa se detecta un incumplimiento en los parámetros de presión, flujo y conductividad del agua producida por el electrodeionizador, significa que hubo parámetros fuera de especificación en el agua de alimentación o agua permeada de osmosis.

Criterios a evaluar de la etapa purificación de agua:

- a) Verificar parámetros fisicoquímicos de entrada en especial, sílice, dióxido de carbono, conductividad eléctrica del agua de alimentación y del agua producida.
- b) Verificar presión de alimentación tanto al ingreso a la tubería del diluido como a la del concentrado, presión de salida del agua producto y agua de rechazo. En el sistema analizado, se monitorea el flujo de operación según la ficha técnica del equipo de acuerdo con un módulo LXM04X marca IONPURE, el flujo máximo de operación es de 0.67 m³/h y un mínimo de 0.22 m³/h.
- c) El monitoreo de la conductividad debe ser permanente, de igual manera la concentración de sílice y CO₂ se deben encontrar bajo el rango especificado, la conductividad equivalente FCE se calcula con la fórmula 2 y es propia de un módulo electrodeionizador LXM04X y no debe de exceder los 40 μS/cm.

$$FCE = K + 2.79 * K_{Silice} + K_{CO_2}$$
 (2)

Donde:

K: conductividad eléctrica de origen H₂O

K sílice: conductividad eléctrica de origen Sílice

Kco₂: conductividad eléctrica de origen dióxido de carbono

Si en el diagnóstico se detecta un incumplimiento en los criterios anteriormente mencionados,

significa que el agua de alimentación o agua permeada de osmosis no posee las características

requeridas y la raíz del problema proviene de las etapas previas.

En ocasiones el valor de la conductividad puede elevarse y se puede corregir el problema

regulando válvulas que controlan el flujo de alimentación hacia las dos tuberías de concentrado

y permeado, el efecto es gracias a la capacidad de regeneración de resinas por medio del campo

eléctrico, sin embargo, el flujo producido podría presentar una disminución y podría ser signo de

desgaste del equipo.

El módulo electrodeionizador debe de cumplir las especificaciones de fábrica para que el

rendimiento no se vea afectado, además, el torque de los pernos debe de encontrarse bajo el

establecido por los fabricantes ya que podrían estar flojos y ser los causantes de los parámetros

fuera cumplimiento.

Los valores correspondientes al diagnóstico de esta etapa se muestran en la Tabla 4

50

Tabla 4 Cuadro de diagnóstico de la etapa de purificación de agua módulo 500 L/h

Magnitud	Equipo de medición	Especificación	Calibración	Modo de medición	Lectura	Revisa
Presión de ingreso diluido	Manómetro	2 bar	Si	En línea	-	-
Presión de ingreso concentrado	Manómetro	1 bar	Si	En línea	-	-
Presión de salida de permeado	Manómetro	2 bar	Si	En línea		
Presión de salida rechazo	Manómetro	1 bar	Si	En línea		
Flujo de agua permeada	Flujómetros	6-8 LPM	Si	En línea	-	-
Flujo de agua concentrada	Flujómetros	0.5-1.5 LPM	No	En línea		
Dureza de entrada	Kit de medición	0 ppm	No	Manual	-	-
Conductividad	Celda de conductividad	≤ 1.3µS/cm	Si	En línea	-	-
Corriente	Amperímetro	3-5 A	No	En línea	-	-
Voltaje	Voltímetro	12-560 V	No	En línea		
Torque	Torquímetro	25 N.m	Si	Externo		

Magnitud	Equipo de medición	Especificación	Calibración	Modo de medición	Lectura	Revisa
Humedad relativa	Higrómetro	70%	Si	Externo	-	-
Sílice de ingreso OR	Medidor sílice	< 1ppm	Si	Externo	-	-
Ingreso de CO ₂	Kit medidor de CO ₂	< 5ppm	No	Manual		

2.3 Caracterización de equipo en un sistema de agua con electrodeionizador

2.3.1 Caracterización etapa del pretratamiento

- a) Nombre de la etapa: pretratamiento
- b) Objetivo de la etapa: Mejorar la calidad de agua de ingreso para ser sometida a procesos de purificación en busca de la conservación de los equipos.
- c) Características del agua de entrada: el agua de ingreso a la etapa de pretratamiento no suele poseer ningún otro tratamiento previo, a este tipo de agua se le conoce como agua cruda o agua bruta.
- d) Características del agua de salida: el agua de salida de la etapa de pretratamiento se caracteriza como agua libre de dureza CaCO₃, cloro, partículas mayores a 5 micras y bajo un proceso de desinfección de agua.
- e) Recursos: en la tabla 5 se describen los componentes que conforman los equipos de esta etapa en cuanto a la cantidad, especificación del componente y su función en el sistema. En cuanto al personal que interviene en la operación de este equipo no es más que el operario del sistema y el encargado de control de calidad como principales agentes en el proceso de control y mantenimiento. Por otro lado, también se utilizan instrumentos de medición o tituladores que son muy utilizados para el control y registro de los parámetros físico químicos y microbiológicos, por ejemplo, los medidores de dureza, medidores de cloro, medidores de pH, medidores de sílice, medidores de CO₂ y medidor de conductividad.

Tabla 5 Caracterización de equipos de la etapa del pretratamiento

Cantidad	Componente	Especificación	Función
3	Tanques	Tamaño de 10x54",	Almacenar el medio filtrante
		presión máxima 150 PSI	arena, carbón o resina
1	Medio filtrante	1 pie ³ , turbidex o micro z	Filtrar partículas mayores a 5
	arena		micras, filtro de sedimentación
1	Resina catiónica	1 pie ³ , resina catiónica	Suaviza el agua mediante perlas
		base sodio	de polímero base sodio, para
			intercambio iónico de calcio y
			magnesio por sodio
1	Medio filtrante	1 pie ³ , granos de carbón	Regular pH, retener cloro
	carbón	activado	
2	Válvula para	Capacidad de 20 GPM,	Distribuir el agua a través del
	filtro	diámetro de entrada y	medio filtrante y realizar retro
		salida 1"	lavados de manera manual o
			automática
1	Válvula para	Capacidad de 20 GPM,	Distribuir el agua a través del
	suavizador	diámetro de entrada y	medio filtrante y realizar
		salida 1" con conexión a	regeneraciones en la resina
		manguera 3/8"	catiónica con salmuera de manera
			manual o automática
2	Lámpara	Capacidad 6 GPM, acero	Neutralizar agentes patógenos
	ultravioleta	inoxidable 316 L	existentes en el agua
1	Clorinadora	Capacidad 1.5 L/h, 13 bar,	Inyectar cloro a la etapa del
		120 impulsos/min	pretratamiento como medio de
			desinfección y potabilización del
			agua
1	Bomba de	1 hp, 22-33 LPM	Impulsar el agua no tratada a
	suministro		través de los filtros del

Cantidad	Componente	Especificación	Función
			pretratamiento y suministrar una
			presión constante de ingreso a la
			osmosis inversa OR
2	Manómetro	0-100 psi	Medir la presión de ingreso al
			sistema del pretratamiento
1	Sensor de ORP	0-1,000 mV	Medir la presencia de cloro libre
			en la línea de distribución de agua
1	Tubería	1" pvc, cedula 80 o acero	Distribuir el agua de manera
		inoxidable 1" 316 L	secuencial a través de los filtros
			de sedimentos, carbón suavizador
			y lámparas UV
1	Tanque	42 galones	Almacena agua presurizada,
	hidroneumático		absorbe golpes de arietes, y
			también dilataciones del agua
			liquida

f) Indicadores del proceso: Las variables que se controlan son los parámetros fisicoquímicos, microbiológicos y de operación de los equipos como se detallan en la tabla 6.

Tabla 6 Indicadores de proceso en la etapa de pretratamiento de agua

Magnitud física y química	Parámetros de operación de	Parámetros
del agua	los equipos	microbiológicos
• Dureza	Presión de agua de ingreso	Unidades formadoras de
Cloro libre	Presión de agua de salida	colonia UFC
• Sílice	Caudal de suministro	Unidades de endotoxinas
• CO ₂	Temperatura del ambiente	UE
• pH		
Conductividad		

Otra variable a controlar en la etapa del pretratamiento es la frecuencia de lavado de filtros que corresponde al mantenimiento preventivo de los equipos, ya que estos también se saturan dependiendo de la calidad de agua de ingreso; en el caso de los suavizadores necesitan una regeneración de resina con salmuera lo cual puede variar según la concentración en ppm de dureza que ingrese al proceso.

También, los parámetros microbiológicos son indicadores de ausencia de microorganismos como bacterias y virus en la etapa del pretratamiento, estos generalmente se miden en unidades formadoras de colonias "UFC" y unidades de endotoxinas "UE".

g) Indicadores del resultado: es muy común utilizar los parámetros fisicoquímicos, microbiológicos y de operación en una tabla de registro como la tabla 7 y comparar el valor medido según la especificación bajo la calidad de agua que se espera obtener después de la etapa.

Tabla 7 Magnitud de control pretratamiento

Magnitud	Especificación	Valor medido	Comentarios
Dureza	0 ppm	-	-
Cloro	0 ppm	-	-
Sílice	70 ppm	-	-
CO ₂	N/A	-	-
рН	6 - 8	-	-
Conductividad	≤1000 µS/cm	-	-
Presión de ingreso	30-45 psi	-	-
Presión de salida	30-45 psi	-	-
Caudal	30 LPM	-	-

Durante el pretratamiento ocurre un proceso químico que consiste en eliminar características físico químicas del agua que afectan a los equipos posteriores del proceso, el sistema hidráulico se encarga de distribuir agua a presión constante a través de los filtros, en la tabla 7 se mostraron las magnitudes de control de un sistema pretratamiento utilizado para un sistema con electrodeionizador.

2.3.2 Caracterización de la etapa de tratamiento

- a) Nombre de la etapa: tratamiento
- b) Objetivo de la etapa: separar la mayor cantidad de impurezas presentes en el agua de ingreso hasta un 99% de la calidad de agua de ingreso para ser procesada posteriormente para la producción de agua tipo II.

- c) Características del agua de entrada: el agua de ingreso a la etapa de tratamiento es considerada de mayor calidad que el agua bruta debido a que fue sometida a un proceso de preparación, el agua pre tratada tiene la característica de ser considerada como agua suave, agua bajo proceso de desinfección y libre de partículas mayores a 5 micras.
- d) Características del agua de salida: el agua permeada y el rechazo de agua de osmosis inversa son las salidas de esta etapa como principal característica el agua permeada de osmosis es libre de hasta un 96-99% de sales y minerales del agua de ingreso, posee una baja conductividad de agua por lo tanto la calidad de agua es mucho mayor que la etapa previa, por otro lado, el agua de rechazo es sobrecargada de sales y minerales resultado ser de baja utilidad.
- e) Recursos: en la tabla 8 se describen los componentes que conforman los equipos de esta etapa en cuanto a la cantidad, especificación del componente y su función en el sistema.

Tabla 8 Caracterización de equipos de la etapa de tratamiento de agua

Cantidad	Componente	Especificación	Función
1	Bomba alta	1 hp, 15 GPM,	Elevar la presión del agua para crear el
	presión	diámetro de entrada y	efecto de osmosis en las membranas
		descarga 1"	
2	Membrana	Membranas 4 x40"	Permear el agua gracias al efecto
	Osmosis		termodinámico de osmosis,
			obteniendo agua tratada
1	Sensor de baja	40 psi, 110 v	Habilita la osmosis inversa al detectar
	presión		presión de ingreso evitando que trabaje
			sin suministro de agua
1	Sensor de ORP	0-1,000 mV	Detectar la presencia de cloro en la
			línea de distribución de agua

Cantidad	Componente	Especificación	Función
1	Sensor de pH	0-14 pH	Medir el nivel de pH presente en el
			agua
1	Sensor de dureza	0-250 ppm	Detectar la presencia de dureza en el
			agua de ingreso
1	Electroválvula	Normalmente	Abre el paso de agua de manera
		cerrada, 220 V	automática hacia la entrada de la
			osmosis inversa
1	Filtro	1 micra, 20"	Retiene partículas mayores o igual a 1
	sedimentos		micra, también evita que restos de
			medio filtrante de carbón o resina
			ingrese a la etapa de osmosis inversa
1	Housing para	20" con entrada y	Contiene el elemento filtrante
	filtro	salida de 1"	
2	Housing para	4x40" acero	Contiene las membranas de osmosis
	membrana	inoxidable 316 L	
1	Válvula	Válvula de aguja ½"	Regular flujo y presión de trabajo en
	reguladora de	acero inoxidable	osmosis inversa
	flujo		
2	Flujómetros	0-5 GPM	Medir la cantidad de agua por minuto
			producida y rechazada
1	Celda de	0-200 μs/cm	Medir la conductividad del agua
1	conductividad	0 200 ps. 0111	producida en línea
1	Manómetro	0-100 psi	Medir la presión de ingreso a la etapa
1	Widnometro	0-100 psi	de osmosis inversa
			de osmosis miversa
1	Manómetro	0-300 psi	Medir la presión de trabajo de la
			osmosis inversa

Cantidad	Componente	Especificación	Función
1	Mangueras	Diámetro ½"	Distribuir agua hacia las membranas

f) Indicadores del proceso: Las variables que se controlan en esta etapa en su mayoría son parámetros de ingreso y salida de tipo físico químicos como dureza, conductividad eléctrica, sílice y cloro, en gran parte estos parámetros son controlados ya que de ellos depende el siguiente proceso de purificación y de agua y el mantenimiento del propio equipo.

También se tiene como indicador indispensable del proceso la presión de agua de ingreso, presión de osmosis inversa, flujo de rechazo de osmosis inversa y flujo permeado de osmosis inversa. La tabla 9 muestra los parámetros a controlar en esta etapa de tratamiento.

Tabla 9 Indicadores del proceso de tratamiento de agua

Magnitud física y química	Parámetros de operación de	Parámetros
del agua	los equipos	microbiológicos
Dureza total	Presión de agua de ingreso	Unidades formadoras de
Cloro residual	Presión de osmosis inversa	colonia UFC
• Sílice	Flujo de rechazo	Unidades de endotoxinas
Dióxido de carbono	Flujo de permeado	UE
• pH	Temperatura	
Conductividad		
eléctrica		

g) Indicadores del resultado: En esta etapa el agua debe de cumplir con características más específicas, cuando se desea catalogar como agua tipo III según la ASTM D1193-2011² la conductividad del agua debe ser menor o igual a 4.0 μS/cm a 25°C y para producir agua tipo II por medio de un electrodeionizador el equipo requiere que en esta etapa se produzca como mínimo una conductividad equivalente de 40.0 μS/cm que equivale a la sumatoria de la conductividad eléctrica propia del agua, la conductividad eléctrica por la presencia de sílice, y la conductividad eléctrica por dióxido de carbono CO₂. La tabla 10 muestra las especificaciones que debe cumplir el agua producto de osmosis inversa para continuar con el proceso de producción de agua tipo II, tomada de las especificaciones de un electrodeionizador LXMO4X de 500 L/h marca IONPURE.

ASTM D1193-2018, (American Society for Testing and Materials), Standard Specification for Reagent Water, Recuperado de www.wasserlab.com

Tabla 10 Especificación de calidad de agua de ingreso de un electrodeionizador

Magnitud	Especificación	Valor medido	Comentarios
Dureza	1 ppm	-	-
Cloro libre	0.02 ppm	-	-
Sílice	≤ 1.0 ppm	-	-
CO_2	≤ 5 ppm	-	-
pН	4-11	-	-
Conductividad	≤1000 µS/cm	-	-
Temperatura	5 – 45 °C		
Presión de ingreso	30-45 psi	-	-
Presión de salida	≤100 psi	-	-
Caudal	9 - 10 LPM	-	-

2.3.3 Caracterización de la etapa de purificación de agua

- a) Nombre de la etapa: purificación de agua
- b) Objetivo de la etapa: purificar agua por el método de electrodeionización para obtener agua de calidad tipo II.
- c) Características del agua de entrada: el agua de ingreso a esta etapa como ya se ha descrito en el apartado anterior, debe de cumplir con las especificaciones de la tabla 11 en cuanto a la dureza de entrada, cloro libre, conductividad, sílice y dióxido de carbono. El fabricante recomienda no sobrepasar los límites debido a que los componentes del equipo tienden a presentar daños a largo plazo como por ejemplo aumento en la corriente de consumo,

- aumento en la conductividad del agua produción, reducción de capacidad de producción de agua tipo II.
- d) Características del agua de salida: el agua producto como es nombrada por el fabricante para identificar el agua producida con baja conductividad eléctrica, posee las características necesarias para ser catalogada como agua de calidad tipo II cuando la conductividad del agua es menor o igual 1 μS/cm, por otro lado, el agua de rechazo o también llamada concentrado debido a que es el medio de arrastre para los minerales separados del agua producida, generalmente es desechada aunque se puede reutilizar reinyectándola hacia el suministro de agua de la etapa de pretratamiento.
- e) Recursos: para la etapa de purificación de agua, los equipos e instrumentos para un sistema con un electrodeionizador de 500 L/h se describen en la tabla 11. Además, el equipo necesita otros recursos para el control de parámetros físico químicos como tituladores o instrumentos de medición fuera de línea como el medidor de conductividad de campo y el medidor de sílice que son instrumentos de lectura directa de dicha magnitud.

Tabla 11 Caracterización de equipos de la etapa de purificación de agua

Cantidad	Componente	Especificación	Función
1	Electrodeionizador	500 L/h	Desmineralizar el agua por medio
			de un campo eléctrico, hasta
			obtener calidad de agua tipo II
4	Manómetro	0-100 psi	Medir las presiones de ingreso y
			salida al módulo
			electrodeionizador
2	Flujómetros	5 GPM	Medir el flujo producto y de
			rechazo
1	Celda de	0-200 μs/cm	Medir la conductividad del flujo
	conductividad		producto del electrodeionizador

Cantidad	Componente	Especificación	Función
4	Válvula reguladora	Válvula de diafragma,	Regular flujo y presión dentro del
	de flujo	1" acero inoxidable	módulo electrodeionizador
		316 L	
1	Sensor de baja	40 psi, 110 V	Activa el módulo
	presión		electrodeionizador con la
			presencia de presión de ingreso
1	Tubería	Diámetro de 1" acero	Tubería de distribución al módulo
		inoxidable 316 L	electrodeionizador

f) Indicadores del proceso: en esta etapa las variables que se controlan permiten la obtención del producto final, la regulación adecuada de la presión de ingreso, caudal de ingreso, corriente y voltaje de alimentación al módulo electrodeionizador permiten obtener la calidad y cantidad de agua especificada por el fabricante, por lo tanto, instrumentos como los manómetros, el medidor de conductividad eléctrica, flujómetros y el medidor de sílice son instrumentos de medición para la lectura de parámetros indicadores del proceso los cuales se dividen como se muestra en la tabla 12.

Si los resultados de medición están dentro del rango especificado, la probabilidad de que el producto cumpla con la calidad de agua tipo II es alta.

Tabla 12 Indicadores del proceso de purificación de agua

Magnitudes químicas del	Magnitudes de operación de	Magnitudes
agua	los equipos	microbiológicos
Dureza total	Presión de agua diluida	Unidades formadoras de
Cloro residual	• Presión de agua	colonia UFC
• Sílice	concentrada	Unidades de endotoxinas
Dióxido de carbono	Presión de agua rechazo	UE
• pH	Presión de agua producto	
Conductividad	Flujo rechazo	
eléctrica	Flujo producto	
• TOC	Temperatura	
	Corriente	
	• Voltaje	

g) Indicadores del resultado: el agua producida en esta etapa, agua tipo II según la ASTM D 1193:2018² " Sociedad Americana de Pruebas y Materiales" tiene como un límite la conductividad eléctrica del agua menor o igual a 1.0 μS/cm a 25°C, además otro indicador de resultado para esta etapa es el flujo de agua producida, el cual debe de estar dentro de los parámetros especificados por el fabricante, en este caso de estudio, un electrodeionizador de 500 L/h debe producir como mínimo 8.3 LPM de agua producto y rechazar entre un 10 y 5% del agua de alimentación. En la tabla 13 se muestra los parámetros junto a las especificaciones dadas por el fabricante de un módulo de 500 L/h marca IONPUERE.

ASTM D1193-2018, (American Society for Testing and Materials), Standard Specification for Reagent Water, Recuperado de www.wasserlab.com

Tabla 13 Indicador de resultado

Magnitud	Especificación	Valor medido	Comentarios
Corriente	12 A	-	-
Voltaje	24 V	-	-
Sílice	≤ 1.0 ppm	-	-
CO ₂	≤ 0 ppm	-	-
pН	4-11	-	-
Conductividad	≤1.0 µS/cm	-	-
Temperatura	5 – 45 °C		
Presión diluido	30-45 PSI	-	-
Presión concentrado	30-45 PSI	-	-
Presión producto	30-45 PSI	-	-
Presión rechazo	30-45 PSI	-	-
Flujo producto	8.3 LPM	-	-
Flujo rechazo	1.5 LPM	-	-

2.4 Determinación de magnitudes críticas del proceso

2.4.1 Análisis de modos y efectos de mediciones

Para determinar las magnitudes críticas e importantes para el sistema de confirmación es necesario preguntarse ¿Qué verdaderamente es necesario medir? ¿Por qué es necesario medir? Y ¿con que frecuencia deben hacerse las mediciones? Entonces una herramienta útil es el análisis de modo y efecto de mediciones, conocido por las siglas AMEM.

La secuencia de actividades a realizar con el método AMEM es la siguiente:

- Enlistar las características de calidad del producto o magnitudes que pueden ser medidas.
- Asignar un valor relacionado con el impacto en el cliente, asumiendo que no se realiza la medición, de acuerdo a los valores de la tabla 14
- Asignar un segundo valor relacionado con el impacto en el proceso, asumiendo que no se realiza la medición, de acuerdo a los valores de la tabla 14
- Asignar un tercer valor relacionado con la probabilidad de aparición de no conformidad, de acuerdo con los valores de la tabla 14
- Definir técnicas y equipos existentes en el mercado para cada una de las características enlistadas
- Multiplicar los tres valores asignados para obtener cada una de las características que indica su importancia a través del Número de Importancia (NI), de acuerdo a la ecuación:

 $NI = Impacto\ en\ cliente * Impacto\ en\ proceso * Probabilidad$

- Definir según el NI:
 - O Que características debe ser medida y cual no ser medida
 - o Frecuencia de medición o tabla de muestreo
 - o Punto y método económicamente eficiente para tomar la medición
 - Necesidad de aplicar técnicas estadísticas

Los criterios de valoración para el método AMEM¹⁵ se describen en la tabla 14, el valor aumenta a medida incrementa la probabilidad de que ocurra un impacto debido al cliente, proceso o probabilidad de no conformidad de las mediciones.

^{15.} ASTIN 2015, "Análisis del modo y efectos de las mediciones" Centro Nacional ASTIN, recuperado de www.fdocuments.ec

Tabla 14 Valoración de criterios para método AMEM¹⁵

Valor	Impacto en el	Impacto en el proceso	Probabilidad de No
	cliente		Conformidad
3	Alto	Suele suceder	Suele suceder
2	Medio	Es posible que suceda	Es posible que suceda
1	Bajo	Improbable que suceda	Muy probable que suceda

Nota: Cuanto mayor el impacto de la medición, mayor será la puntuación y por tanto su importancia

El número de importancia NI es el resultado de la multiplicación de las valoraciones del impacto en el cliente, proceso y probabilidad de no conformidad y se calcula de acuerdo a la ecuación (3)

$$NI = IC * IP * PNC$$
 (3)

Donde:

NI: número de importancia

IC: impacto en el cliente

IP: impacto en el proceso

PNC: probabilidad de no conformidad

Con ayuda del método de análisis del modo y efecto de mediciones AMEM se determinaron las magnitudes críticas en el proceso, con el apoyo de tablas donde se comparan las magnitudes de cada una de las etapas.

En la figura 21 se presenta el formato para realizar el análisis de modos y efectos de mediciones AMEM en el cual se describe la magnitud, una descripción breve del impacto que se genera junto con su valoración y la valoración dada por el efecto de la no conformidad. Finalmente, el NI se

calcula con la ecuación (3) y se comparan los resultados con las demás magnitudes sometidas a análisis por medio del método AMEM, se determinan en orden creciente las magnitudes de mayor importancia.

Car	acterística de	Impacto en el	cliente	Impacto en el	proceso	Modo de	Probabilida		
	calidad					medición	Conformi	dad	
						Disponibilidad			
						de equipo,			NI
No	Descripción	Descripción	Valor	Descripción	Valor	necesidades de	Variabilidad	Valor	
						servicio y			
						capacitación			
1									
2									
3									

Figura 21 Formato para el registro de la aplicación del método AMEM

2.4.2 Determinación de magnitudes críticas del proceso sistema pretratamiento

La comparación entre magnitudes para esta etapa se presenta en la tabla 15.

Tabla 15 Comparación de magnitudes críticas del proceso en el sistema pretratamiento

Magnitud	Incidencia teórica en la calidad del	Rango de operación	Consecuencias de incumplimiento de	Comentarios
	producto		parámetros de operación	
Cloro (por medio de ORP)	El cloro es utilizado como agente biocida, potabiliza el agua de ingreso	0-700 mV (0 – 1 ppm) pH 7	Crecimiento bacteriano, presencia de pseudomona	Específicamente cloro libre
Presión de entrada	Es la presión de trabajo ideal para los filtros con medios filtrantes, suministra la presión de ingreso a la osmosis inversa	3-4 bar	Bajo rendimiento de los filtros del pretratamiento, calentamiento de bomba de alta presión en osmosis inversa	Magnitud física
Caudal de ingreso	El flujo es directamente proporcional al volumen de agua que se necesita para producir	20-30 LPM	Daños en los equipos posteriores diseñados para un flujo de agua establecido, desperdicio de agua y sobrecalentamiento de bombas	Parámetro de diseño
Temperatura	La temperatura es una variante con la conductividad del agua producida e influye en la operación de los equipos	20-25 °C	Calentamiento de tuberías y bombas de suministro	Específicamente la temperatura del agua
рН	Incide directamente en la calidad del agua a tratar	5-8 pH	Filtro de carbón requiere mayor frecuencia de retro lavados, cambio de curva en ORP-Concentración de cloro.	El filtro de carbón se encarga de regular pH
Dureza	La cantidad de dureza en el agua es una característica de la calidad de agua de	≤500 ppm	Filtro suavizador requiere mayor frecuencia de regeneración de resina	El filtro suavizador es diseñado en base a un promedio de dureza de entrada

Magnitud	Incidencia teórica en la calidad del producto	Rango de operación	Consecuencias de incumplimiento de parámetros de operación	Comentarios
	trabajo, muestra la cantidad de calcio y magnesio presente en el agua a pre tratar			
Conductividad eléctrica	Es proporcional a la cantidad de sales presentes en el agua y a la capacidad de remoción del sistema de filtración	≤1000 µS/cm	Implica mayor índice de mantenimiento para los equipos de filtración según su capacidad	

A continuación en la tabla 16, se presenta la aplicación del método AMEM a los parámetros de la etapa del pretratamiento

Tabla 16 Determinación de magnitudes críticas e importantes en la etapa de pretratamiento de agua

Ca	racterística de calidad	Impacto en el client	e	Impacto en el proc	eso	Modo de medición	Probabilidad I Conformidad		
No	Descripción	Descripción	Valor	Descripción	Valor	Disponibilidad de equipo, necesidades de servicio y capacitación	Variabilidad	Valor	NI
1	Conductividad	Afecta la calidad de agua de suministro	1	Afecta la capacidad de remoción de minerales	2	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	4
2	Presión	Asegura el contacto del agua a tratar con los medios filtrantes	2	Afecta directamente al rendimiento de la bomba de alta presión de osmosis inversa	2	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	8
3	Temperatura	Afecta la lectura de la conductividad del agua	2	Afecta los componentes del sistema	1	Equipo sencillo personal requiere capacitación y el equipo no requiere calibración	Es poco probable que suceda, equipo con switch térmico	1	2
4	Dureza	Presentar valor alto disminuye la calidad de agua producida	2	Incrementa los periodos de regeneración con sal	2	Equipo sencillo personal requiere capacitación y el equipo no requiere calibración	Es posible que suceda	2	8
5	pН	Afecta el sabor y el olor del agua	2	Afecta el rendimiento del filtro de carbón	1	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	4
6	Flujo	Afecta directamente la producción diaria de agua	3	Afecta la capacidad de los procesos de filtración	1	Equipo sencillo personal requiere capacitación y el equipo no requiere calibración	Es poco probable que suceda	1	3
7	ORP	Presentar valor mínimo afecta directamente la contaminación del agua a producir, agente biosida	3	Su valor máximo afecta la vida útil de la resina catiónica	2	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	12

2.4.3 Determinación de magnitudes críticas de la etapa de tratamiento

La comparación entre magnitudes para esta etapa de presenta en la tabla 17.

Tabla 17 Comparación de magnitudes críticas del proceso de la etapa de tratamiento

Magnitud	Incidencia teórica	Rango de	Consecuencias de	Comentarios
	en la calidad del	operación	incumplimiento de	
	agua producida		parámetros de	
			operación	
Cloro (por	Incumplimiento de	< 200mV	Deterioro de membranas	Específicamente
medio de ORP)	agua calidad tipo III	0 ppm	de osmosis inversa	cloro libre
Presión de	No presenta mayor	3-4 bar	Presión de trabajo para la	Magnitud física
entrada	incidencia sobre la		bomba en modo de	
	calidad de agua		cascada de la osmosis	
			inversa	
Flujo permeado	El flujo es directamente	5-8 LPM	Procesos posteriores	Flujo producto de
	proporcional al		requieren un flujo	OR
	volumen de agua		específico para operar en	
	permeada que se		óptimas condiciones	
	necesita producir			
Flujo	El agua de rechazo es	5-8 LPM	Desechar más de un 50%	Flujo de descarte
concentrado	utilizado como medio		del agua de ingreso afecta	
	de transporte de la		el rendimiento de la	
	mayor cantidad de sales		osmosis inversa	
	hacia el dreno			
Temperatura	La temperatura afecta	25 °C	Calentamiento de tuberías	Específicamente la
	directamente la lectura		y bomba de alta presión	temperatura del
	de la conductividad y la			agua pre tratada
	vida útil de los equipos			
pН	Incide directamente en	5-8 pH	Aumento en la	
	la calidad del agua a		conductividad del agua	
	tratar		producida	
Dureza	El agua dura no cumple	0 ppm	Membranas de osmosis	
	la normativa para ser		inversas saturadas de	
	utilizada para		minerales y con bajo	
	posteriores procesos		rendimiento	
Conductividad	La conductividad del	≤4 μS/cm	El agua no se puede	Calidad de agua
	agua producida debe		utilizar en procesos	Tipo III
	cumplir normativa para		posteriores	
	ser utilizada			

Magnitud	Incidencia teórica en la calidad del agua producida	Rango de operación	Consecuencias de incumplimiento de parámetros de operación	Comentarios
Humedad relativa	Un ambiente controlado contribuye a la disminución de focos de contaminación	70-80% HR	Los equipos pueden presentar fallas a variaciones de temperatura y corrosión de elementos	Parámetro de control ambiental
Presión de trabajo	Para producir agua se requiere de una presión de trabajo	8-15 bar (120-220 psi)	El flujo de producción, la conductividad se ven afectadas negativamente al presentar incumplimiento	

A continuación, en la tabla 18, se aplica el método de análisis de modos de efectos AMEM para la etapa de tratamiento de agua.

Tabla 18 Determinación de magnitudes críticas e importantes de la etapa de tratamiento de agua

Ca	racterística de calidad	Impacto en el client	e	Impacto en el proc	eso	Modo de medición	Probabilidad I Conformidae		
No	Descripción	Descripción	Valor	Descripción	Valor	Disponibilidad de equipo, necesidades de servicio y capacitación	Variabilidad	Valor	NI
1	Conductividad	Afecta directamente a la calidad de agua producida, incumple tipo de agua III	3	Afecta al rendimiento de las membranas de osmosis, y procesos posteriores	3	Equipo sencillo personal requiere capacitación y el equipo calibración	Suele suceder	3	27
2	Presión entrada	Contribuye a la validación del proceso	2	Afecta directamente al rendimiento de la bomba de alta presión de osmosis inversa	2	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	8
3	Temperatura	Afecta directamente a las propiedades del agua a temperatura fuera de rango	1	Afecta el proceso de osmosis inversa variando las las propiedades del agua	2	Equipo sencillo personal requiere capacitación y el equipo no requiere calibración	Es muy improbable que suceda	1	2
4	Dureza	Baja dureza protege los equipos de posibles incrustaciones y garantiza el proceso de osmosis inversa	2	Daño irreversible de membranas de osmosis inversa	3	Equipo sencillo personal requiere capacitación y el equipo requiere calibración	Es posible que suceda	2	12
5	pН	Afecta la calidad de agua producida	3	Opera bajo condiciones desfavorables	1	Equipo sencillo personal requiere capacitación y el equipo calibración	Suele suceder	3	9
6	Flujo producido	Afecta directamente al 90% del agua producida, flujo con baja concentración de sales	3	Presentar valores diferentes a los del rango de operación afectan a los posteriores procesos	3	Equipo sencillo personal requiere capacitación y el equipo no requiere calibración	Es muy improbable que suceda	1	9

Car	racterística de calidad	Impacto en el client	e	Impacto en el proce	eso	Modo de medición	Probabilidad I Conformidad		
No	Descripción	Descripción	Valor	Descripción	Valor	Disponibilidad de equipo, necesidades de servicio y capacitación	Variabilidad	Valor	NI
7	ORP	Cloro: Su ausencia contribuye a la deionización del agua	2	Cloro: La presencia afecta la vida útil de las membranas de osmosis inversa y tuberías de acero inoxidable	3	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	12
8	Presión de osmosis	Es esencial para producir agua purificada sin utilizar químicos	2	Presión excesiva daña las membranas, presión baja produce baja calidad y cantidad de agua	2	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	8
9	Flujo Concentrado	Flujo con alto contenido de sales	1	Se utiliza como medio de desecho de la mayor cantidad de sales	1	Equipo sencillo personal requiere capacitación y el equipo calibración	Es muy improbable que suceda	1	1
10	Humedad relativa	Se controla el entorno y previene la contaminación	3	Afecta directamente el estado de operación del equipo	2	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	12

2.4.4 Determinación de magnitudes críticas de la etapa de purificación de agua

La comparación entre magnitudes para esta etapa se presenta en la tabla 19.

Tabla 19 Comparación de magnitudes críticas del proceso de la etapa de purificación de agua

Magnitud	Incidencia teórica en la calidad del	Rango de operación	Consecuencias de incumplimiento de	Comentarios
	agua producida	operación	parámetros de	
	uguu proudeidu		operación	
Presión de diluido	Presión de alimentación indica el estado de operación del	1-2 bar	Bajo rendimiento en la producción de agua con calidad menor a 1.3	Magnitud física
Presión concentrado	Presión de la línea de concentrado en el estado de operación del EDI	1-2 bar	μS/cm Bajo rendimiento en la producción de agua con calidad menor a 1.3 μS/cm	Magnitud física
Presión de permeado	Presión en la línea del agua producto con calidad de agua tipo II, su regulación contribuye a mejoras en el rendimiento del equipo.	1-1.5 bar	Al ser menor al rango equipo necesita mantenimiento	Magnitud física
Presión de rechazo	Su regulación contribuye a mejoras en el permeado del agua	0-1 bar	Al ser superior es índice de obstrucción en el dreno	Presión atmosférica
Flujo permeado	El flujo de diseño del equipo directamente proporcional al agua producto	500 L/H ±10%	Agua producida con alta conductividad	
Flujo concentrado	El 10% del agua de alimentación para el transporte de los iones	5%-10% del flujo de entrada	Saturación de minerales dentro del equipo, desperdicio de agua y bajo desempeño	
Temperatura	La temperatura afecta las mediciones de conductividad y la dilatación de los	20-45 °C	Fugas en el sistema, incumplimiento de agua producida	Magnitud física, los equipos deben ser diseñados

Magnitud	Incidencia teórica en la calidad del agua producida	Rango de operación	Consecuencias de incumplimiento de parámetros de operación	Comentarios
	componentes del sistema			previamente para su tolerancia
рН	El pH indica la calidad de agua de ingreso al equipo	5-8 pH	Posible presencia de químicos que podrían dañar el equipo	
Dureza	Indica calidad de agua de ingreso	0 ppm	Provoca incrustaciones dentro del equipo	Parámetro físico químico
Conductividad	La conductividad es proporcional a la cantidad de minerales a remover por equipo	≤1.0 µS/cm	La capacidad de remoción de minerales se ve afectada con el aumento en la conductividad de ingreso	Calidad de agua tipo II
Humedad relativa	Un ambiente controlado contribuye a la disminución de focos de contaminación	70-80% HR	Los equipos pueden presentar fallas a variaciones de temperatura y corrosión de elementos	Parámetro de control ambiental
Sílice	El equipo no tiene la capacidad de remover fácilmente sílice, incumple calidad de agua tipo II	0-0.5 ppm	La corriente de consumo aumenta con el tiempo, y la capacidad de remoción de sales disminuye	
Dióxido de carbono CO ₂	El equipo no tiene la capacidad de remover dióxido de carbono	0-5 ppm	La corriente de consumo aumenta con el tiempo, y la capacidad de remoción de sales disminuye	

A continuación, en la tabla 20, se aplica el método de análisis de modos de efectos AMEM para la etapa de purificación de agua.

Tabla 20 Determinación de magnitudes críticas e importantes para la etapa de purificación de agua

Car	acterística de calidad	Impacto en el client	e	Impacto en el proce	eso	Modo de medición	Probabilidad I Conformidad		
No	Descripción	Descripción	Valor	Descripción	Valor	Disponibilidad de equipo, necesidades de servicio y capacitación	Variabilidad	Valor	NI
1	Conductividad	Afecta directamente a la calidad de agua producida, incumple agua tipo II	3	Aumenta los periodos de mantenimiento del sistema	3	Equipo sencillo personal requiere capacitación y el equipo calibración	Suele suceder	3	27
2	Presión diluido	Contribuye al monitoreo y conservación de los equipos	2	Afecta directamente a la capacidad de remoción de minerales, producción de agua y como especificación del equipo	3	Equipo sencillo personal requiere capacitación y el equipo calibración	Suele suceder	3	18
3	Presión de concentrado	Contribuye al monitoreo y conservación de los equipos	2	Afecta directamente a la capacidad de transporte de minerales a rechazar, incumple especificación del equipo	3	Equipo sencillo personal requiere capacitación y el equipo calibración	Suele suceder	3	18
4	Presión de permeado	Indica la presión del agua producida por el electrodeionizador hacia la etapa de almacenamiento	2	Afecta directamente al estado del equipo, indica si el equipo está funcionando correctamente.	3	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	12
5	Presión de rechazo	Indica la presión de descarte hacia el dreno, presión normalmente baja	2	Afecta el rendimiento del equipo, indica el estado de operación.	3	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	12
6	Temperatura	Afecta a la preservación de los equipos	1	Afecta a lecturas tomadas por los equipos que pueden variar con la temperatura	1	Equipo sencillo personal requiere capacitación y el equipo no requiere calibración	Es muy improbable que suceda	1	1
7	Dureza	Incumple calidad de agua	2	Saturación de calcio y magnesio en el equipo electrodeionizador	2	Equipo sencillo personal requiere capacitación y el equipo requiere calibración	Es muy improbable que suceda	1	4

Ca	racterística de calidad	Impacto en el cliente		Impacto en el proc	eso	Modo de medición	Probabilidad I Conformidae		
No	Descripción	Descripción	Valor	Descripción	Valor	Disponibilidad de equipo, necesidades de servicio y capacitación	Variabilidad	Valor	NI
8	pН	Afecta a la calidad de los productos posteriores	2	Incumple especificación del equipo, causando daños permanentes	1	Equipo sencillo personal requiere capacitación y el equipo calibración	Es muy improbable que suceda	1	2
9	Flujo producto o permeado	Afecta a la cantidad diaria de producción	3	Sobrepasar la capacidad implica disminución en el rendimiento del equipo	2	Equipo sencillo personal requiere capacitación y el equipo no requiere calibración	Es muy improbable que suceda	1	6
10	Medidor ORP	Incumplimiento por la presencia de cloro en el agua	2	La presencia de cloro expone en riesgo el módulo electrodeionizador incumpliendo su especificación	3	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	12
11	Sílice	Incumplimiento en calidad de agua tipo II	2	Su presencia provoca daños irreversibles en el equipo incumpliendo su especificación, aumenta el amperaje	2	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	8
12	CO ₂	Presencia de burbujas en el agua	1	Se incrementa la corriente de consumo para el electrodeionizador	2	Equipo sencillo personal requiere capacitación y el equipo no requiere calibración	Es muy improbable que suceda	1	2
13	Humedad relativa	Se controla el entorno y previene la contaminación	3	Afecta directamente el estado de operación del equipo	2	Equipo sencillo personal requiere capacitación y el equipo calibración	Es posible que suceda	2	12

De las tablas 16, 18 y 20 se tienen los resultados que serán presentados en el capítulo 3 con las magnitudes críticas mayor o igual a NI 8, correspondiente a las etapas del pretratamiento, tratamiento y purificación de agua con calidad ASTM tipo II:

- Cloro por ORP a la entrada del pretratamiento
- Conductividad de agua producto de Osmosis inversa
- Dureza de ingreso al sistema de tratamiento
- Cloro de ingreso al sistema de tratamiento y purificación de agua
- Flujo producido por la osmosis inversa
- Presión de ingreso al sistema de tratamiento
- Presión de trabajo de osmosis inversa
- Potencial de hidrogeno "pH" de ingreso al sistema de tratamiento
- Humedad relativa del ambiente del sistema de tratamiento y purificación de agua
- Conductividad de agua producida por el sistema de purificación de agua
- Presión de diluido del sistema de purificación de agua
- Presión de concentrado del sistema de purificación de agua
- Presión de permeado del sistema de purificación de agua
- Presión de rechazo del sistema de purificación de agua
- Flujo de permeado del sistema de purificación de agua
- Sílice de ingreso del sistema de purificación de agua

Capítulo 3 Sistema de confirmación metrológica

INTRODUCCIÓN

En este capítulo se presenta la propuesta de diseño del sistema de confirmación metrológica para el sistema de purificación de agua tipo II con electrodeionizador. Como se estableció en los capítulos anteriores, el sistema requiere controlar distintos parámetros para cumplir con las especificaciones bajo norma de la calidad de agua y las especificaciones de operación de los equipos. Por lo tanto, a partir de la determinación de magnitudes críticas en el presente capítulo se muestran los resultados del análisis realizado.

Como parte de la propuesta de diseño del sistema de confirmación metrológico, se desarrollaron procedimientos de calibración para los instrumentos de medición que controlan parámetros críticos a partir de la aplicación del método AMEM. Se cuenta con un procedimiento general donde son identificados y se muestran conceptos generales para todo el resto de los procedimientos relacionados.

Los procedimientos desarrollados están basados en su mayoría en recomendaciones de guías técnicas de centros de investigación de metrología, de igual manera los desarrollos de los cálculos son trazables a estas guías de referencias según apliquen a los instrumentos comunes de medición en los sistemas de producción de agua tipo II con electrodeionizador, además, el capítulo busca seguir los lineamientos bajo norma ISO IEC 17025:2017, "Requisitos generales para la competencia de laboratorios de ensayo y calibración" sección 7.8

3.1 Diseño del plan de confirmación de confirmación metrológica

Como se definió en la sección 1.3.2 la confirmación metrológica normalmente incluye, calibración y/o verificación, así como cualquier ajuste

El proceso de confirmación metrológica comprende tres etapas:

- Calibración: procedimiento metrológico por medio del cual se compara un equipo de medición con un patrón de referencia determinando con suficiente exactitud el valor que posee dicho equipo. Los resultados que se reportan son los errores o correcciones y la incertidumbre de medición del equipo.
- ii. Verificación Metrológica: procedimiento mediante el cual se interpretan los resultados obtenidos en el certificado de calibración para determinar si el equipo cumple o no cumple con los requisitos para los cuales la empresa lo tiene destinado.
- iii. Decisiones y Acciones: son todas aquellas actividades que se deben realizar una vez se conoce el resultado de la evaluación de conformidad del equipo de medición. Cuando dicho equipo no se encuentra conforme con las especificaciones establecidas, es necesario actuar sobre sus características por medio de los procedimientos de ajuste, reparación o mantenimiento.

La Confirmación Metrológica es necesaria e importante en todo proceso de producción ya que permite conocer, controlar o minimizar el efecto de mediciones erróneas en la calidad resultante del producto, en nuestro caso, el agua tipo II.

En lo referente al plan de confirmación metrológica se asignarán responsabilidades según el organigrama de las áreas involucradas en el proceso de confirmación metrológica y se muestra en la figura 22.

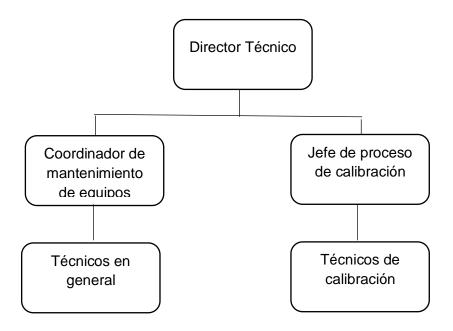


Figura 22 Organigrama del área de ingeniería de procesos de calibración y mantenimiento de equipos

A continuación, se presenta el plan para la confirmación metrológica de los equipos con los cuales se realizan las mediciones de las magnitudes críticas del sistema de purificación de agua tipo II con Electrodeionizador.

Diseño de plan de confirmación metrológica

Código:	DPC-001
Fecha:	16/05/2021
Página:	1/3

	geniería de procesos de libración	Responsables:	Técnicos y jefe del proceso de calibración	Categoría de la calibración:	Todos internos
--	--------------------------------------	---------------	--	------------------------------	----------------

Magnitud	Descripción	Instrumento de medición	Método de calibración	Periodo de calibración	Registro	Documento de referencia	Técnico Responsable	Informar en caso de no conformidad
Conductividad	Agua producto de electrodeionizado r	Conductivímetr o	Comparació n directa con MRC	4 meses	MC-01	SMC-01	Técnico 2	Jefe de proceso de calibración
ORP	Concentración de cloro en la entrada del pretratamiento	Medidor de ORP	Comparació n directa con MRC	6 meses	CL-01	SMCL-01	Técnico 2	Jefe de proceso de calibración
Sílice	Sílice de ingreso del sistema de purificación de agua	Colorímetro cheacker sílice	Comparació n directa con MRC	6 meses	SL-01	SMCL-01	Técnico 2	Jefe de proceso de calibración
Presión	Presión de rechazo del sistema de purificación de agua	Manómetros	Comparació n directa con patrón	12 meses	MP-01	SMSL-01	Técnico 1	Jefe de proceso de calibración

Diseño de plan de confirmación metrológica

Código:	DPC-001
Fecha:	16/05/2021
Página:	2/3

Magnitud	Descripción	Instrumento de medición:	Método de calibración:	Periodo de calibración:	Código de registro:	Documento de referencia:	Técnico Responsable:	Informar en caso de no conformidad
Caudal	Medidor de caudal del permeado de osmosis inversa	Flujómetros	Comparació n de medida de volumen	24 meses	MF-01	SMF-01	Técnico 1	Jefe de proceso de calibración
Presión	Presión de ingreso al sistema de tratamiento	Manómetros	Comparació n directa con patrón	12 meses	MP-01	SMP-01	Técnico 1	Jefe de proceso de calibración
Presión	Presión de trabajo de osmosis inversa	Manómetros	Comparació n directa con patrón	12 meses	MP-01	SMP-01	Técnico 1	Jefe de proceso de calibración
Potencial de hidrogeno "pH"	Potencial de hidrogeno pH de ingreso al sistema de tratamiento	pHmetro	Comparació n directa con MRC	6 meses	PH-01	SMPH-01	Técnico 2	Jefe de proceso de calibración
Humedad relativa	Humedad relativa del sistema de tratamiento y purificación de agua	Higrómetro	Comparació n directa con patrón	12 meses	HR-01	SMP-01	Técnico 1	Jefe de proceso de calibración
Caudal	Flujo permeado o producto del sistema de purificación de agua	Flujómetros	Comparació n de medida de volumen	24 meses	MF-01	SMF-01	Técnico 1	Jefe de proceso de calibración

Diseño de plan de confirmación metrológica

Código:	DPC-001
Fecha:	16/05/2021
Página:	3/3

Magnitud	Descripción	Instrumento de medición:	Método de calibración:	Periodo de calibración:	Registro:	Documento de referencia:	Técnico Responsable:	Informar en caso de no conformidad
Conductividad	Conductividad del agua producida por el sistema de purificación de agua	Conductivímet ro	Comparación directa con MRC	4 meses	MC-01	SMC-01	Técnico 2	Jefe de proceso de calibración
Presión	Presión de diluido del sistema de purificación de agua	Manómetros	Comparación directa con patrón	12 meses	MP-01	SMP-01	Técnico 1	Jefe de proceso de calibración
Presión	Presión de concentrado del sistema de purificación de agua	Manómetros	Comparación directa con patrón	12 meses	MP-01	SMP-01	Técnico 1	Jefe de proceso de calibración
Presión	Presión de permeado del sistema de purificación de agua	Manómetros	Comparación directa con patrón	12 meses	MP-01	SMP-01	Técnico 1	Jefe de proceso de calibración

Elaborado por:	Revisado por:	Aprobado por:
Nombre y cargo	Nombre y cargo	Nombre y cargo
Fecha:	Fecha:	Fecha:

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	PCAL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

3.2 Procedimientos de calibración

Los procedimientos describen la metodología a seguir para asegurar el cumplimiento de las actividades de mantenimiento y calibración de los equipos e instrumentos de medición incluidos en el plan de confirmación metrológica, es de aclarar que los próximos formatos de procedimientos buscan cumplir aspectos bajo norma ISO IEC 17025:2018⁹, "Requisitos generales para la competencia de laboratorios de ensayo y calibración" sección 7.8

PROCEDIMIENTO

Sección 1 Generalidades de las actividades de mantenimiento y calibración

Documento sustituye a: Ninguno

Edición: Borrador No total de páginas: 5

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	PCAL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es facilitar el uso de los procedimientos de calibración de instrumentos y mantenimiento preventivo para un sistema de purificación de agua tipo II con electrodeionizador, comprendiendo conceptos claves.

2- Alcance

Este documento es de aplicación para los equipos del sistema purificador de agua tipo II con electrodeionizador

3- Responsabilidades

El jefe de proceso de calibración: es el responsable del cumplimiento del presente procedimiento y de asegurar las actividades de formación pertinentes al personal en la aplicación del mismo

Técnicos: Serán los responsables de su uso y realizar las actividades de mantenimiento o calibración, conforme al plan.

4- Definiciones

En este ítem se describen los conceptos más utilizados y de carácter técnico en la rama de la metrología que ayudan a comprender los procedimientos de calibración.

Calibración: operación que bajo condiciones específicas establece, en una primera etapa, una relación entre los valores y sus incertidumbres de medidas asociadas a partir de patrones de medidas y las correspondientes indicaciones de incertidumbres asociadas.

Verificación: aportación de evidencia obtenida de que un elemento dado satisface los requisitos especificados

Patrón: relación de la definición de una magnitud dada, con el valor determinado y una incertidumbre de medida asociada tomada como referencia

Patrón intrínseco: basado en una propiedad intrínseca y reproducible de un fenómeno o sustancia

Material de referencia: material suficientemente homogéneo y estable con respecto a propiedades específicas, estableciendo como apto para su uso previsto en una medición

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	PCAL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Material de referencia certificado: acompañado por la documentación emitida por un organismo autorizado, que proporciona una o varios valores de propiedades específicas, con incertidumbres y trazabilidades asociadas.

Incertidumbre: parámetro no negativo que caracteriza la dispersión de valores atribuidos a un mensurando, a partir de la información que se utiliza

Precisión: es la proximidad entre las indicaciones o los valores medidos obtenidos en mediciones repetidas de un mismo objeto, bajo condiciones similares o especificadas

Mensurando: Magnitud que se desea medir, un mensurando requiere de conocimiento de la naturaleza de la magnitud

Incertidumbre típica: se expresa como la desviación típica

Incertidumbre típica combinada: obtenida a partir de incertidumbres típicas individuales asociadas a las magnitudes de entrada de un modelo de medición

Incertidumbre: límite superior y elegida en base al uso previsto de los resultados de medida

Factor de cubertura: número mayor que uno por el que se multiplica una incertidumbre combinada para obtener una incertidumbre expandida

Confirmación metrológica: conjunto de operaciones requeridas para asegurarse de que el equipo de medición es conforme a los requisitos correspondiente a su uso previsto

Resolución: mínima variación de la magnitud medida para que dé lugar a una variación perceptible de la indicación correspondiente

5- Listado de procedimientos

En la siguiente tabla se encuentran los códigos correspondientes a los procedimientos del plan de confirmación metrológico para el sistema de purificación de agua tipo II con electrodeionizador.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	PCAL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Sección	Código	Título de la sección
1	GPCAL-01	Sección de Generalidades de las actividades de
		mantenimiento y procesos de calibración
2	SMEDI-01	Sección de mantenimiento preventivo para
		electrodeionizador
3	SMP-01	Sección de medidores de presión
4	SMC-01	Sección de medidores de conductividad
5	SMPH-01	Sección de medidores de pH
6	SMCL-01	Sección de medidores de ORP
7	SMSL-01	Sección de medidores de sílice
8	SMF-01	Sección de medidores de flujo
9	SMHR-01	Sección de medidores de humedad relativa
10	CT-01	Cartas de trazabilidad

6- Criterios de aceptación y rechazo

En el plan de confirmación metrológica los instrumentos de medición críticos que conforman un sistema de purificación de agua tipo II con electrodeionizador serán evaluados mediante los criterios de Aceptación y rechazo, el criterio de aceptación es el valor más importante de la ficha de instrumento ya que se determina si los equipos cumplen con las especificaciones establecidas por el fabricante en el caso de exigir parámetros para la conservación de los equipos y las normas establecidas para la calidad de agua que se requiera producir.

De determinarse como aceptado el instrumento de medición se colocará la viñeta de calibración, según modelo mostrado en la figura 1, con el código del equipo, nombre del encargado de la calibración, fecha de la calibración, fecha de la próxima calibración, logo de la empresa encargada de la calibración, marca, modelo y serie del equipo.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	PCAL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

LOGO INSTITUCION CÓDIGO DEL TÉCNICO:	FECHA: _	DE CALIBRACIÓN
_	IMA CALIBRACIÓN	:
MARCA:	MODELO:	SERIE:

Figura 1 Formato de etiqueta de calibración

El criterio de aceptación se definirá en cada sección de acuerdo al modo de calibración establecido por el fabricante, en algunos casos por medio del porcentaje de error y en otros por cálculo de incertidumbre según corresponda.

7- Registro de calibración e indicadores de seguimiento

Para cada procedimiento en este plan de confirmación metrológica se utilizará un registro de calibración como indicador de seguimiento, el cual tendrá como mínimo las siguientes consideraciones:

- Nombre del equipo sometido a calibración
- Código del equipo
- Marca, modelo y serie del equipo sometido al proceso de calibración
- Tolerancia del equipo
- Porcentaje de error máximo permitido
- Incertidumbre del equipo
- Criterio de aceptación o rechazo
- Detalle de la calibración
- Fecha y responsable de la calibración
- Fecha de la próxima calibración

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMEDI-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 2 Mantenimiento preventivo para electrodeionizador

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 8

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMEDI-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es describir las actividades a aplicar como parte del mantenimiento preventivo para un electrodeionizador de 500 L/h de un sistema de purificación de agua tipo II.

2- Alcance

Este documento aplica para actividades de mantenimiento del electrodeionizador 500 L/h modelo LX, marca IONPURE.

3- Responsabilidades

Coordinador de mantenimiento de equipos: es el responsable de llevar el control del mantenimiento del equipo según la fecha que corresponda.

Técnicos: son responsables de la ejecución de las actividades manuales y mecánicas para el mantenimiento del equipo.

4- Definiciones

Electrodeionizador: es el equipo encargado de purificar agua tratada a partir del método de osmosis inversa, es un equipo que utiliza un campo eléctrico para la remoción de sales con ayuda de resinas y membranas permeables a cationes y aniones

FCE: conductividad equivalente de alimentación, y se calcula a partir de la fórmula especificada según el fabricante¹⁶ marca Ionpure.

$$FCE = Conductividad + 2.79xCO_2 + 2.04xSiO_2$$

Permeado: flujo de agua producido por el método de osmosis inversa con baja conductividad eléctrica

Diluido: flujo de agua alimentado que va a purificarse

Concentrado: flujo de agua alimentado que va a recibir los iones removidos

^{16.} EVOCUA, recuperado de "www.Evocua.com", Ionpure, productos, Ion Cedi

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Cádina	CMEDI 01	Madifiagaión	00
Código:	SMEDI-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Producto: flujo de agua producto del CEDI

Rechazo: flujo de agua de salida que va a drenarse o a recuperación

5- Materiales y equipos

- Guantes de látex
- Lentes de protección
- Bomba de recirculación
- Mangueras reforzadas, resistente a los químicos
- Mascara para gases
- Kits de titulación de parámetros físico químicos, dureza, CO₂
- Ácido clorhídrico, soda caustica y sal industrial
- Herramientas manuales (llaves fijas)
- Equipos (Conductivímetro digital, medidor de sílice, medidor de cloro, medidor de pH, Fuente de poder de 48 V y voltímetro)

6- Inicio

Inspección del sistema mediante toma de parámetros actuales del equipo, esta etapa servirá para medir la efectividad del mantenimiento preventivo, llenando el formato controlado presentado en la tabla B1.

Tabla B1 Formato para toma de parámetros iniciales

LOGO /	DEDADTAMEN	JTO DE DDOCESOS DE	Fecha: día/mes/año
	DEPARTAMENTO DE PROCESOS DE CALIBRACIÓN		Código: RE-01
INSTITUCIONAL	CAI	LIDRACION	Modificación: 00
Pará	metro	Especificación	Lectura
Agua de ingreso	a EDI de 500 L/h	·	
pН		5 – 7	
FCE		< 40 μS/cm	
Sílice		<1 ppm	
Cloro		<0.2ppm	
Dureza		<0ppm	
CO_2		<1ppm	
Salida de agua E	DI de 500 L/h		
PH		5-7	

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

07.1	CMEDI 01	3.4 1:C: : /	0.0
Código:	SMEDI-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Conductividad	< 1.3 μS/cm	
Parámetros eléctricos		
Amperaje	5 A	
Voltaje	24 V	
Fecha de ultimo mantenimiento:	6 meses	

7- Procedimiento

La tabla B3 presenta una lista de las tareas a realizar para la limpieza de los electrodeionizadores en un registro controlado, sirve como instrumento para monitorear el cumplimiento, tiempo de ejecución y recopilar información de manera ágil y ordenada.

Tabla B3 Formato controlado del procedimiento de limpieza de EDI

DEPARTAMENTO DE PRO		DOCESOS DE	Fecha: dí	Fecha: día/mes/año		
	LOGO /	Código: RE-02				
ı	NSTITUCIONAL	Modifica	ación: 00			
P	ROCEDIM	IENTO DE LIMPIEZA EDI	REALIZADO	HORA	HORA	
		500L/h	POR:	INICIO	FINAL	
1	Colocarse e	el equipo de protección personal				
	(Mascarilla	, guantes y lentes de protección).				
2	Apagar el e	equipo electrodeionizador.				
3	Preparar tar	nque de proceso de acero				
	inoxidable	o recipiente de plástico				
	resistente a	químicos con una capacidad				
	mínima de	80 L.				
4	Desconecta	r tuberías de entrada como salida				
	del EDI del	l sistema de purificación de agua				
	pura.					
5	Conectar n	nangueras de 1" a la entrada y				
	salida del l	EDI para realizar el proceso de				
	recirculació	ón.				
6	Conectar	mangueras a bomba de				
	recirculació	ón de químicos y hacia la tubería				
	de ingreso	del EDI				

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMEDI-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

7	Conectar manguera a la tubería de salida del		
	permeado hacia el tanque o depósito de		
	plástico		
8	Conectar manguera de 1" a la tubería de		
	salida del concentrado hacia tanque o		
	depósito de plástico		
9	Conectar manguera de succión a la entrada		
	de la bomba de recirculación hacia el tanque		
	o depósito.		
10	Llenar el depósito para químicos con 30L de		
	agua tipo II		
11	Realizar el cebado de la bomba ingresando		
	agua por el orificio de descarga de la bomba.		
12	Realizar pruebas de fugas		
13	Agregar 0.5 L de ácido clorhídrico al tanque		
	o depósito y verificar nivel de pH.		
14	Recircular por 30 minutos		
15	Drenar la solución		
<i>16</i>	Llenar el depósito con 50 L de agua tipo II y		
	diluir 2 libras de sal en el depósito hasta		
	crear la solución salina		
17	Recircular por 30 minutos		
18	Drenar el líquido		
19	Llenar el depósito con 30 L de agua tipo II		
	y 0.5 L de soda		
20	Decimals a decimal 20 million		
20	Recircular durante 30 minutos		
21	Drenar el líquido		
22	Nuevamente llenar el depósito con 50 L de		
	agua tipo II y diluir 2 libras de sal en el		
	8 · · · · · · · · · · · · · · · · · · ·		
	depósito hasta crear la solución salina		

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMEDI-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

23	Recircular por 30 minutos		
24	Drenar el líquido		
25	Llenar el depósito con 30L de agua tipo II		
26	Recircular por 30 minutos		
27	Verificar FCE del agua de ingreso y salida de electrodeionizador menor o igual a 40 µs/cm.		
28	Medir valores de pH <8 y >5.		
29	Drenar el líquido		
30	Conectar el EDI a las sus respectivas conexiones hidráulicas.		
31	Conectar EDI al sistema eléctrico.		
32	Dejar en operación el sistema de producción de AP hasta tener valores de conductividad menor a 1.3µS/cm en el transcurso de 30 a 60 minutos.		
33	Si la conductividad no baja a niveles cercanos o igual de 1.3 μS/cm en 30 minutos, conectar fuente de 48 V al control de poder para incrementar la corriente nominal durante un periodo de 15 minutos.		
34	Conectar la fuente original al sistema y tomar valores de conductividad en un periodo de 60 minutos.		
35	Liberar el sistema con valores de conductividad menor o igual a 1.3 μS/cm.		

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMEDI-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

respectivos hallazgos.	3	36	Elaborar	reporte	de	servicio	con	los	
			respectivo	s hallazg	os.				

8- Fin

En la Tabla B3 se muestra la lista de parámetros finales registrados en el formato controlado después del mantenimiento del equipo.

Tabla B3 Toma de parámetros posterior al mantenimiento

1000	DEDADTAMENT	ΓΟ DE PROCESOS DE	Fecha: día/mes/año
/ LOGO /		IBRACIÓN	Código: RE-03
INSTITUCIONAL	CAL	IDRACION	Modificación: 00
Pará	Parámetro Especificación		Lectura
Agua de ingreso	a EDI de 500 L/h		
рН		5 – 7	
FCE		< 40 μS/cm	
Sílice		<1 ppm	
Cloro		<0.2ppm	
Dureza		<0ppm	
CO ₂		<1ppm	
Salida de agua E	DI de 500 L/h		
PH		5-7	
Conductividad		< 1. μS/cm	
Parámetros eléct	tricos		
Amperaje		5 A	
Voltaje		24 V	
Fecha de próxim	o mantenimiento:	6 meses	

9- Indicador de seguimiento

Datos verificados por (nombre y firma):	Fecha:
---	--------

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMEDI-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

10- Flujograma para las actividades de Limpieza de EDI

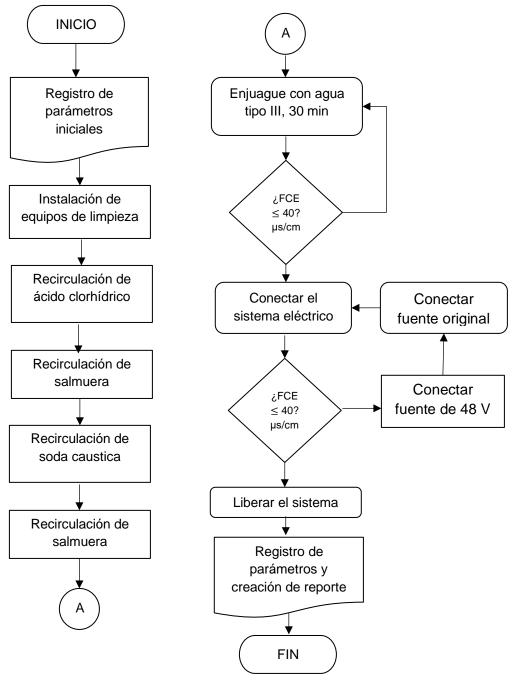


Figura B1 Flujograma Limpieza de EDI

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 3 Medidores de presión

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 15

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es definir de manera sistemática la calibración de medidores de presión, específicamente manómetros analógicos de lectura directa y presión relativa con relación a la presión atmosférica.

2- Alcance

Aplica para los manómetros dentro de una escala de -12 a 300 psi con una resolución mínima de 0.01 psi.

3- Responsabilidades

Jefe de proceso de calibración: encargado de validar el proceso y verificar el cumplimiento del presente procedimiento.

Técnicos: responsables de la ejecución de las actividades de verificación o calibración del manómetro, así como el levantamiento de informe del servicio.

4- Definiciones

Presión: es la fuerza perpendicular a superficie dividida entre el área afectada, por lo tanto, la presión es la fuerza por unidad de área.

Precisión: es la proximidad entre las indicaciones o valores medidos obtenidos en mediciones repetidas de un mismo objeto, bajo las condiciones específicas.

Exactitud: es la proximidad entre un valor medido y un valor verdadero de un mensurando

Tolerancia: es el valor extremo del error, permitido por especificaciones, para un instrumento dado. En general, la tolerancia se compara contra el error del instrumento durante la calibración y se ajusta cuando el error es mayor a la tolerancia del equipo (teniendo en cuenta la incertidumbre de la calibración).

Tipos de presión: presión manométrica, absoluta, vacío, diferencial y barométrica

Clase de exactitud: los manómetros están disponibles en distintas clases de exactitud se especifican en las normas ASME B40.100 (Clase de exactitud del 0,1 al 5% del rango de escala). La especificación de la clase de exactitud suele presentarse como porcentaje del rango de escala, lo que significa que si la clase de exactitud es de 1% y el rango de la escala va de 1 a 100 psi la

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

exactitud es del ±1 psi. Se debe conocer la clase de exactitud del manómetro que se va a calibrar, ya que evidentemente ello determinará el nivel aceptable de exactitud, pero también tendrá otros efectos de la calibración.

Medio de fluido transmisor de presión: al calibrar los manómetros el medio transmisor de la presión más frecuente es un gas o líquido, el más habitual es el aire normal, pero en otras aplicaciones puede utilizarse otros gases como nitrógeno, los líquidos más frecuentes son el agua o el aceite. El medio también depende del rango de presión, la calibración de manómetros de baja presión resulta más practica realizarla con un medio gaseoso como el aire, pero a menudo incrementa la presión es más practico realizar el proceso con un líquido como medio transmisor.

Diferencia de atura: es la altura relativa entre los dos puntos de medición, si el equipo de calibración y el manómetro sujeto a calibración se encuentra a una diferencia de altura, la presión hidrostática del medio transmisor de la presión en las tuberías puede dar lugar a un error, esto no suele suceder cuando se utiliza un gas como transmisor de presión ya que el gas es ligero en comparación con el líquido. Si no es lo posible lograr que el manómetro y el equipo de calibración estén a la misma altura, se debería calcular el efecto de la diferencia de altura y tenerlo en cuenta durante la calibración.

$$P_H = \rho g \Delta H (1)$$

Donde:

 P_H : presión hidrostática

 ρ : densidad del líquido (kg/m³)

g: gravedad local (m/s²)

 ΔH : diferencia de altura (m)

Prueba de fugas en tubos de conexión: prueba para comprobar que no exista alguna fuga en las conexiones de los tubos debido a que pueden producir errores imprevisibles, consiste en presurizar el sistema y dejar que la presión se estabilice durante un tiempo y controlar que la presión no disminuya en exceso.

Efecto adiabático: en un sistema cerrado con un gas como medio transmisor de presión la temperatura del gas afecta al volumen del mismo, lo que a su vez tiene un efecto en la presión.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Cuando la presión aumenta rápidamente la temperatura del gas también aumenta provocando que el gas se expanda y adquiera un volumen mayor.

Par: en especial en el caso de manómetros sensibles al par, no hay que ejercer una fuerza excesiva, cuando se conecten a los adaptadores de presión al manómetro.

Posición de calibración: dado que los manómetros analógicos son instrumentos mecánicos, su posición de lectura afecta la lectura. Por lo tanto, es recomendable calibrarlos en la misma posición en la que se utilizaran en el proceso. También se debería tener en cuenta las especificaciones del fabricante en cuanto a la posición de funcionamiento.

Generador de presión: es el mecanismo encargado de generar la presión para la calibración como por ejemplo una bomba manual generadora de presión, una botella con un regulador de presión o incluso una balanza de pesos muertos.

Ejercitación del manómetro: es un proceso de presurización previa a la calibración del manómetro debido a su estructura metálica, un manómetro siempre tendrá cierta fricción durante su movimiento y puede modificar su comportamiento con el paso del tiempo. Para ejercitarlo se genera la presión máxima de lectura del manómetro y mantenerla durante un minuto luego liberar la presión a cero y mantenerlo así durante otro minuto, seguidamente repetir dicho proceso durante dos a tres veces.

Números de puntos de calibración: se les denomina puntos de calibración y se determina mediante las diferentes clases de exactitud de los manómetros. En el caso de manómetros de mayor exactitud por encima de 0.05% debería utilizarse un procedimiento exhaustivo y la calibración debería efectuarse en 11 puntos de calibración con 3 ciclos de presión creciente y decreciente.

Histéresis: es un fenómeno debido a la estructura mecánica del manómetro, lo cual significa que la indicación no es exactamente la misma cuando un punto de presión se aborda con una presión creciente en comparación con uno decreciente. Para averiguar el valor de histéresis de un manómetro se debe de calibrar en puntos de medición crecientes y decrecientes.

Ciclos de calibración: es la repetibilidad del manómetro sometido a la calibración para descartar posibles resultados distintos durante diferentes ciclos de calibración; los manómetros con mayor exactitud deberían calibrarse llevándo a cabo 3 ciclos de calibración.

Ajuste: si la calibración (As Found) previa al ajuste, evidencia que el manómetro no se ajusta a los requisitos de exactitud, debe realizarse la acción correspondiente.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Certificado de calibración: es el documento con el resumen del proceso de la calibración, contiene información conforme a las normas incluida la incertidumbre de la calibración.

Condiciones ambientales: son aquellas condiciones físicas que tienen una incidencia en la calibración por lo que se deben tomar en cuenta. Si las condiciones de calibración del manómetro son distintas al ambiente de trabajo para el manómetro debería de registrarse en el registro de calibración.

5- Equipos

En la tabla C1 se presentan las especificaciones técnicas del equipo Calibrador de presión eléctrico utilizado en la calibración de los manómetros.

Tabla C1 especificaciones técnicas del calibrados de presión Fluke 718 300G

Especificaciones técnicas Fluke 718 300G		
Rango	-12 PSI a 300 PSI	
Resolución	0.01 PSI, 1 mbar	
Sobrepresión	375 PSI 25 Bar	
Funciones	Cero, Mín, Máx, Retención, Amortiguación	

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

6- Inicio

Parámetros previos a la calibración

Durante el proceso de calibración deben tomarse en cuenta las condiciones ambientales del proceso de calibración, cuyos datos deben completarse en el formato MP-01 de acuerdo a la tabla C2 presentada a continuación:

Tabla C2 Condiciones ambientales para el proceso de calibración

Ítem	Condición	Valor
1	Temperatura	-
2	Diferencia de altura	-
3	Humedad relativa del proceso de calibración	-

En el mismo formato, MP-01 el técnico encargado de la calibración debe registrar la identificación del equipo de acuerdo a los especificado en la Tabla C3.

Tabla C3 Identificación del medidor de presión sujeto a calibración

Modelo	-	Precisión	-
Marca	-	Posición de trabajo	-
Escala	-	Fluido transmisor de presión	-
Incertidumbre	-	Tipo de conector	-

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Preparación

Antes de empezar el procedimiento de calibración se debe de inspeccionar la instalación del manómetro y registrar la información que puede influir en el resultado de las mediciones, realizando las tareas siguientes:

- a) Comprobar el estado del manómetro
- b) Una vez terminada la comprobación del estado del manómetro se procede a la limpieza general.
- c) Instalar el manómetro y verificar la ausencia con una presión constante
- d) Ejercitar el manómetro de presión generando la presión máxima durante 1 minuto y liberar la presión hasta el cero, esta operación deberá realizarse 3 veces previamente a la calibración.
- e) Para fluidos transmisores de presión tipo líquido colocar el manómetro al mismo nivel de referencia, caso contrario realizar las correcciones necesarias para la calibración.
- f) Programar el manómetro patrón con las mismas unidades del manómetro
- g) Definir los puntos de calibración de acuerdo a la especificación de uso del manómetro.

En el formato MP-01 deben registrarse los resultados de los puntos de la escala sometidos a calibración, de acuerdo a lo presentado en la Tabla C4.

Tabla C4 Resultados de puntos de calibración

Punto de calibración	Presión de referencia	Lectura
1	0	
2	20%	
3	40%	
4	60%	
5	80%	
6	100%	

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

7- Procedimiento

- a) Con el manómetro ejercitado y una vez definidos los puntos de calibración, se proceden a calibrar el instrumento de medición con el equipo de calibración
- b) Con el generador de presión llevar la presión del fluido al primer punto de calibración, con el regulador de volumen ajustar la presión deseada en el manómetro patrón.
- c) Tomar lectura del primer valor cuando la aguja deje de vibrar o se estabilice en una lectura tanto en el manómetro a calibrar como el patrón utilizado para evitar errores producidos por vibraciones mecánicas.
- d) Se repite el paso b y c de este procedimiento en orden ascendente para los restantes puntos de calibración hasta llegar al máximo valor.
- e) Se realiza el proceso b y c de este procedimiento en orden descendente para los restantes puntos de calibración hasta llegar al cero del manómetro.
- f) Se realiza siempre la lectura del cero, y se vuelve a iniciar el ciclo hasta cumplir con los 3 ciclos del proceso, la figura C1, representa gráficamente el ciclo de calibración de este procedimiento.

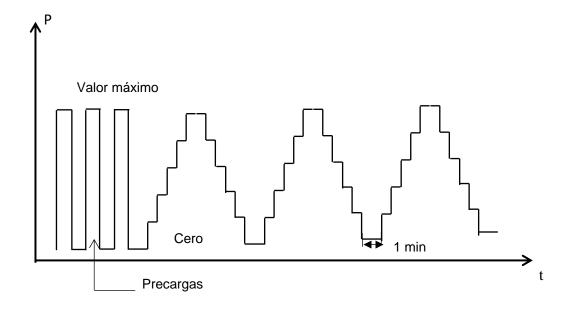


Figura C1 Ciclos de calibración de calibración

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

g) Analizar los datos antes de desmontar el equipo en caso de repetir un valor dudoso.

8- Cálculo de incertidumbre:

La asignación y expresión de incertidumbre se realiza siguiendo los criterios considerados en la "Elaboración de procedimiento de calibración de manómetros, vacuómetros y manovacuómetros bajo norma técnica colombiana NTC 2263:1987" y la guía alemana de calibración de medidores de presión DKD-R 6-1:2003¹⁷, determinando la expresión de la magnitud de salida en función de magnitudes de entrada, con apoyo de una ecuación modelo para correcciones de calibración.

$$C_i = P_{Ri} - P_{Xi} + \sum_j \delta(Patr\'{o}n) + \sum_j \delta(Instrumento) + \Delta_{NR}$$
 (3)

Donde:

C_i: corrección final de calibración.

P_{Ri}: es el valor de la lectura del patrón en el punto i.

P_{Xi}: es el valor de la lectura del instrumento en el punto i.

 $\sum_{j} \delta(\text{Patr\'{o}n})$: es la suma de las correcciones debidas al patr\'{o}n, nulas o no, que van a tener contribución en la incertidumbre.

- Comprende corrección de calibración
- Corrección a la deriva
- Corrección debida a la temperatura

 $\sum_{j} \delta(Instrumento)$: es la suma de las correcciones debidas al instrumento, nulas o no, que van a tener contribución en la incertidumbre.

- Comprende corrección debida a la resolución
- Comprende corrección debida a la temperatura
- Comprende corrección debida a la histéresis

 Δ_{NR} : es la corrección por diferencia de alturas entre los niveles de referencia.

$$\Delta_{NR} = (\rho_f - \rho_a) \times g \times h$$

17. Eliana C. (2013), "Elaboración de calibración de manómetros, vacuometros y manovacuometros bajo norma técnica colombiana NTC 2263:1987 y la guía alemana de calibración de medidores de presión DKD-R 6-1:2003", en la empresa metrología instrumentación y control M.I.C.S.A.S, Universidad de La Costa, Colombia

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
2041501	DIVII 01	TVIO GITTE GET OIT.	00
Revisión:	00	Fecha:	día-mes-año

Componentes de la incertidumbre

a) Debida al patrón δ(Patron)_{cal} Certificado de calibración

La incertidumbre de calibración del patrón vendrá reflejada en su certificado de calibración. En los certificados se indican las incertidumbres expandidas, por lo que será necesario dividir el valor indicado por el K_{cert} correspondiente. Normalmente no coincidirá el punto de calibración con el certificado, en este caso, se incluirá la mayor incertidumbre de calibración del patrón $u(\delta(Patron)_{cal} = U_{cert}/K_{cert})$

b) Debida a la deriva del patrón $\delta(Patron)_{der}$

Es una incertidumbre tipo B, considerando una distribución rectangular, su valor está dado por $u(\delta(Patron)_{der}) = der/2\sqrt{3}$

a) Debida a la temperatura $\delta(Patron)_{tem}$

La indicación del patrón puede cambiar debido a las variaciones de temperatura, estos cambios no pueden corregirse y tienen que introducirse como un factor más de incertidumbre. Suele ser el fabricante quien da las especificaciones, que suelen venir en porcentaje del rango del instrumento.

Es una incertidumbre tipo B, se trata como una distribución rectangular y viene dada por $u(\delta(Patron)_{tem}) = tem(patron)/2\sqrt{3}$ el valor de tem(pat) se obtiene de las especificaciones del fabricante.

Debida a la temperatura del instrumento $\delta(Instrumento)_{tem}$

Al igual que el patrón en el instrumento de medición se tiene una componente de incertidumbre debida a las variaciones térmicas durante la calibración, que afectan las medidas del manómetro a calibrar. Su valor vendrá dado por $u(\delta(Instrumento)_{tem}) = tem(Instrumento)/2\sqrt{3}$.

Debida a la histéresis del instrumento $\delta(Instrumento)_{hist}$

Este factor de incertidumbre se debe a que las indicaciones del manómetro pueden variar una cierta cantidad dependiendo que se obtengan mediante presiones crecientes o decrecientes. Llamando "His" al intervalo de posibles lecturas debido a este motivo, su varianza seria

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

 $u(\delta(Instrumento)_{tem})^2 = His^2/12$ y su incertidumbre típica $u(\delta(Instrumento)_{hist}) = his/2\sqrt{3}$.

Debida a la repetibilidad de las medidas (PRi – Pxi).

La incertidumbre debido a la falta de repetibilidad del manómetro viene dada por la expresión:

$$u(rep) = \frac{1}{\sqrt{n}} \sqrt{\frac{\sum_{i=1}^{n} (c_i - \frac{\sum_{i=1}^{n} c_i}{n})^2}{n-1}}$$

Donde:

u(rep): es la incertidumbre aleatoria de tipo A, asociada al manómetro.

n: es el número de medidas (4 o 6 según la precisión del manómetro).

C_i: es cada una de las correcciones calculadas en un punto en los diferentes ciclos.

Debida a la diferencia de altura entre niveles de referencia.

La siguiente ecuación es en función de la densidad del fluido, del aire, gravedad del laboratorio, y de altura entre los niveles de referencia: la incertidumbre típica se obtiene de aplicar la ley de propagación de incertidumbre.

$$u(\Delta_{NR}) = \sqrt{u^2(\text{aire}) + u^2(\text{fluido}) + u^2(\text{gravedad}) + u^2(\text{diferenciaDeAltura})}$$

u²(fluido) es la incertidumbre típica de la densidad del fluido. Su valor y su incertidumbre, para un factor de cobertura K=2, se obtienen del certificado de calibración del fluido, o en su defecto, de las especificaciones del fabricante, o de la ecuación de los gases perfectos en el caso de que el fluido sea un gas.

u²(aire) es el valor de la densidad del aire y su incertidumbre expandida, se obtiene a partir de la temperatura ambiente, de la presión atmosférica y de la humedad relativa.

u²(diferenciaDeAltura) es la diferencia de altura normalmente medida con una regla. Su incertidumbre típica se obtiene a partir del certificado de calibración de la regla, de la deriva de la regla y del método de medida de la diferencia de altura, normalmente esta última es la contribución dominante.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

La tabla C5 resume el cálculo de incertidumbre típica por diferencia de alturas, a partir de la ecuación representativa de Δ_{NR} se obtienen las incertidumbres asociadas a la componente del nivel de referencia, utilizando el valor de la magnitud en el cual se desarrolla la calibración, la incertidumbre típica de la magnitud asociada, el coeficiente de sensibilidad dará como resultado de cada una la incertidumbres $u_{(y)}$ que serán utilizadas para calcular la incertidumbre combinada para la corrección por nivel de referencia.

Tabla C5 Cálculo de incertidumbre típica por diferencia de altura

Magnitud X _i	Estimación x _i	Incertidumbre Típica	Distribución de probabilidad	Coeficiente de sensibilidad C _i	Incertidumbre u(y)
Densidad del fluido	$ ho_{ m f}$	$u(\rho_f)$	Rectangular	g×h	$g \times h \times u(\rho_f)$
Densidad del aire	$ ho_a$	u(p _a)	Rectangular	$-g \times h$	$-g \times h$ $\times u(\rho_a)$
Gravedad local	g	u(g)	Rectangular	$(\rho_f - \rho_a) \times h$	$(\rho_f$ $-\rho_a) \times h$ $\times u(g)$
Diferencia de altura	h	u(h)	Rectangular	$(\rho_f - \rho_a) \times g$	$(\rho_f - \rho_a) \times g \times u(h)$
Corrección por nivel de referencia	$\Delta_{ m NR}$	Incertidumbi	re combinada	$u(\Delta_{NR}) = \sqrt{\frac{1}{2}}$	$\sum_{i=1}^{n} (Ci u(y))^{2}$

Con la tabla C6 se obtiene la incertidumbre típica combinada resultante de la calibración de los manómetros, el coeficiente de sensibilidad es el resultado de la derivada parcial de la ecuación del modelo lineal obteniendo el valor de 1, aplicando la ley de propagación de incertidumbres se tiene:

Tabla C6 Cálculo de incertidumbre típica para medidores de presión

Magnitud	Estimación	Incertidumbre	Distribución	Coeficiente	Incertidumbre
$\mathbf{X_i}$	$\mathbf{x_i}$	Típica	de	C _i de	u(y)

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

			probabilidad	sensibilidad		
Repetibilidad	(PRi – Pxi).	u(rep)	Normal	1	u(rep)	
Calibración de patrón	$\delta(Patron)_{cal}$	U_{cert}/K_{cert}	Normal	1	U_{cert}/K_{cert}	
Deriva de patrón	$\delta(Patron)_{der}$	der/2√3	Rectangular	1	der/2√3	
Temperatura de patrón	$\delta(Patron)_{tem}$	tem(patron) /2√3	Rectangular	1	tem(patron) $/2\sqrt{3}$	
Resolución del manómetro	$\delta(Ins\ trumento)_{res}$	res/2√3	Rectangular	1	res/2√3	
Temperatura del manómetro	$\delta(Ins\ trumento)_{ten}$	tem(Instrumento) $/2\sqrt{3}$	` Rectangular		tem(Instrumento	
Histéresis del manómetro	$\frac{\delta(Ins}{trumento)_{hist}}$	his/2√3	Rectangular 1		his/2√3	
Corrección por nivel de referencia	$\Delta_{ m NR}$	$u(\Delta_{NR})$	Normal	1	$u(\Delta_{NR})$	
Corrección de calibración C _i Incertidumbre combinada				$u(C_i) = \sqrt{\sum_{i=1}^{r}}$	$\int_{1}^{\infty} (Ci u(y))^2$	
Números de grad	dos efectivos d	$v_{ef} = -\frac{1}{2}$	$\frac{u^4(y)}{\sum_{i=1}^{N} \frac{u_i^4}{v_i}}$			
Factor de cobert	ura k =	k = f	$F(v_{ef})$			
Incertidumbre ex	xpandida	U = k	$\times u(y)$			
Corrección no re	ealizada máxim	C _{max}				
Incertidumbre g	lobal de uso	$U' = C_{max} + U$				

La incertidumbre típica combinada asociada a la calibración del manómetro se obtiene combinando sus distintas contribuciones.

$$u(C_i) = \sqrt{\sum_{i=1}^{n} (Ci \ u(y))^2}$$

Una vez obtenida la incertidumbre combinada se calculan los grados de libertad efectivos, v_{eff} mediante la fórmula Welch-Satterthwaite:

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

$$v_{ef} = \frac{u^4(y)}{\sum_{i=1}^{N} \frac{u_i^4}{v_i}}$$

A partir de los grados de libertad efectivos y de la tabla C7 se obtiene un factor k. La tabla está basada en una distribución t evaluada para una distribución de probabilidad del 95.45%.

Tabla C7 Tabla de grados de libertad y factor de confianza

$ m V_{ef}$	1	2	3	4	5	6
k	13.97	4.53	3.31	2.87	2.65	2.52
$ m V_{ef}$	7	8	10	20	50	∞
k	2.43	2.37	2.28	2.13	2.05	2

La incertidumbre expandida, para un intervalo de confianza del 95.45%, se obtiene multiplicando a la incertidumbre típica combinada por el factor de cobertura:

$$U = k \times u(y)$$

9- Fin

Culminado el proceso de calibración completar el registro de la calibración llenando el formato MF-01 y realizar el cálculo de la incertidumbre del manómetro según el apartado anterior. El criterio de aceptación y rechazo del presente procedimiento corresponde a los siguientes criterios:

Se rechaza:

- Medidas que no consigan buena estabilidad
- Medidas que se realicen fuera de las condiciones ambientales previamente establecidas
- Medidas que se pongan en duda por parte del operador

Un equipo se considera apto si su incertidumbre está dentro de la tolerancia dada por el fabricante. El certificado deberá contener indispensablemente la incertidumbre expandida y especificar el valor de cobertura "k" utilizado.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMP-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

10- Registro de la calibración

El formato a completar para el registro de la calibración se presenta en la figura C2

	D	CD A I	DTAMENTO DE PROCESOS DE		Fech	Fecha: día/mes/año					
	ועו	CPAI	CALIRDACIÓN					_			
		CALIBRACION					Mod	Modificación: 00			
	Co	ontact	to:		Fecha	: día/mes	/año	Regi	Registro No: 001		
	Co	orreo:	:		Teléfo	ono: 0000	-0000				
l equi	po				I			l			
	,	Tipo	de conexió	n:	Escala	a:		Resc	lució	n:	
		Mo	odelo:	Mai	ca:			Esca	la:		
) :		Sec	cción:	Cla	se:			Dial	:		
n utili	izado										
			Tipo de		Densi	dad del	Escala	:	Resoluci		solución:
presió	ón Fl	uke	conexión:		fluido	:					
ıbient	ales				T			T			
					Hume	dad relati	iva:				
liciona	al				T =			T			
					Difere	encia de a	ltura:				
eferer	ıcia I	PSI			0	20%	40%	60%	80%	%	100%
Creci	ente										
Decre	ecient	e									
Creci	Creciente										
Decreciente Decreciente		e									
Ciclo III Creciente											
Decreciente		e									
lor me	dido										
rep											
	president presid	referencia I Creciente Decrecient Creciente Decrecient Creciente Decrecient Creciente Decrecient Creciente Decrecient Creciente Decrecient	Contact Correct lequipo Tipo Motoric Section al Sectio	CALI Contacto: Correo: I equipo	CALIBRA Contacto: Correo: Contacto: Correo: Correo:	CALIBRACIÓN Contacto: Fecha Teléfo Correo: Teléfo Tipo de conexión: Escala Modelo: Marca: Sección: Clase: In utilizado Tipo de conexión: fluido In utilizado Tipo de conexión: fluido In utilizado In utiliz	CALIBRACIÓN Contacto:	Contacto: Correo: Fecha: día/mes/año Teléfono: 0000-0000 dequipo	Contacto: Fecha: día/mes/año Teléfono: 0000-0000 Regi	Contacto: Correo: Fecha: día/mes/año Registro N	Contacto: Fecha: día/mes/año Registro No: Correo: Teléfono: 0000-0000 Registro No: Correo: Tipo de conexión: Escala: Resolución: Escala: Resolución: Escala: Dial: Image: Image:

Figura C2 formato de registro de calibración para manómetros

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMC-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 4 Medidores de conductividad

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 8

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMC-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es definir las actividades para verificar o calibrar medidores de conductividad en línea, de mesa y portátiles para los sistemas de producción de agua purificada tipo II con electrodeionizador.

2- Alcance

Aplica para medidores de conductividad de lectura directa rango 0 a 2,000 μS/cm con una resolución de 0.1 μS/cm en los sistemas de producción de agua tipo II

3- Responsabilidades

Jefe del proceso de calibración: encargado de verificar el cumplimiento del presente procedimiento. Dirigir y coordinar el proceso de calibración con los técnicos encargados de la calibración de los instrumentos de medición y seguimiento por cualquier no conformidad

Técnicos: responsables de la ejecución de las actividades de verificación o calibración del medidor de conductividad, cualquier tipo de ajuste, identificación, levantamiento de informe del servicio de calibración.

4- Definiciones

Conductividad: o conductancia específica para una solución es una medida de su capacidad para conducir electricidad, ésta aumenta cuando la solución contiene electrolitos, es muy utilizado para caracterizar calidad de agua debido a la proporción con los sólidos disueltos en la solución

5- Equipos

- Solución patrón de 84.0 μS/cm
- 2 Recipientes de 100 ml rotulados A y B respectivamente
- Agua desmineralizada
- Medidor digital de conductividad
- Guantes de látex
- Lentes de protección
- Base para electrodo

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMC-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

6- Inicio

En la tabla D1 se consideran los parámetros ambientales más relevantes en el proceso de calibración:

Tabla D1 Condiciones ambientales

Magnitud	Rango
Temperatura	20 a 25 °C
Humedad relativa	50 a 70 %

Preparación

- a) Colocar agua desmineralizada en un recipiente limpio
- b) Colocar solución patrón de 84.0 μS/cm en el recipiente A y en el recipiente B
- c) Identificar constante de celda de conductividad registrada en el instrumento de medición mediante su viñeta
- d) Conectar electrodo de conductividad a la pantalla digital de lectura
- e) Ingresar constante de celda al lector de conductividad
- f) Sujetar la celda con la base para electrodo

7- Procedimiento

- a) Lavar electrodo con agua desmineralizada
- b) Sumergir electrodo en el recipiente A para enjuague con una solución de $84~\mu\text{S/cm}$ durante 30~segundos
- c) Sumergir el electrodo en el recipiente B con solución de $84.0~\mu\text{S/cm}$ durante 3 minutos y anotar el valor de conductividad por medio de la pantalla de conductividad
- d) Lavar el electrodo con agua desmineralizada
- e) Secar el electrodo agitándolo cuidadosamente

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMC-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

8- Cálculo de incertidumbre

La asignación y expresión de incertidumbre se realizará según la "Guía técnica de trazabilidad metrología e incertidumbre de medida en las mediciones analíticas que emplean la técnica de medición de conductividad electrónica/ noviembre 2012 por el Centro Nacional de Metrología CENAM"¹⁸, determinando la expresión de la magnitud de salida en función de magnitudes de entrada, con apoyo de una ecuación modelo para correcciones de calibración.

$$C_i = (P1) + K1 + P_{Ri} - P_{Xi} + \delta(Instrumento)$$

Donde:

a) (P1) es la estimación a partir del material de referencia certificado.

De acuerdo al valor asignado en el certificado del MRC (material de referencia certificado), el cual debe de cumplir con los requisitos de la guía ISO 31, la incertidumbre de medida asociada al valor certificado, así como el intervalo de confianza o factor de cubertura empleado estarán disponibles.

- b) k_1 es la estimación de la lectura de los materiales de referencia certificados.
- c) (PRi Pxi) es la repetibilidad de la lectura de los materiales de referencia certificados.

Debida a la repetibilidad de las medidas (PRi – Pxi) la incertidumbre debido a la falta de repetibilidad del instrumento viene dada por la expresión:

$$u(rep) = \frac{1}{\sqrt{n}} \sqrt{\frac{\sum_{i=1}^{n} (c_i - \frac{\sum_{i=1}^{n} c_i}{n})^2}{n-1}}$$

u(rep): es la incertidumbre aleatoria de tipo A, asociada al medidor de conductividad. n: es el número de medidas (1 a 3 según estabilidad del medidor de conductividad). C_i: es cada una de las correcciones calculadas en un punto en las diferentes tomas.

^{18.} CENAM 2012, "Guía técnica de trazabilidad metrología e incertidumbre de medida en las mediciones analíticas que emplean la técnica de medición de conductividad electrónica" por el Centro Nacional de Metrología, México

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMC-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

d) $\delta(intrumento)_{res}$ es la estimación a partir de la resolución del instrumento, es una característica especificada por el fabricante, asumiendo una distribución rectangular para este componente la incertidumbre de medida asociada a la resolución es $res/\sqrt{3}$ µS/cm.

La incertidumbre típica combinada asociada a la calibración del conductivímetro calculada en la tabla D2 se obtiene combinando sus distintas contribuciones, el coeficiente de sensibilidad es el resultado de la derivada parcial de la ecuación del modelo lineal obteniendo el valor de 1.

$$u(C_i) = \sqrt{\sum_{i=1}^{n} C_i u(y)}$$

Tabla D2 Resumen de cada fuente de incertidumbre para medir conductividad

Magnitud X _i	Estimación x _i	Incertidumbr e Típica	Distribución de probabilidad	Coeficiente C _i de sensibilidad	Incertidumbre u(y)
Material de referencia certificado	(P1)	<i>u</i> (<i>p</i> 1)	Normal	1	u(p1)
Lectura de los MRC	k_1	$u(k_1)$	Normal	1	$u(k_1)$
Repetibilidad de la lectura del MRC	(PRi – Pxi)	u(rep)	Normal	1	u(rep)
Resolución del instrumento	δ(Ins trumento) _{res}	res/√3	Rectangular	1	res/√3
Corrección de calibración	Ci	Incertidumb	ore combinada	$u(C_i) = \sqrt{\sum_{i=1}^{n}}$	$\int_{1}^{\infty} \left(\operatorname{Ci} u(y) \right)^{2}$
Números de grados efectivos de libertad $v_{ef} =$				$v_{ef} = -$	$\frac{u^4(y)}{\sum_{i=1}^{N} \frac{u_i^4}{v_i}}$
Factor de cobertura k =			k =	= 2	
Incertidumbre exp	oandida			U = k	$\times u(y)$

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMC-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

La incertidumbre expandida, se obtiene multiplicando a la incertidumbre típica combinada por el factor de cobertura:

$$U = k \times u(y)$$

Es importante destacar que no se tuvo en cuenta el aporte de temperatura a la incertidumbre total, pues su valor es despreciable según el trabajo de "Evaluación en la conformidad en la calibración del canal de medición de conductividad en los sistemas de agua purificada y de inyección"²⁷, misma que sugiere tomarse en cuenta durante el proceso de calibración en el que exista un incremento de temperatura ya que provocaría un aumento en la conductividad notablemente.

9- Fin

Al finalizar el proceso de verificación o calibración del medidor de conductividad, registrar los resultados en el formato MC-01 y realizar los cálculos de incertidumbre para los medidores de conductividad.

El criterio de aceptación y rechazo del medidor de conductividad corresponde a los siguientes criterios:

Se rechaza:

- Proceso con recipientes contaminados o no limpios previamente a la calibración, personal sin guantes protectores de látex y gabacha.
- Medidas que no presenten estabilidad en su lectura
- Medidas tomadas fuera de las condiciones ambientales previamente establecidas
- Medidas que se pongan en duda por parte del operador
- Equipo que presente medidas fuera de lo permitido por la incertidumbre

Se acepta:

• Equipo con todos los valores medidos dentro del rango máximo permitido por la incertidumbre.

El certificado deberá contener indispensablemente la incertidumbre expandida y especificar el valor de cobertura "k" utilizado

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMC-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

^{27.} Adolfo C. 2014, "Evaluación en la conformidad en la calibración del canal de medición de conductividad en los sistemas de agua purificada y de inyección" Instituto superior politécnico, La Habana

10- Registro de la calibración

El formato a completar para el registro de la calibración se presenta en la figura D1

1060		DEPARTAMENTO DE PROCESOS DE		Fecha: día/mes/año		
LUGU		DEI	CALIBRACIÓN		Código: MC-01	
INSTITUCIONAL			CAL	IDKA	CION	Modificación: 00
Cliente:			Contacto:		Fecha: día/mes/año	Registro No: 001
			Correo:		Teléfono: 0000-0000	
Información del o	equipo		•			
Equipo:		De	línea: □		Escala:	Resolución:
		Por	tátil: □			
		Me	sa: □			
Puntos de calibrac	Puntos de calibración: Modelo: Marca:		ca:	Escala:		
Número de serie:		S	Sección:	Con	stante de celda:	Otros:
Datos de la soluci	ión patı	rón ı	utilizada			
Solución						
Vencimiento:						
Valor:						
Condiciones amb	iontalo	C C				
	lentares	•			Humedad relativa:	
Temperatura:	<u> </u>				numedad felativa:	
Información adic	nonal					
Calibró:					Sitio de calibración:	

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMC-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Puntos de calibración	Conductividad Estándar	Punto 1	Punto 2	Punto 3
Primera lectura				
Segunda lectura				
Tercer lectura				
Valor medio				
Corrección Valor medido				
U_{rep}				

Figura D1 Formato controlado del registro de calibración

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMPH-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 5 Medidores de pH

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 8

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMPH-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es definir las actividades para verificar o calibrar medidores de pH (pHmetro digital) para monitoreo de parámetros en el sistema de producción de agua purificada tipo II con electrodeionizador.

2- Alcance

El presente procedimiento aplica para los medidores de pH digitales en el rango de 0 a 14 unidades de pH, con una precisión de 0.01 unidades de pH.

3- Responsabilidades

Jefe del proceso de calibración: verificar el cumplimiento del procedimiento de calibración de medidores de pH, dirigir y coordinar actividades del proceso de calibración y seguimiento por cualquier no conformidad.

Técnicos: responsables de la ejecución de las actividades de verificación, o calibración del medidor de pH, realizar cualquier tipo de ajuste, identificación, levantamiento de informe del servicio.

4- Definiciones

Calibración: operación bajo condiciones específicas establece, en una primera etapa, una relación entre los valores e incertidumbre de medidas asociadas obtenidas a partir de los patrones de medida y las correspondientes indicaciones de incertidumbres asociadas, y en una segunda etapa, utiliza esta información para establecer una relación que permita obtener el resultado de medida a partir de una indicación.

Material de referencia: material suficientemente homogéneo y establece con respecto a sus propiedades específicas, establecido como apto para uso previsto en una medición o en un examen de propiedades cualitativas.

pH: se define como menos el logaritmo decimal de la actividad de un ion hidrogeno en mol/L. El pHmetro es un instrumento potenciométrico que incluye, dentro de un sistema de medida, un electrodo de referencia, un electrodo de respuesta de pH y un instrumento de medida potencial.

$$pH = -\log(H^+)$$

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMPH-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

5- Equipos

Para poder realizar la calibración descrita en este procedimiento es necesario disponer de:

- Soluciones de pH (4.01, 7.01 y 10.01) con el valor de pH certificado, con trazabilidad establecida e incertidumbre.
- Termómetro calibrado con resolución de 0.1 °C, en el rango de 15 a 30 °C.
- Agua desmineralizada
- Papel absorbente
- 3 recipientes de 50 a 100 ml rotulados A, B y C respectivamente
- Guantes de látex
- Lentes de protección
- Base para electrodo

6- Inicio

Es recomendable que la calibración se realice bajo las condiciones ambientales especificadas en la Tabla E1, ya que las disoluciones suelen ser calibradas bajo estas mismas temperaturas.

Tabla E1 condiciones ambientales

Magnitud	Rango
Temperatura	20 a 25 °C
Humedad relativa	50 a 70 %

Preparación

- a) Identificación del instrumento en cuanto a la marca, modelo, número de serie y datos del cliente, en el formato PH-01.
- b) Identificar MRC para la calibración del instrumento.
- c) Verificación previa del manual del equipo sometido al proceso de calibración si existe
- d) La disolución debe acondicionarse para que se encuentre a temperatura que indica el valor del certificado
- e) Lectura de la temperatura de las disoluciones
- f) Verificar fecha de vencimiento de los MRC

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMPH-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

7- Procedimiento

- a) Lavar electrodo con agua desmineralizada
- b) Sumergir electrodo en el recipiente A para lectura de la primera con solución de 4.01 pH, si la lectura no es correcta se ajusta el instrumento con autorización del usuario
- c) Sumergir electrodo en el recipiente B para lectura de la segunda con solución de 7.01 de pH, si la lectura no es correcta se ajusta el instrumento con autorización del usuario
- d) Realizar el mismo proceso como el caso anterior con un recipiente C para la tercera solución de 10.01 de pH, si la lectura no es correcta se ajusta el instrumento con autorización del usuario
- e) Se vuelve a leer sucesivamente las disoluciones según el instrumento y se comprueba que las lecturas son correctas
- f) Se anotan los resultados leídos

8- Cálculo de incertidumbre:

La asignación y expresión de incertidumbre se realizará siguiendo los criterios del procedimiento QU-003 para la calibración de pHmetros digitales del Centro Español de Metrología²⁰, determinando la expresión de la magnitud de salida en función de magnitudes de entrada, con apoyo de una ecuación modelo para correcciones de calibración.

$$C_i = pH_{ix} + \delta(instrumento) + \delta(T_{ix}) + pH_{sx}$$

a) pH_{ix} indicación del instrumento (pHmetro) de la disolución A en la lectura i

debido a la falta de repetibilidad del pHmetro, se toman 3 lecturas en las mismas condiciones de medida, para la disolución A, luego se calcula la media aritmética de los valores de pH_{ix} la desviación típica experimental, s(pH_{ix}), y la desviación típica experimental de la media, que coincide con la incertidumbre típica de pH_{ix}

$$s(pH_{ix}) = \sqrt{\frac{(pH_{ix} - \overline{pH_{ix}})^2}{2}}$$

19. JCGM 08, "Procedimiento QU-003 para la calibración de pHmetros digitales", Ministerio de industria y turismo, España

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMPH-01	Modificación:	00
Courgo.	51/11 11-01	Modificación.	00
Revisión:	00	Fecha:	día-mes-año

La desviación estándar experimental de la media se obtiene como:

$$u(pH_{ix})=s(pH_{ix})/\sqrt{3}$$

 δ(instrumento) corrección debida a la resolución finita del instrumento (pHmetro) de la disolución A en la lectura i

$$u(\delta(instrumento)) = resolución / \sqrt{12}$$

c) pH_{sx} valor certificado del pH de la disolución A, cada disolución debe tener especificada su incertidumbre a una temperatura determinada

 $u(pH_{sx}) = U(p)/2$ para el 95.45% de confianza

d) $\delta(T_{ix})$ corrección debida a la influencia de la temperatura sobre el patrón durante la calibración en que se está utilizando

Esta componente viene dada por la variación máxima del pH debida a un instrumento de temperatura de igual valor que la resolución del termómetro con el que se está midiendo la temperatura de la disolución.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMPH-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

El coeficiente de sensibilidad es el resultado de la derivada parcial de la ecuación del modelo lineal obteniendo el valor de 1. Considerando los elementos anteriores la tabla E2 resume la teoría para el cálculo de incertidumbre de medidores de pH:

Tabla E2 Resumen de cada fuente de incertidumbre para medir pH

Magnitud X _i	Estimación x _i	Incertidumbre Típica	Distribución de probabilidad	Coeficiente C _i de sensibilidad	Incertidumbre u(y)
Repetibilidad	Media pH _{ix}	$s(pH_{ix})/\sqrt{3}$	Normal	1	$s(pH_{ix})/\sqrt{3}$
Calibración de patrón	pH _{sx}	U_{cert}/K_{cert}	Normal	1	U_{cert}/K_{cert}
Resolución del pHmetro	$\delta(Ins\ trumento)_{res}$	res/√12	Rectangular	1	res/√12
Temperatura	$\delta(T_{ix})$	Variación max /√12	Rectangular	1	Variación max /√12
Corrección de calibración	Ci	Incertidumbre	e combinada	$u(C_i) = \sqrt{\sum_{i=1}^{n}}$	$\int_{1}^{\infty} (Ci u(y))^{2}$
Factor de cobert	ura k =	k =	= 2		
Incertidumbre ex	xpandida	U = k	$\times u(y)$		

9- Fin

Completado el proceso de calibración llenar el registro de la calibración y realizar el cálculo de la incertidumbre del instrumento.

El criterio de aceptación y rechazo del presente procedimiento corresponde a los siguientes criterios:

Se rechaza:

- Medidas que no consigan buena estabilidad
- Medidas con MRC con fecha de vencimiento caducada
- Medidas que se realicen fuera de las condiciones ambientales previamente establecidas

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

C(1)	CMDII 01	N. 1.C	00
Código:	SMPH-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

• Medidas que se pongan en duda por parte del operador

Un equipo se considera apto si su incertidumbre se encuentra dentro de la tolerancia dada por el fabricante.

El certificado deberá contener la incertidumbre expandida y el valor de cobertura "k" del MRC utilizado.

10- Registro de la calibración

El formato para la calibración de pHmetros se muestra en la figura E1.

1000	T	DEPARTAMENTO DE PROCESOS DE				Fecha: día/mes/año	
LOGO /		JEPA	AKTAMENTO CALIB	_			Código: PH-01
INSTITUCIONAL			CALIB	NA	CION		Modificación: 00
Cliente:			Contacto:		Fecha: día/mes/año		Registro No: 001
			Correo:		Teléfono: 0000-0000)	
Información del	equipo		l				
Equipo:		Por	tátil: □		Escala:		Resolución:
		Me	sa: □				
Conexión:		1	Modelo:	М	arca		Escala:
Conexion:		1	viodelo.	Iodelo: Marca:			Escara.
Número de serie:			Sección:	Puntos de calibración:			
Numero de serie:		3	sección:	Puntos de canoración.			
D (1 1 1	• / .		4*1* 1				
Datos de la soluc			1				
Solución patrón d	e pH par	a	Solución patr	rón de pH para Sol		olución patrón de pH para	
recipiente A			recipiente B		recipiente C		
Vencimiento: Vencimiento:		Vencimiento:	ver Ver		ncimiento:		
Valor: 4.01			Valor: 7.01		Val	Valor: 10.01	
Condiciones amb	oientales	5					
Temperatura:					Humedad relativa:		
Información adi	cional						
Calibró:					Sitio de calibración:		

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

07.1	CMDII 01	3.4 1:0: :/	00
Código:	SMPH-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

	1	2	[
Punto 1				
Punto 2				
Punto 3				

Figura E1 Formato controlado del registro de calibración de pHmetros

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMCL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 6 Medidores de ORP

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 8

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMCL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es describir actividades para verificar o calibrar medidores de ORP para monitoreo de concentración de cloro como parámetro en los sistemas de producción de agua purificada tipo II con electrodeionizador.

2- Alcance

El presente procedimiento aplica para medidores de sílice digitales en el rango de ± 1200 mV.

3- Responsabilidades

Jefe del proceso de calibración: verificar el cumplimiento del procedimiento de calibración de medidores de ORP, así como también llevar el control de modificaciones del mismo, dirigir y coordinar actividades de calibración y atender cualquier inconformidad del proceso.

Técnicos: responsables de la ejecución de las actividades de verificación o calibración del medidor de ORP, cualquier tipo de ajuste, identificación, levantamiento de cualquier informe del servicio de calibración.

4- Definiciones

Potencial de oxidación y reducción ORP: es un parámetro indicador del grado pureza y a su vez cuantas reacciones químicas pueden darse en el agua.

Material de referencia: material suficientemente homogéneo y establece con respecto a sus propiedades específicas, establecido como apto para uso previsto en una medición o en un examen de propiedades cualitativas.

5- Equipos

Para poder realizar la calibración descrita en este procedimiento es necesario disponer de:

- Solución de ORP/Redox 240 mV con el valor certificado, trazabilidad establecida e incertidumbre.
- Termómetro calibrado con resolución de 0.1 °C, en el rango de 15 a 30 °C.
- Agua desmineralizada
- Papel absorbente

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMCL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

- Recipiente de 300 ml a 500 ml y rotularlo como A
- Guantes de látex
- Lentes de protección
- Base para electrodo

6- Inicio

Es recomendable realizar la calibración bajo las condiciones ambientales especificadas en la Tabla F1, ya que las disoluciones suelen ser calibradas bajo estas mismas temperaturas.

Tabla F1 condiciones ambientales

Magnitud	Rango	Comentarios
Temperatura	0 a 30 °C	Soluciones HQd
Temperatura	25 ℃	Soluciones Light
Humedad relativa	50 a 70 %	-

Preparación

- a) Identificación del instrumento en cuanto a la marca, modelo, número de serie y datos del cliente, llenando el formato CL-01.
- b) Identificar MRC para la calibración del instrumento.
- c) Verificación previa del manual del equipo sometido al proceso de calibración si existe
- d) Retirar protector dejando libre el electrodo para calibrar
- e) La disolución debe acondicionarse para que se encuentre a temperatura que indica el valor del certificado
- f) Verificar fecha de vencimiento de los MRC
- g) Asegurarse que la disolución sea nueva en su totalidad

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMCL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

7- Procedimiento

- a) Conectar electrodo al medidor digital o controlador
- b) Lavar electrodo con agua desmineralizada, como se muestra en la figura F1 debido a la necesidad de sustituir el agua de contacto con la celda en todo momento

Figura F1 Lavado de electrodo

- c) Añadir 250 ml del estándar ORP/Redox 240 mV nuevo al recipiente A
- d) Sumergir electrodo durante 3 a 10 minutos en el recipiente A para lectura de la primera solución, como se recomienda en la figura F2, asegurándose que la solución estándar cubra la mayor parte del electrodo sin tocar cualquier superficie del recipiente, si la lectura no es correcta se ajusta el instrumento con autorización del usuario y se procede con 2 lecturas más del instrumento.

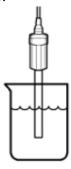


Figura F2 Posición de medición del electrodo recomendada

- e) Realizar el mismo proceso como el caso anterior si se requiere de otra disolución
- f) Se vuelve a leer sucesivamente las disoluciones según el instrumento y se comprueba que las lecturas son correctas
- g) Se anotan los resultados leídos en el formato CL-01

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMCL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

8- Cálculo de incertidumbre:

La asignación y expresión de incertidumbre se realizará siguiendo los criterios de la "Guía para la expresión de la incertidumbre de medida" del Centro Español de Metrología²⁰ y las "Instrucciones para el usuario del instrumento" de la marca Hach ²¹, determinando la expresión de la magnitud de salida en función de magnitudes de entrada, con apoyo de una ecuación modelo para correcciones de calibración.

$$C_i = I_{ix} + \delta(instrumento) + \delta(T_{ix}) + I_{sx}$$

a) I_{ix} indicación del instrumento de la solución de 240 mV en el recipiente A en la lectura i debida a la falta de repetibilidad del medidor de ORP, se toman 3 lecturas en las mismas condiciones de medida, para la disolución A, luego se calcula la media aritmética de los valores de I_{ix} la desviación típica experimental, s(I_{ix}), y la desviación típica experimental de la media, que coincide con la incertidumbre típica de I_{ix}

$$s(I_{ix}) = \sqrt{\frac{(I_{ix} - \overline{I_{ix}})^2}{2}}$$

La desviación estándar experimental de la media se obtiene como:

$$u(I_{ix}) = s(I_{ix}) / \sqrt{3}$$

 δ(instrumento) corrección debida a la resolución finita del instrumento (pHmetro) de la disolución A en la lectura i

$$u(\delta(\text{instrumento})) = \text{resolución}/\sqrt{12}$$

c) I_{sx} valor certificado de la disolución A, cada disolución debe tener especificada su incertidumbre a una temperatura determinada

$$u(I_{sx}) = U(p)/k$$
, k=2 para el 95.45% de confianza

CEM 2008, "Evaluación de datos de medición guía para la expresión de la incertidumbre de medida" edición 1, Centro Español de Metrología, España

^{21.} Hach Company 2009, "Instrucciones para el usuario del instrumento", recuperado de www.hach.com, EEUU

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMCL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

d) $\delta(T_{ix})$ corrección debida a la influencia de la temperatura sobre el patrón durante la calibración en que se está utilizando

Esta componente viene dada por la variación máxima del medidor de ORP debida a un instrumento de temperatura de igual valor que la resolución del termómetro con el que se está midiendo la temperatura de la disolución, el coeficiente de sensibilidad es el resultado de la derivada parcial de la ecuación del modelo lineal obteniendo el valor de 1. La tabla F2 resume las fuentes de incertidumbre mencionadas en este procedimiento.

Tabla F2 Resumen de cada fuente de incertidumbre para la medición de ORP

Magnitud X _i	Estimación x _i	Incertidumbre Típica	Distribución de probabilidad	Coeficiente C _i de sensibilidad	Incertidumbre u(y)
Repetibilidad	Media I _{ix}	$s(I_{ix})/\sqrt{3}$	Normal	1	$s(I_{ix})/\sqrt{3}$
Calibración de patrón	I_{sx}	U_{cert}/K_{cert}	Normal	1	U_{cert}/K_{cert}
Resolución del pHmetro	$\delta(Ins\ trumento)_{res}$	res/√12	Rectangular	1	res/√12
Temperatura	$\delta(T_{ix})$	Variación max /√12	Rectangular	1	Variación max /√12
Corrección de calibración	Ci	Incertidumbre combinada		$u(C_i) = \sqrt{\sum_{i=1}^{n}}$	$\int_{1}^{\infty} \left(\operatorname{Ci} u(y) \right)^{2}$
Factor de cobertura k =			k =	= 2	
Incertidumbre expandida			U = k	$\times u(y)$	

9- Fin

Completado el proceso de calibración llenar el registro de la calibración y realizar el cálculo de la incertidumbre del instrumento. El criterio de aceptación y rechazo del presente procedimiento corresponde a los siguientes criterios:

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMCL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Se rechaza:

- Medidas que no consigan buena estabilidad
- Medidas con MRC con fecha de vencimiento caducada
- Medidas con MRC usada o con más de 4 horas de trabajo
- Medidas que se realicen fuera de las condiciones ambientales previamente establecidas
- Medidas que se pongan en duda por parte del operador

Un equipo se considera apto si su incertidumbre se encuentra dentro de la tolerancia dada por el fabricante.

El certificado deberá contener la incertidumbre expandida y el valor de cobertura K del MRC utilizado.

10- Registro de la calibración

El formato para la calibración de medidores de ORP se muestra en la figura F3.

)ED/	EPARTAMENTO DE PROCESOS DE			Fecha: día/mes/año
		/11/1 <i>E</i>	CALIBR	Código: CL-01		
INSTITUCIONAL			CALIDA	Modificación: 00		
Cliente:			Contacto:	Fecha: día	n/mes/año	Registro No: 001
			Correo:	Teléfono:	0000-0000	
Información del	equipo			•		
Equipo:		Por	tátil: □	Escala:		Resolución:
		Lín	ea: □			
Conexión:		1	Modelo:	Marca:		Escala:
Conemon.		1,	104010.	1,1arca.		Escura.
Número de serie:		Rango de temperatura de operación:		Punto de calibración:		
Conexión del cable: Tipo de electrod		do:	Profundidad n	nínima de la muestra:		
Datos de la soluc	ión patr	ón u	tilizada		1	

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMCL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Solución en recipier	nte A: Vencin	niento:		_ Tempe	ratura:	_ Valor: 240 mV	
Condiciones ambie	entales						
Temperatura:				Humeda	ad relativa:		
Información adicio	onal						
Calibró:				Sitio de	calibración:		
Puntos de calibración	ORP/redox Estándar	Lectura 1	L	ectura 2	Lectura 3	Valor medio	U_{rep}
Punto 1							
Comentarios:							

Figura F3 Formato controlado del registro de calibración de medidores de ORP

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMSL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 7 Medidores de sílice

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 7

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMSL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es definir las actividades para verificar o calibrar medidores de sílice (colorímetros cheacker) para monitoreo de parámetros en los sistemas de producción de agua purificada tipo II con electrodeionizador.

2- Alcance

El presente procedimiento aplica para medidores colorímetros digitales para sílice de rango de 0 a 200 ppm y de rango bajo, por el método de comparación con estándares trazables al NIST

3- Responsabilidades

Jefe del proceso de calibración: velar por el cumplimiento del procedimiento de calibración de los medidores de sílice, coordinar y dirigir actividades de calibración, control de los registros, y atender cualquier inconformidad.

Técnicos: responsables de la ejecución de las actividades de verificación o calibración del medidor de sílice, realizar cualquier tipo de ajuste, identificación, levantamiento de informe del servicio de calibración.

4- Definiciones

Sílice: es el nombre dado al dióxido de silicio, SiO_2 , elemento más abundante en la corteza terrestre

Colorímetro: es un aparato basado en la ley de absorción de la luz, el colorímetro permite la comparación de dos disoluciones, una de las cuales pueda ser empleada con fines analíticos, la cual debe ser de concentración conocida. Los tubos de vidrios permiten regular la distancia recorrida por el haz luminoso para que finalmente un prisma recoja los rayos luminosos y los dirige al ocular.

5- Equipos

Para poder realizar la calibración descrita en este procedimiento es necesario disponer de:

- Conjunto de soluciones para verificación de calibración (0 y 100 ppm)
- Paño para limpiar cubetas de verificación

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMSL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

- Solución limpiadora de cubeta o agua desmineralizada
- Papel absorbente
- Guantes de látex
- Lentes de protección
- 2 cubetas rotuladas A y B respectivamente

6- Inicio

Es recomendable realizar la calibración bajo condiciones ambientales controladas según se especifica en la Tabla G1

Tabla G1 condiciones ambientales

Magnitud	Rango	Comentarios
Temperatura	25 °C	Temperatura
		ambiente
Humedad relativa	50 a 70 %	-

Preparación

- a) Identificación del instrumento en cuanto a la marca, modelo, número de serie y datos del cliente
- b) Identificar el conjunto de verificación de calibración del instrumento según la ficha técnica del instrumento
- c) Verificación previa del manual del equipo sometido al proceso de calibración si existe
- d) Limpiar cubetas con las disoluciones MRC
- e) Verificar fecha de vencimiento de los MRC

7- Procedimiento

- a) Encender el colorímetro digital
- b) Limpiar cubetas con el paño
- c) Ingresar cubeta A de 10 ml estándar de menor lectura al instrumento (0 ppm), esperar hasta leer muestra y retirar primera cubeta

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMSL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

- d) Ingresar cubeta B de 10 ml estándar de mayor lectura al instrumento (100 ppm), esperar hasta leer muestra, si la lectura no es correcta se ajusta el instrumento con autorización del usuario.
- e) Realizar el mismo proceso para 2 lecturas más con un intervalo de tiempo de 2 minutos. Se anotan los resultados leídos en el formato de registro SL-01.

8- Cálculo de incertidumbre:

La asignación y expresión de incertidumbre se realizará siguiendo los criterios de la "Guía técnica de trazabilidad e incertidumbre en los servicios de calibración de espectrocolorímetros y colorímetros" del CENAM²², las instrucciones dadas por la marca Hanna "Colorímetros para sílice de alto rango"²³, determinando la expresión de la magnitud de salida en función de magnitudes de entrada, con apoyo de una ecuación modelo para correcciones de calibración.

$$C_i = SL_{ix} + \delta(instrumento) + SL_{sx}$$

a) SL_{ix} indicación del instrumento de la solución de 100 ppm en la lectura i

Se utiliza la evaluación de incertidumbre tipo A, en este caso se efectúan n mediciones y los grados de libertad a considerar son: (n-1)

La desviación estándar experimental de la media se obtiene como:

$$s(SL_{ix}) = \sqrt{\frac{(SL_{ix} - \overline{SL_{ix}})^2}{2}}$$

La incertidumbre se evalúa de la siguiente expresión:

$$u(SL_{ix})=SL_{ix}/\sqrt{n}$$

CENAM 2014, "Guía técnica de trazabilidad e incertidumbre en los servicios de calibración de espectrocolorímetros y colorímetros" Entidad Mexicana de Calibración, México

^{23.} HANNA INSTRUMENTS (2020), Colorímetros para sílice de alto rango, Recuperado de www.hannacolombia.com

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMSL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

b) δ(instrumento) corrección debida a la resolución finita del instrumento (silisómetro) de la disolución A en la lectura i, se utiliza el método tipo B para la evaluación de la incertidumbre. Se considera en este caso que la probabilidad es la misma para cualquier valor y por ende la distribución es de tipo rectangular y la expresión para evaluar dicha incertidumbre es de 100 grados de libertad.

$$u(\delta(\text{instrumento})) = \text{resolución}/\sqrt{12}$$

c) SL_{sx} valor certificado del estándar patrón, cada disolución debe tener especificada su incertidumbre a una temperatura determinada

$$u(SL_{sx}) = U(p)/k$$
, k=2 para el 95.45% de confianza

El coeficiente de sensibilidad es el resultado de la derivada parcial de la ecuación del modelo lineal obteniendo el valor de 1. Para resumir las estimaciones del cálculo de incertidumbre de los colorímetros se muestra la tabla G2 donde se calcula además la incertidumbre típica:

Tabla G2 Resumen de cada fuente de incertidumbre de los medidores de sílice

Magnitud X _i	Estimación x _i	Incertidumbre Típica	Distribución de probabilidad	Coeficiente C _i de sensibilidad	Incertidumbre u(y)
Repetibilidad	Media SL_{ix}	$s(SL_{ix})/\sqrt{3}$	Normal	1	$s(SL_{ix})/\sqrt{3}$
Calibración de patrón	SL_{sx}	U_{cert}/K_{cert}	Normal	1	U_{cert}/K_{cert}
Resolución del silisómetro	$\delta(Ins\ trumento)_{res}$	res/√12	Rectangular	1	res/√12
Corrección de calibración	Ci	Incertidumbre combinada		$u(C_i) = \sqrt{\sum_{i=1}^{n}}$	$\int_{1}^{\infty} (Ci u(y))^{2}$
Factor de cobertura k =				k =	= 2
Incertidumbre ex	Incertidumbre expandida				$\times u(y)$

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMSL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

8- Fin

Completado el proceso de calibración llenar el registro de la calibración y realizar el cálculo de la incertidumbre del instrumento.

El criterio de aceptación y rechazo del presente procedimiento corresponde a los siguientes criterios:

Se rechaza:

- Medidas con MRC con fecha de vencimiento caducada
- Medidas con cubetas en mal estado
- Medidas que se realicen fuera de las condiciones ambientales previamente establecidas
- Medidas que se pongan en duda por parte del operador

Un equipo se considera apto si su incertidumbre se encuentra dentro de la tolerancia dada por el fabricante.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMSL-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

9- Registro de la calibración

El formato para la calibración de sílice se muestra en la figura G1.

1000	1	OEDAT	RTAMENTO D	E DRUCES	SOS DE	Fecha: día/ı	mes/año	
	1	JEI AN	CALIBRA	_	ՍԱՏ ՄԵ	Código: SL		
INSTITUCIONAL		CALIBRACION				Modificació		
Cliente:		C	Contacto:	Fecha: día		Registro No	: 001	
		C	Correo:	Teléfono:	0000-0000			
Información del	equipo							
Equipo:		Portát	til: □	Escala:		Resolución:		
		Mesa:	: 🗆					
Conexión:		Мо	odelo:	Marca:				
Número de serie:		F	Rango de temper	ratura de	Precisión	<u> </u>		
			operación:					
Fuente de luz:		Γ	Detector de luz:	Fotocelda	Tipo de b	atería:		
		d	de sílice		_			
Datos de la soluc	ión patr	ón util	lizada					
Solución patrón en				Temp	eratura:	Valor: 0 ppm		
						Valor: 100 ppi	m	
Condiciones amb	ientales	;						
Temperatura:				Humedad	relativa:			
Información adio	cional							
Calibró:				Sitio de ca	libración:			
Puntos de Sílice Valor medio Una								
calibración		ándar	Lectura 1	1 Lectura 2		valor incuro	U_{rep}	
Punto 1								
Punto 2								
Comentarios:								

Figura G1 Formato controlado del registro de calibración de medidores de sílice

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 8 Medidores de flujo

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 9

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es definir las actividades para verificar o calibrar medidores de flujo para monitoreo de parámetros de operación en los sistemas de producción de agua purificada tipo II con electrodeionizador.

2- Alcance

El presente procedimiento aplica para medidores de flujo de área variable y digitales de rango de 0 a 30 LPM y de rango bajo, por el método de comparación con medida volumétrica estándar. El método es aplicable a fluidos en fase liquida.

3- Responsabilidades

Jefe del proceso de calibración: verificar el cumplimiento del procedimiento de calibración de medidores de flujo, coordinar y dirigir actividades de calibración y atender inconformidades del proceso.

Técnicos: responsables de la ejecución de las actividades de verificación o calibración del medidor de flujo, llevar a cabo cualquier tipo de ajuste, identificación, levantamiento de informe del servicio de calibración.

4- Definiciones

Caudal: es la cantidad de fluido (volumen) que pasa por un área dada en la unidad de tiempo

5- Equipos

Para poder realizar la calibración descrita en este procedimiento es necesario disponer de:

- Medida volumétrica cuya capacidad debe ser mayor o igual al volumen colectado al flujo máximo del medidor en un minuto
- Sensores de temperatura instalados en la medida del volumétrica y en la línea, lo más cercano al medidor de flujo con división de escala de 0.1 °C o mejor como se muestra en la figura H1
- Sensor de presión, incertidumbre en la medición de ± 0.025 MPa o mejor, como se muestra en la figura H1
- Cronómetro con división de la escala de centésimas de segundo

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

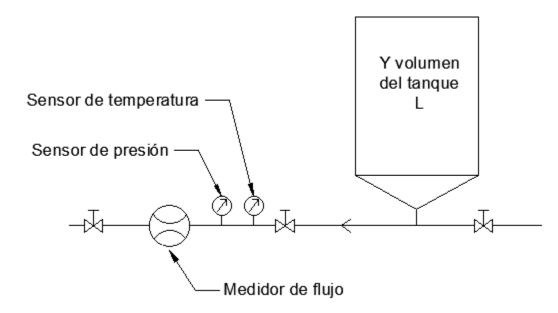


Figura H1 Esquema general para la instalación de un medidor de flujo de líquidos utilizando medida volumétrica

6- Inicio

Es recomendable realizar la calibración bajo condiciones ambientales controladas tomando como referencia los valores de la Tabla H1

Tabla H1 Condiciones ambientales

Magnitud	Rango	Comentarios
Temperatura	25 °C	Temperatura del
		fluido
Densidad	-	No especificado

Preparación

- a) Identificación del instrumento en cuanto a la marca, modelo, número de serie y datos del cliente, completando el formato MF-01
- b) Nivelar la medida volumétrica

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

- c) El medidor de flujo debe ser calibrado con el fluido de trabajo
- d) Asegurarse de que no existan vibraciones que puedan afectar el comportamiento del medidor
- e) Verificación previa del manual del equipo sometido al proceso de calibración si existe
- f) Verificar la instalación por fugas
- g) Deben seleccionarse entre 2 a 5 valores de flujo dentro del alcance de operación del medidor

7- Procedimiento

- a) Fijar el flujo de prueba mediante la operación de la válvula instalada a la salida del medidor de flujo.
- b) Determinar el flujo empleando el indicador del medidor y/o un cronometro durante la prueba.
- c) Cerrar la válvula del drenado de la medida volumétrica con el objetivo de llenarlo
- d) Cuando la medida volumétrica se ha llenado hasta un punto de la escala preestablecido de preferencia el cero, cerrar la válvula de llenado de patrón.
- e) Abrir la válvula de salida de la medida volumétrica para vaciarla
- f) Cuando el nivel del líquido aparece en la mirilla del cuello inferior de la medida volumétrica, se debe cerrar la válvula de drenado y abrir la válvula de ajuste del cero dando un tiempo de escurrimiento de 30 segundos antes de cerrar la válvula de ajuste del cero
- g) Verificar que el indicador del medidor marqué cero y/o efectué la lectura inicial del medidor
- h) Iniciar las corridas de flujo predeterminado, abriendo la válvula de llenado de medida volumétrica
- i) Mientras se colecta el volumen en la medida volumétrica efectuar y registrar la lectura de temperatura y de la presión de la línea, así como el flujo indicado.
- j) Cuando aparezca el líquido en el cuello superior dejar que se acerque el volumen nominal y cerrar la válvula de llenado de la medida volumétrica
- k) Registrar la lectura del medidor en el formato MF-01
- 1) Registrar la lectura de la escala de la medida volumétrica en el formato MF-01
- m) Registrar la temperatura de la medida volumétrica en el formato MF-01
- n) Repetir los literales e) al m), al menor 3 veces para cada flujo

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

8- Cálculo de incertidumbre:

La asignación y expresión de incertidumbre se realizará siguiendo los criterios de la "Guía técnica sobre trazabilidad e incertidumbre en la calibración de medidores de flujo de líquidos empleando como referencia un patrón volumétrico"²⁴, determinando la expresión de la magnitud de salida en función de magnitudes de entrada, con apoyo de una ecuación modelo para correcciones de calibración.

$$C_i = V_p + V_m + MF_{ix} + T_f + MF_{pv}$$

a) V_p volumen certificado de calibración del patrón volumétrico, se le asigna distribución normal.

$$u(V_p) = U(p)/k$$

- b) V_m Lectura del volumen del medidor, al volumen determinado por el medidor bajo prueba se le asigna una incertidumbre debida a la resolución del dispositivo registrador. Para estimar la incertidumbre estándar se asume una distribución de probabilidad del tipo uniforme. Así, el instrumento posee una resolución de res L, entonces la incertidumbre estándar es igual a $u(V_m)$ =res/ $\sqrt{12}$
- c) MF_{ix} La incertidumbre de magnitud de entrada Xi obtenida a partir de observaciones repetidas bajo condiciones de repetitividad y se estima con base a la dispersión de los resultados individuales. Se utiliza la evaluación de incertidumbre tipo A, en este caso se efectúan n=3 mediciones y los grados de libertad a considerar son: (n-1),

La desviación estándar experimental de la media se obtiene como:

$$s(MF_{ix}) = \sqrt{\left(\frac{1}{n-1}\sum_{k=1}^{n}(MF_{ix} - \overline{MF_{ix}})^{2}\right)}$$

La incertidumbre se evalúa de la siguiente expresión:

$$u(SL_{ix})=s(MF_{ix})/\sqrt{n}$$

^{24.} CENAM 2008, "Guía técnica sobre trazabilidad e incertidumbre en la calibración de medidores de flujo de líquidos empleando como referencia u patrón volumétrico" Entidad mexicana de acreditación, México

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

d) T_f corrección debida a la resolución al gradiente de temperatura, se utiliza el método tipo B para la evaluación de la incertidumbre. Se considera en este caso que la probabilidad es la misma para cualquier valor y por ende la distribución es de tipo rectangular y la expresión para evaluar dicha incertidumbre es de 100 grados de libertad.

$$u(T_f) = T_{res} / \sqrt{12}$$

e) MF_{PV} Lectura en el patrón volumétrico expresada en el certificado de calibración de la medida volumétrica, se considera una contribución al realizar la lectura en el cuello graduado de la medida volumétrica, se le atribuye una distribución de probabilidad rectangular con un intervalo de variación de acuerdo a la resolución de escala del cuello de la medida volumétrica

$$u(MF_{pv}) = PV_{res}/\sqrt{12}$$

Para este procedimiento no se considera las incertidumbres por variación en la densidad del fluido, tampoco correcciones de medida por dilatación. El coeficiente de sensibilidad es el resultado de la derivada parcial de la ecuación del modelo lineal obteniendo el valor de 1.

En la tabla H2 se resumen las contribuciones descritas anteriormente, que corresponden a la medición de flujo.

Tabla H2 Contribuciones de incertidumbre en la medición de flujo

Magnitud X _i	Estimación x _i	Incertidumbre Típica	Distribución de probabilidad	Coeficiente C _i de sensibilidad	Incertidumbre u(y)
Repetibilidad	MF_{ix}	$s(MF_{ix})/\sqrt{n}$	Normal	1	$s(MF_{ix})/\sqrt{n}$
Calibración de patrón	V_p	U_{cert}/K_{cert}	Normal	1	U_{cert}/K_{cert}
Resolución del medidor de volumen	$V_{\rm m}$	res/√12	Rectangular	1	res/√12
Temperatura del fluido	T_f	$T_{res}/\sqrt{12}$	Rectangular	1	$T_{res}/\sqrt{12}$
Lectura en el patrón volumétrico	MF_{PV}	$PV_{res}/\sqrt{12}$	Rectangular	1	$PV_{res}/\sqrt{12}$

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Corrección de calibración	Ci	Incertidumbre combinada	$u(C_i) = \sqrt{\sum_{i=1}^{n} (Ci u(y))^2}$
Factor de cobert	ura k =		k = 2
Incertidumbre ex	kpandida		$U = k \times u(y)$

9- Fin

Completado el proceso de calibración llenar el registro de la calibración y realizar el cálculo de la incertidumbre del instrumento.

El criterio de aceptación y rechazo del presente procedimiento corresponde a los siguientes criterios:

Se rechaza:

- Medidas con lecturas inestables
- Medidas con presencia de fugas en el sistema
- Medidas que se realicen fuera de las condiciones ambientales previamente establecidas
- Medidas con instrumentos calibrados que no estén al día
- Medidas con presencia de burbujas de aire en el agua
- Medidas que se pongan en duda por parte del operador

Un equipo se considera apto si su incertidumbre se encuentra dentro de la tolerancia dada por el fabricante.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

10- Registro de la calibración

El formato para la calibración de medidores de flujo se muestra en la figura H2.

/1000		DE		DE DI) O CE	gog pr		Fecha: día/mes/año
LOGO /		DE	PARTAMENTO :			SOS DE		Código: MF-01
INSTITUCIONAL		CALIBRACIÓN					Modificación: 00	
Cliente:			Contacto:	Fech	a: día/	mes/año		Registro No: 001
			Correo:	Telé	fono: (0000-0000		
Información del equ	ipo							
Equipo:		Di	gital: □	Esca	ıla:			Resolución:
		Ár	ea variable: 🗆					
Conexión:			Modelo:	Marc	a:			Tipo de fluido:
						•		
Número de serie:	Número de serie: Rango de temper		ratura de Punto de calibra		libra	ción:		
			operación:					
Conexión del cable:			Tipo de electrod	o: Profundidad mí		l mír	nima de la muestra:	
Datos de las contrib	ucio	nes (de incertidumbre					
Medida volumétrica:		Sen	sor de temperatura		Senso	or de presión:		Cronómetro:
Volumen:								
Condiciones ambien	tale	S						
Temperatura:				Hun	nedad 1	elativa:		
Información adicion	al			1				
Calibró:				Sitio	de ca	libración:		

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMF-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Puntos de calibración	Volumen estándar	Lectura 1	Lectura 2	Lectura 3	Valor medio	Urep
Punto 1						
Punto 2						
Punto 3						
Comentarios:	,	,		,		•

Figura H2 Formato controlado del registro de calibración de medidores de flujo

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMHR-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 9 Medidores de humedad relativa

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 8

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMHR-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

El objetivo de este procedimiento es definir las actividades para verificar o calibrar medidores de humedad relativa para monitoreo de parámetros de operación en los sistemas de producción de agua purificada tipo II con electrodeionizador.

2- Alcance

El presente procedimiento aplica para medidores de humedad relativa de tipo digitales y analógicos por el método de comparación contra un higrómetro de referencia empleando una cámara de generación de humedad.

Quedan excluidos psicrómetros y medidores de punto de rocío.

3- Responsabilidades

Jefe del proceso de calibración: verificar el cumplimiento del procedimiento de calibración de medidores de humedad relativa, dirigir y coordinar actividades de calibración, control de registros y atender cualquier inconformidad.

Técnicos: responsables de la ejecución de las actividades de verificación o calibración de los medidores de humedad relativa, realizar cualquier tipo de ajuste, identificación, levantamiento de informe del servicio de calibración.

4- Definiciones

Humedad relativa: es la relación entre la cantidad de vapor de agua contenida en el aire (humedad absoluta) y la máxima cantidad que el aire sería capaz de contener esta temperatura

Cámara de humedad: están diseñadas para producir las condiciones de ensayo de alta humedad a temperaturas constantes, o con ciclos

5- Equipos

Para poder realizar la calibración descrita en este procedimiento es necesario disponer de un sistema para la calibración como en la figura I1

• Higrómetro patrón de referencia

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMHR-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

- Cámara de generación de humedad
- Termómetro para mediciones de temperatura dentro de la cámara con división de escala de 0.1 °C
- Sistema de medición de condiciones ambientales (temperatura y humedad relativa)
- Higrómetro testigo
- Control metrológico, por medio de cartas de control, gráficas o mediciones de verificación

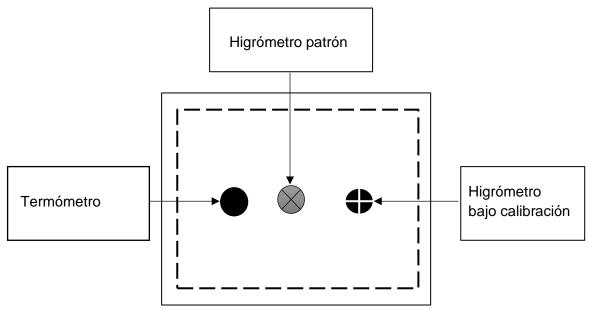


Figura I1 Sistema para calibración de higrómetros

6- Inicio

Es recomendable realizar la calibración bajo condiciones ambientales controladas tomando como los valores de la Tabla I1

Tabla I1 Condiciones ambientales para la calibración de higrómetros

Magnitud	Rango	Comentarios
Temperatura	20-23 °C	-
Humedad relativa	40 <u>+</u> 5% HR	-

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMHR-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Preparación

- a) Identificación del instrumento en cuanto a la marca, modelo, número de serie y datos del cliente, llenando la sección correspondiente en el formato HR-01
- b) Asegurarse de la homogeneidad de la humedad dentro de la cámara en varios puntos de la misma, presentando el perfil de la humedad dentro de la cámara
- c) Seleccionar puntos de calibración, al menos 3 puntos de calibración, incluyendo en lo posible los puntos de ajustes recomendados por el fabricante
- d) Acondicionar térmicamente el instrumento bajo calibración en el laboratorio, de acuerdo con las instrucciones del fabricante

7- Procedimiento

- a) Montar el sistema de calibración como la figura I1 colocando el patrón y el instrumento bajo calibración lo más cercano posible para que los gradientes de humedad sean mínimos
- b) Asegurarse que el sistema de medición del laboratorio y su patrón se encuentre en un régimen estable antes de iniciar las mediciones con el instrumento bajo calibración, una vez dada esta condición, se recomienda realizar por lo menos 10 mediciones en cada punto de calibración si la lectura no es correcta se ajusta el instrumento con autorización del usuario.
- c) Repetir el paso anterior en los 2 puntos restantes
- d) Después de medir el punto más alto se recomienda medir el punto inicial con el fin de medir el efecto de histéresis.

Se anotan las lecturas en el formato HR-01

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMHR-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

8- Cálculo de incertidumbre:

La asignación y expresión de incertidumbre se realizará siguiendo los criterios de la "Guía técnica de trazabilidad metrológica e incertidumbre de medida en la calibración de higrómetros de humedad relativa"²⁵, determinando la expresión de la magnitud de salida en función de magnitudes de entrada, con apoyo de una ecuación modelo para correcciones de calibración.

$$C_i = (HR_p + C_R) + Inst_c + HR_{rep} + T_c + HR_{hist} + HR_{ECH} + HR_{UC}$$

a) (HR_p+C_R) corrección para la incertidumbre resultante, obtenida del informe de calibración en esta se encuentra contenida la incertidumbre del patrón.

$$u(HR_p+C_R) = Ucert/k$$

- b) Inst_c Corrección estimada en base a la resolución del instrumento bajo la calibración, el cual se puede encontrar en el manual del mismo. Para estimar la incertidumbre estándar se asume una distribución de probabilidad del tipo uniforme. Así, el instrumento posee una resolución de "res", entonces la incertidumbre estándar es igual a $u(Inst_c)=res/\sqrt{12}$
- c) HR_{rep} La incertidumbre de magnitud de entrada Xi obtenida a partir de observaciones repetidas bajo condiciones de repetibilidad y se estima con base a la dispersión de los resultados individuales. Se utiliza la evaluación de incertidumbre tipo A, en este caso se efectúan n mediciones y los grados de libertad a considerar son: (n-1),

La desviación estándar experimental de la media se obtiene como:

$$s(HR_{rep}) = \sqrt{\left(\frac{1}{n-1}\sum_{k=1}^{n}(HR_{rep} - \overline{HR}_{rep})^{2}\right)}$$

La incertidumbre se evalúa de la siguiente expresión:

$$u(HR_{rep}) = s(HR_{rep}) / \sqrt{n}$$

CENAM 2012, "Guía técnica de trazabilidad metrológica e incertidumbre de medida en la calibración de higrómetros de humedad relativa" Centro Nacional de Metrología, México

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMHR-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

d) T_c corrección debida a la temperatura, debe considerarse tanto en la cámara de humedad como en el higrómetro.

$$u(T_f)$$

e) HR_{hist} es la corrección por histéresis del instrumento bajo calibración en % de humedad relativa, la histéresis se debe a la memoria que tienen los higrómetros de recordar la última condición de humedad a la que fueron expuestos. Se recomienda medir el punto más bajo y luego el punto más alto y de encontrarse una diferencia utilizar la corrección debida a la histéresis.

$$u(Hist_{res}) = Hist_{res}/\sqrt{12}$$

- f) HR_{ECH} esta corrección considera incertidumbre por estabilidad de la humedad dentro de la cámara, usualmente este valor de corrección es cero cuando dichas variaciones fueron estimadas por medio de una caracterización y por lo tanto se encuentran dentro de una incertidumbre asociada
- g) HR_{UC} esta corrección se obtiene de los gradientes de humedad dentro de la cámara de humedad, al igual que el caso anterior su contribución es cero cuando se consideran dentro de una incertidumbre asociada.

En la tabla I2 se resumen las contribuciones descritas anteriormente, que corresponden a la medición de humedad relativa, el coeficiente de sensibilidad es el resultado de la derivada parcial de la ecuación del modelo lineal obteniendo el valor de 1.

Tabla I2 Contribuciones de incertidumbre en la medición de humedad relativa

Magnitud X _i	Estimación x _i	Incertidumbre Típica	Distribución de probabilidad	Coeficiente C _i de sensibilidad	Incertidumbre u(y)
Lectura corregida del patrón	HR_p + C_R	U_{cert}/K_{cert}	Normal	1	U_{cert}/K_{cert}
Lectura del instrumento	Inst _c	res/√12	Rectangular	1	res/√12
Repetitibilid ad de las mediciones	HR_{rep}	$s(HR_{rep})/\sqrt{n}$	Normal	1	$s(HR_{rep})/\sqrt{n}$

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMHR-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Corrección	T_c	$u(T_c)$	Normal	1	ΔHR
Temperatura	¹ C	$u(I_c)$	Normai	1	ΔT
Corrección	HR _{hist}	Higt 1/12	Rectangular	1	Higt 1/12
por histéresis	111 X hist	$Hist_{res}/\sqrt{12}$	Rectangular	1	$Hist_{res}/\sqrt{12}$
Estabilidad					
de la cámara	HR_{ECH}	$u(HR_{ECH})$	Normal	1	$u(HR_{ECH})$
de humedad					
Uniformidad					
de la cámara	HR_{UC}	$u(HR_{uc})$	Normal	1	$u(HR_{uc})$
de humedad					
Corrección				n	
de	\mathbf{C}_{i}	Incertidumbre	e combinada	$\sum_{i\in C(C)} - \sum_{i=1}^{N}$	$\int_{1}^{\infty} (Ci u(y))^{2}$
calibración	Cı	meertidamore	Comomada	$u(c_i) = \sum_{i=1}^{n}$	
		,			
Factor de cobe	rtura k =	k =	= 2		
Incertidumbre	expandida	U = k	$\times u(y)$		

9- Fin

Completado el proceso de calibración llenar el registro de la calibración y realizar el cálculo de la incertidumbre del instrumento.

El criterio de aceptación y rechazo del presente procedimiento corresponde a los siguientes criterios:

Se rechaza:

- Medidas con instrumentos de apoyo con calibraciones vencidas
- Medidas que no presenten estabilidad en su lectura
- Medidas que se realicen fuera de las condiciones ambientales previamente establecidas
- Medidas que se pongan en duda por parte del operador

Un equipo se considera apto si su incertidumbre se encuentra dentro de la tolerancia dada por el fabricante.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	SMHR-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

10- Registro de la calibración

El formato para la calibración de medidores de humedad relativa se muestra en la figura I2.

/1000		DE	D A D7	P A 18 /F	ENIT	0 DI	E DD	OF	gOg I	DE.		Fed	ha: día/m	es/año
LOGO /		DE	DEPARTAMENTO DE PROCESOS DE CALIBRACIÓN								Có	digo: HR-	01	
INSTITUCIONAL			CALIDRACION									Mo	dificación	ı: 00
Cliente:		Co	Contacto:						mes/a			Reg	gistro No:	001
		Co	rreo:			7	Γeléfo	no: (000-0	0000				
Información de	el equipo													
Equipo:		Dig	gital:			F	Escala	:				Res	solución:	
		An	alógic	co: 🗆										
Tiempo de respu	iesta:	Modelo: N			N	Iarca:					Pre	cisión:		
Número de serie	:		Rango de temperatura de Puntos de calibr					_l ración:						
		ope	eració	n:										
Datos del patró												T		
Higrómetro patr	ón:						Senso	or de	tempe	eratura	a:	Hig	grómetro te	estigo:
Condiciones an	nbientales	S												
Temperatura:						I	Hume	dad 1	elativ	a:				
Información ad	licional													
Calibro:						S	Sitio d	le cal	ibraci	ón:				
Puntos de calibración	HR estánd	ar	1	2	3	4	5	6	7	8	9	10	Valor medio	U_{rep}
Punto 1														
Punto 2														
Punto 3														
Histéresis														
Comentarios:														

Figura I2 Formato controlado del registro de calibración de medidores de humedad relativa

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	CT-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

PROCEDIMIENTO

Sección 10 Cartas de trazabilidad

Documento sustituye a: Ninguno

Edición: 01

No total de páginas: 8

Fecha de próxima revisión: día-mes-año

Elaborado por:	Revisado por:	Autorizado por:
NOMBRE	NOMBRE	NOMBRE
CARGO	CARGO	CARGO
Fecha: día-mes-año	Fecha: día-mes-año	Fecha: día-mes-año

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	CT-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

1- Objetivo

Establecer un procedimiento para la elaboración de cartas de trazabilidad de los procedimientos de calibración de este sistema de confirmación metrológico dirigido a los sistemas de producción de agua purificada tipo II con electrodeionizador.

2- Alcance

La trazabilidad que se presenta en este documento corresponde a los equipos de manera ejemplar para cada uno de los procedimientos descritos es el presente sistema de confirmación metrológica

3- Responsabilidades

Jefe del proceso de calibración: Verificar que el proceso de calibración sea trazable identificando los certificados de los patrones utilizados.

Técnicos: responsables de la ejecución de las actividades que impliquen utilizar los patrones con trazabilidad en la incertidumbre

4- Definiciones

Trazabilidad metrológica: propiedad de un resultado de medida por la cual el resultado puede relacionarse con una referencia mediante una cadena ininterrumpida y documentada de calibraciones, cada una de las cuales contribuye a la incertidumbre medida. Requiere una jerarquía de calibración establecida.

Carta de trazabilidad: una carta de trazabilidad de un resultado específico es un diagrama que muestra la relación de calibraciones o composiciones entre este resultado y las referencias determinadas. Es la sucesión de sistemas de medición, con sus procedimientos y patrones de medición asociados.

Material de referencia certificado MRC: es el material de referencia acompañado por la documentación emitida por un organismo autorizado, que proporciona uno o varios valores propiedades especificadas, con incertidumbres y trazabilidades asociadas, empleando procedimientos válidos.

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Cádias.	CT 01	Madifiasaián.	00
Codigo:	C1-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

Incertidumbre de medida: parámetro no negativo que caracteriza la dispersión de los valores atribuidos a un mensurando, a partir de la información que se utiliza. La incertidumbre de medida incluye componentes procedentes de efectos sistemáticos, tales como componentes asociadas a las correcciones y a valores asignados a los patrones.

Factor de cobertura: número mayor que uno por el que se multiplica una incertidumbre de medida típica combinada por obtener una incertidumbre de medida expandida.

5- Lineamientos para la elaboración de cartas de trazabilidad

Los siguientes lineamientos son presentados según la "Elaboración de cartas de trazabilidad en el CENAM Recomendación GIT 3/2005"²⁶ de cartas de trazabilidad que se presentan sirven únicamente para guiar a la construcción de las mismas, la información que se debe incluir es:

a) Colocar referencia al mensurando y al organismo emisor de la carta

- Debe incluir el distintivo de la empresa
- El mensurando objeto de la carta de trazabilidad
- El nombre del método de edición o de calibración utilizado

b) Referencia de patrones

- Incluir la identificación del patrón
- Incluir el valor o el intervalo de valores numéricos asignados al patrón con sus respectivas unidades

CENAM 2005 "Elaboración de cartas de trazabilidad en el CENAM Recomendación GIT 3/2005", Centro Nacional de Metrología, México

DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	CT-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

• Colocar la incertidumbre del patrón

(Se debe encerrar en rectángulo la información anterior)

• Debe de contener una identificación del certificado o informe de calibración que soporta la trazabilidad de dicho patrón

c) Referencia a los métodos o procedimientos

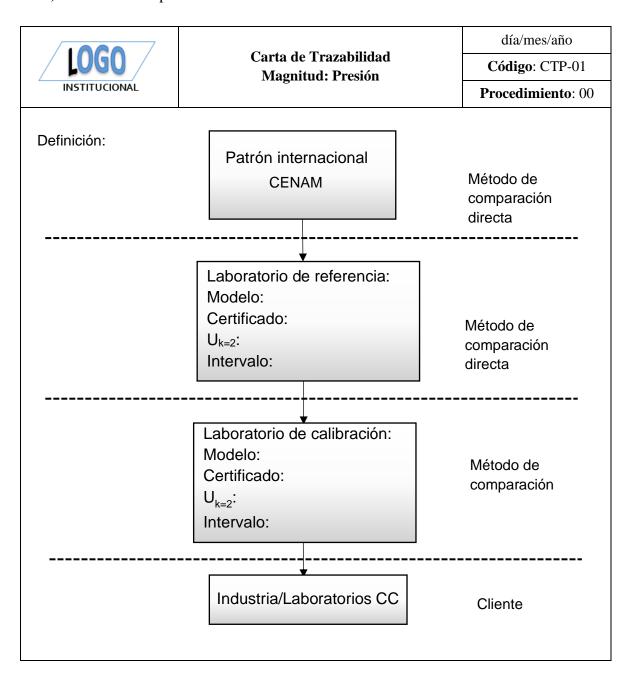
• Cuando el procedimiento o método es conocido puede limitarse a una cita o referencia breve del documento

d) Información complementaria

• Incluir información complementaria para describir patrones, métodos o procedimientos para evitar que en una carta de trazabilidad la información sea demasiado extensa, se debe hacer referencia mediante numero entre corchete

e) Otras consideraciones

- Asegurarse que toda la información contenida en una carta de trazabilidad cuenta con un respaldo documentado suficiente
- Cuando se cuenta con información sobre la trazabilidad de otro organismo externo al laboratorio se traza únicamente una línea horizontal punteada que separa los elementos de la cadena de trazabilidad que son responsabilidad del laboratorio emisor de la carta de aquellos que son responsabilidad externa.
- Incluir una nota en la que se especifique el nivel de confianza de los valores declarados de las incertidumbres de medición.
- Cada patrón y cada método o procedimiento consecutivo en la carta de trazabilidad se debe unir mediante una flecha en el sentido de la diseminación del valor del patrón del cual se obtiene la trazabilidad con el fin de indicar la cadena ininterrumpida de comparaciones.

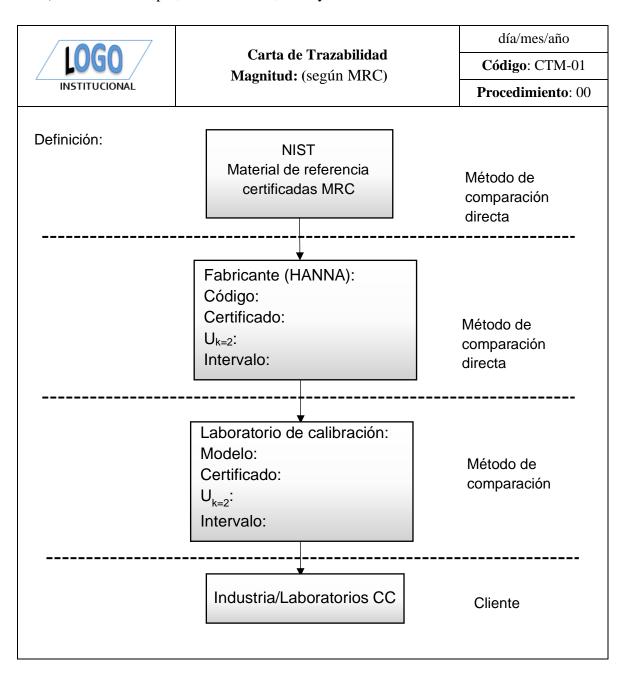


DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	CT-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

6- Cartas de trazabilidad

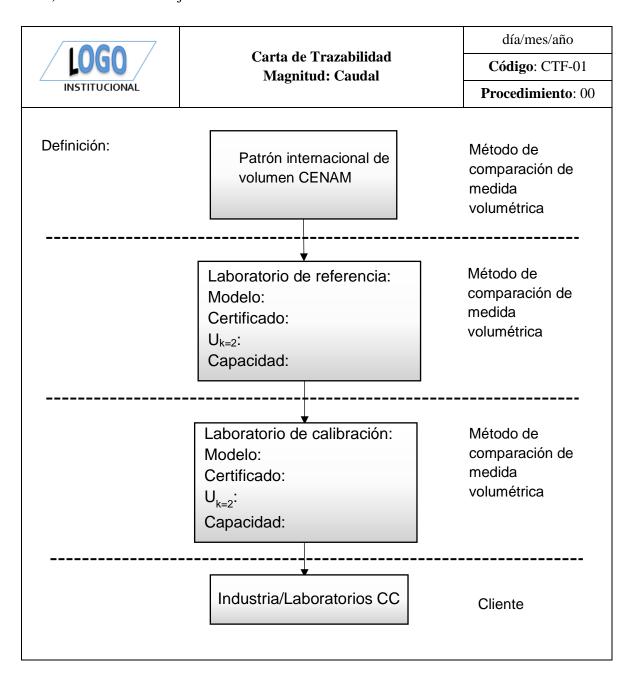
a) Medidores de presión



DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	CT-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

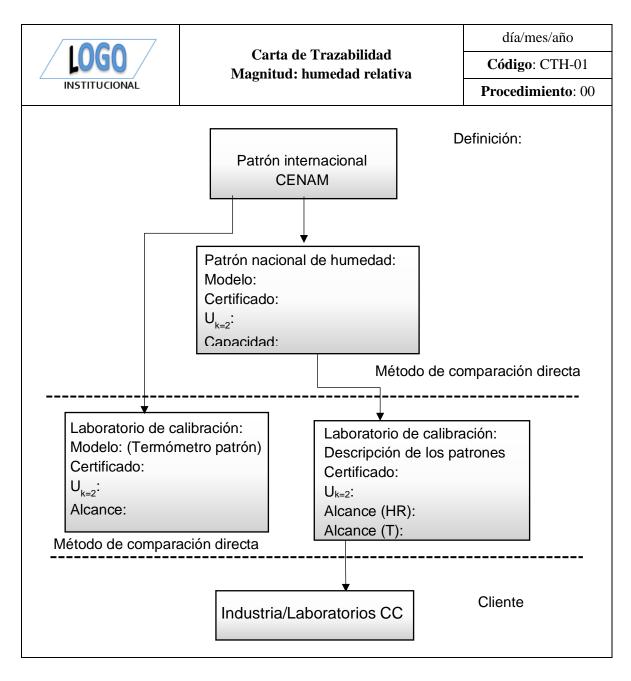
b) Medidores de pH, conductividad, ORP y sílice



DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	CT-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

c) Medidores de flujo



DEPARTAMENTO PROCESOS DE CALIBRACIÓN

Código:	CT-01	Modificación:	00
Revisión:	00	Fecha:	día-mes-año

d) Medidores de humedad relativa

CONCLUSIONES

De todas las variables implicadas en el proceso, se identificaron las que se deben medir y controlar para mantener la producción de agua purificada tipo II con electrodeionizador dentro de los rangos adecuados de operación. Entre ellas se determinó que la conductividad de entrada al electrodeionizador proveniente del osmosis inversa es un parámetro tan crítico que no solo es importante controlar para cumplir un tipo de agua, sino que también afecta el rendimiento del equipo ocasionando daños graves.

De las magnitudes químicas, la concentración de cloro afecta a los componentes de los equipos, pero es indispensable utilizarlo como método de desinfección al inicio de todo el proceso, la sílice y el potencial de hidrogeno pH resultan ser de alta importancia ya que a lo largo del tiempo podrían ser un problema para la operación de los equipos y cumplimiento de normativas de calidad de agua si no son controlados con anticipación.

El flujo de operación para el sistema de purificación de agua tipo II con electrodeionizador es la magnitud que caracteriza al sistema en cuanto a su capacidad y su rendimiento, la presión de operación indica el correcto funcionamiento de los equipos de acorde a la especificación del fabricante, y la humedad relativa es una magnitud física del entorno que contribuye a la preservación de los mismos equipos sujetos a posibles calentamientos.

En la propuesta del plan de confirmación metrológico se incluyó una sección para realizar el mantenimiento preventivo de sistema de purificación de agua con un electrodeionizador para una capacidad de 500 L/h, en la cual se determinaron las

actividades necesarias para llevar a cabo el mantenimiento del equipo, en las que resaltan la limpieza y sanitización química del equipo electrodeionizador, ajuste de corriente y voltaje.

A partir de la determinación de magnitudes criticas del proceso de purificación de agua tipo II se elaboró la propuesta del Sistema de confirmación metrológica que consta de la identificación de magnitudes sujetas a un periodo de calibración bajo un equipo de calibración determinado y el personal a cargo. El Sistema consta de una sección orientada al mantenimiento y otra, enfocada a los procedimientos de calibración de los equipos críticos para asegurar la confiabilidad de resultados del proceso de medición.

RECOMENDACIONES

- Recopilar toda la información acerca del mantenimiento de equipos e instrumentos, tales como hoja de vida del equipo, bitácoras o reportes de mantenimiento.
- Implementar el uso de indicadores que sean pertinentes como por ejemplo bitácoras para el registro de magnitudes físicas, químicas del agua que englobe a todas las etapas (etapa del pretratamiento, tratamiento y purificación de agua) debido a que esta información posibilita el diagnóstico del estado actual del equipo.
- 3 Desarrollar actividades de formación para el personal involucrado en el área de calidad y calibración, específicamente en los temas de medición de magnitudes químicas como la de la sílice que requiere uso de analizadores colorimétricos digitales, también en el cálculo de incertidumbre para la calibración de los equipos.
- 4 Evaluar la inversión de implementar un sistema automático para los sensores de conductividad, ORP y dureza, que ayudarían a una mejor toma de decisión y detener oportunamente el sistema de producción al detectar un parámetro fuera de especificación.

Referencias bibliográficas

- 1. Condorchem Envitech "Obtención de agua ultrapura por electrodeionización"

 Tratamiento de aguas, Electrodesionización Recuperado de www.condorchem.com
- ASTM D1193-2018, (American Society for Testing and Materials), Standard Specification for Reagent Water, Recuperado de www.wasserlab.com
- 3. Evocua 2020, EDI modules, Recuperado de "www.Evocua, Ionpure, productos Ion Cedi" Tratamiento de agua potable, procesos de desinfección.
- 4. ISO 9004:2018," Gestión de la calidad", clausula 8.2.1, 8.4.5, 10.2.1.
- 5. ISO 9001:2015 "Sistemas de gestión de calidad" cláusula 8.5.1, 2.3.6.4 edición 2015
- 6. JCGM 200:2012, *Vocabulario internacional de metrología 3ra Edición*, CEM Centro Español de metrología, España
- 7. AKRIMET (2020), Términos metrológicos, recuperado de www.akrimet.com
- ISO 10012:2003 Internacional Estándar Measurement management system-Requirements for measurement processes and measuring equipment fist edition 2003-04-15
- 9. ISO/IEC 17025:2018 "Requisitos generales para la competencia de los laboratorios de ensayo y calibración" en el anexo A, clausula 6.4.13 y nota 1, España
- 10. ISO 14253-1:2017 "Geometrical product specifications (GPS)-Inspection by measurement of workpieces and measuring equipment part 1: Decision rules for verifying conformity or nonconformity with specifications.
- OIML D 10:2007 "Lineamientos para la determinación de intervalos de calibración de los instrumentos de medición", Organización internacional de metrología legal, Australia.
- 12. MINECO, CONACYT, MIFC, SIC y MEIC. 2007, "Reglamento técnico centroamericano RTCA 11.03.42:07" "Productos farmacéuticos medicamentos de

- uso humano buenas prácticas de manufactura para la industria farmacéutica" Calibración capítulo 9
- 13. Santiago G., Carlos A., Celia M., Ruben A., Diana B., Victor M., Thelma A., Hector D., Ricardo H. y Eliú F., 2008, NSO 13.07.01:08, "Agua Potable", segunda actualización, Normativa salvadoreña, El Salvador
- 14. Maribel S. 2009, "Guía para la elaboración de diagramas de flujo" International Organization for Standardization ISO 9000, Mideplan
- 15. ASTIN 2015, "Análisis del modo y efectos de las mediciones" Centro Nacional ASTIN, recuperado de www.fdocuments.ec
- 16. EVOCUA, recuperado de "www.Evocua.com", Ionpure, productos, Ion Cedi
- 17. Eliana C. (2013), "Elaboración de calibración de manómetros, vacuometros y manovacuometros bajo norma técnica colombiana NTC 2263:1987 y la guía alemana de calibración de medidores de presión DKD-R 6-1:2003", en la empresa metrología instrumentación y control M.I.C.S.A.S, Universidad de La Costa, Colombia
- 18. CENAM 2012, "Guía técnica de trazabilidad metrología e incertidumbre de medida en las mediciones analíticas que emplean la técnica de medición de conductividad electrónica" por el Centro Nacional de Metrología, México
- JCGM 08, "Procedimiento QU-003 para la calibración de pHmetros digitales",
 Ministerio de industria y turismo, España
- 20. CEM 2008, "Evaluación de datos de medición guía para la expresión de la incertidumbre de medida" edición 1, Centro Español de Metrología, España
- 21. Hach Company 2009, "Instrucciones para el usuario del instrumento", recuperado de www.hach.com, EEUU
- 22. CENAM 2014, "Guía técnica de trazabilidad e incertidumbre en los servicios de calibración de espectrocolorímetros y colorímetros" Entidad Mexicana de Calibración, México

- 23. HANNA INSTRUMENTS (2020), Colorímetros para sílice de alto rango, Recuperado de www.hannacolombia.com
- 24. CENAM 2008, "Guía técnica sobre trazabilidad e incertidumbre en la calibración de medidores de flujo de líquidos empleando como referencia u patrón volumétrico" Entidad mexicana de acreditación, México
- 25. CENAM 2012, "Guía técnica de trazabilidad metrológica e incertidumbre de medida en la calibración de higrómetros de humedad relativa" Centro Nacional de Metrología, México
- 26. CENAM 2005 "Elaboración de cartas de trazabilidad en el CENAM Recomendación GIT 3/2005", Centro Nacional de Metrología, México
- 27. Adolfo C. 2014, "Evaluación en la conformidad en la calibración del canal de medición de conductividad en los sistemas de agua purificada y de inyección" Instituto superior politécnico, La Habana
- 28. Carlos H. Matamorros (2014). Guía técnica sobre trazabilidad e incertidumbre en la calibración en los servicios de calibración de espectocolorímetros y colorímetros, CENAM Centro Nacional de Metrología, México
- 29. H. Salamanca y L. Vides (2004), Diseño de plan de calibración para el proceso de laminación en frio de la empresa procesadora de acero de El Salvador (PROACES), Universidad de El Salvador, El Salvador
- 30. Miguel, V. 2002, Introducción a la destilación de aguas, Universidad de las palmas de gran canaria
- 31. Fariñas, Manuel. 1999 Osmosis inversa "Mc. Graw Hill"
- 32. Higiene Ambiental 2008, "La historia del tratamiento del agua potable" recuperado de www.higieneambiental.com

Anexo 1

Ficha técnica de membrana de osmosis marca LG Chem

Las membranas de agua salobre de LG Chem NanoH2O abaratan los costos del tratamiento de agua mediante la mejora de la eficiencia energética y la productividad.

Éstas membranas nano compuestas de película fina (TFN) están formadas por nano materiales benignos que han sido incorporados a la capa de poliamida.

Ésta tecnología patentada aumenta significativamente la permeabilidad de la membrana haciéndola equiparable a las mejores de su clase en cuanto a rechazo de sales.

- Excelente flujo y rechazo de sales
 Ideal para aplicaciones de baja energía
- · Fácil readaptación a las plantas de ósmosis inversa existentes

Configuración: Espiral de 4 pulgadas

Tipo de polímero: Película fina de poliamida nano compuesta (TFN)

Especificaciones

Fluido de permeado	Rechazo minimo	Rechazo estabilizado	Espaciador de
GPD	(NaCl %)	(NaCl %)	alimentación (Mil)
2,500	99.2	99.5	

en arriba están normalizados para las siguientes condiciones: 2,000 ppm de NaCl, 10.3 bar (150 psi), 25°C (77° F), pH 8, recupe-

Longitud (A)	DE de membrana (B)	DI del tubo de permeado (C)	Extensión del tubo (D)	Peso
40"	3.9"	0.75"	1.05"	8 lbs

Presión máxima de operación	41 bar (600 psig)
Concentración máxima de cloro	< 0,1 ppm
Temperatura máxima de operación	45°C (113°F)
Rango de pH, continuo (Lavado)	2-11 (2-12)
Turbidez máxima de agua de alimentación	1,0 NTU
SDI máximo de alimentación (15 min)	5,0
Flujo máximo de alimentación	3.6 m³/h (16 GPM)

