Universidad de El Salvador Facultad de Ciencias Naturales y Matemática Escuela de Física

Trabajo de graduación

"Cálculo del espectro de potencia primordial para potenciales inflacionarios"

Presenta:

Wilson Alberto Barrera Vásquez BV17003

Para optar al grado de: Licenciado en Física

Asesores:

Dr. Jorge Hiram Mastache de los Santos. Dr. Raúl Antonio Henríquez Ortiz.

Ciudad Universitaria, San Salvador

Marzo 2023

Universidad de El Salvador Facultad de Ciencias Naturales y Matemática Escuela de Física

Trabajo de graduación

"Cálculo del espectro de potencia primordial para potenciales inflacionarios"

Presenta:

Wilson Alberto Barrera Vásquez BV17003

Para optar al grado de: Licenciado en Física

Aprobación de los asesores:

Dr. Jorge Hiram Mastache de los Santos.

Dr. Raúl Antonio Henríquez Ortiz.

F: Rum Hog

Ciudad Universitaria, San Salvador

Marzo 2023

Autoridades de la Universidad

Universidad del El Salvador

Rector: M.Sc. Roger Armando Arias

Vicerrector Académico: PhD. Raúl Ernesto Azcúnaga López

Vicerrector Administrativo: Ing. Juan Rosa Quintanilla

> Secretario General: Ing. Francisco Alarcón

Fiscal: Lic. Rafael Humberto Peña Marín

Facultad de Ciencias Naturales y Matemática

Decano: Lic. Mauricio Hernán Lovo Córdova

Vicedecana: M.Sc. Zoila Virginia Guerrero Mendoza

Secretario: Lic. Jaime Humberto Salinas Espinoza

Director Interino Escuela de Física: Lic. Guillermo Napoleón Morán

Ciudad Universitaria, San Salvador

Marzo 2023

Agradecimientos

A mis padres, a tío Francisco Herrera y a tía margarita López por todo el apoyo que me han brindado, todo lo que he logrado ha sido gracias a ellos.

A mis asesores Dr. Jorge Mastache y M.Sc Raúl Henríquez, por guiarme en el desarrollo de esta tesis, por su paciencia y por el tiempo que compartieron conmigo, de ustedes aprendí muchísimo.

A mis compañeros y amigos, Erick, César y Juan Carlos, por apoyarme durante toda la carrera y que nunca me dejaron "tirar la toalla".

Tabla de Contenido

1.	Intr	oducci	ón	2
2.	Ma	rco teó	rico	3
	2.1.	Model	o del Big Bang Caliente	3
		2.1.1.	Principio Cosmológico	3
		2.1.2.	Relatividad General	3
		2.1.3.	Historia Térmica del Universo	5
		2.1.4.	Métrica de Friedmann-Lemaître-Robertson-Walker	6
			2.1.4.1. Ecuaciones de Friedmann	7
		2.1.5.	Problemas del Modelo del Big Bang Caliente.	10
			2.1.5.1. Radio de Hubble	10
			2.1.5.2. Horizontes Cosmológicos	11
			2.1.5.3. Problema del Horizonte	11
			2.1.5.4. Problema de Planitud	13
	2.2.	Inflaci	ón Cosmológica	13
		2.2.1.	Número de e-folds	13
		2.2.2.	Solución del Problema de Horizonte	14
		2.2.3.	Solución del Problema de Planitud	15
		2.2.4.	Condiciones para Inflación	15
		2.2.5.	Dinámica del Inflatón	15
			2.2.5.1. Condiciones de Slow-roll	17
		2.2.6.	Modelos Inflacionarios.	18
			2.2.6.1. Large Field Inflation (LFI)	18
			2.2.6.2. Steplike Potential	19
			2.2.6.3. α -attractor	20
			2.2.6.4. Radion Gauge Inflation (RGI)	20
	2.3.	Pertur	baciones Cosmológicas Relativistas	21
		2.3.1.	Perturbaciones en la Métrica	21
		2.3.2.	Descomposición Escalar-Vectorial-Tensorial.	22
	2.4.	Pertur	baciones Durante Inflación	22
		2.4.1.	Descripción Cuantitativa de las Perturbaciones Escalares	23
		2.4.2.	Descripción Cuantitativa de las Perturbaciones Tensoriales	24
		2.4.3.	Espectro de Potencia Primordial	25
3.	Met	odolog	gía	26
	3.1.	Metod	ología para Resolver las Ecuaciones del Fondo Cosmológico	26
	3.2.	Metod	ología para Resolver la Ecuación de Mukhanov-Sasaki	29

		3.2.1.	Condiciones Iniciales	31
		3.2.2.	Metodología para Calcular los Espectros de Potencia Primordial	33
4.	Res	ultados	s y Discusión	36
	4.1.	Large 1	Field Inflation con $p = 2/3$	36
		4.1.1.	Evolución del Fondo Cosmológico	37
		4.1.2.	Evolución de las Perturbaciones Durante Inflación	39
			4.1.2.1. Perturbaciones Escalares	39
			4.1.2.2. Perturbaciones Tensoriales	40
		4.1.3.	Espectro de Potencia Primordial Escalar	41
		4.1.4.	Espectro de Potencia Primordial Tensorial	42
		4.1.5.	Tensor-to-Scalar Ratio	43
	4.2.	Steplik	Pe Potential	44
		4.2.1.	Variación en ϕ_{step}	44
			4.2.1.1. Solución de las Ecuaciones del Fondo Cosmológico	45
			4.2.1.2. Espectros de Potencia Primordial Escalar y Tensorial	47
		4.2.2.	Variación en δ	50
			4.2.2.1. Solución de las Ecuaciones del Fondo Cosmológico	51
			4.2.2.2. Espectros de Potencia Primordial Escalar y Tensorial	53
		4.2.3.	Variación en β	56
			4.2.3.1. Solución de las Ecuaciones del Fondo Cosmológico	58
			4.2.3.2. Espectros de Potencia Primordial Escalar y Tensorial	59
	4.3.	α -attra	<i>ictor</i>	63
		4.3.1.	Solución de las Ecuaciones del Fondo Cosmológico	63
		4.3.2.	Espectro de Potencia Primordial Escalar y Tensorial	65
	4.4.	Radion	a Gauge Inflation	67
5.	Con	clusior	nes y Recomendaciones	71
	5.1.	Conclu	siones	71
	5.2.	Recom	endaciones	72
	5.3.	Trabaj	o a futuro	73
Bi	bliog	rafía		74

Índice de Tablas

4.1.	Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para	
	Large field inflation con $p = 2/3$.	37
4.2.	Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para	
	$\delta = 0.056 \text{ M}_{\text{pl}} \text{ y } \beta = 0.07$, mientras que ϕ_{step} se varía en los valores presentados.	45
4.3.	Condiciones iniciales para resolver las ecuaciones del fondo cosmológicos para	
	$\phi_{\text{step}} = 7.425 \text{ M}_{\text{pl}} \text{ y } \beta = 0.075$, mientras que δ se varía en los valores presentados.	52
4.4.	Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para	
	$\phi_{\text{step}} = 7.425 \text{ M}_{\text{pl}} \text{ y } \delta = 0.055 \text{ M}_{\text{pl}}$, mientras que β se varía en los valores pre-	
	sentados	58
4.5.	Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para los	
	dos escenarios del modelo α -attractor.	63
4.6.	Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para el	
	modelo <i>RGI</i>	67

Índice de Ilustraciones

2.1.	Diagrama de espacio-tiempo para los horizontes cosmológicos [7], donde <i>event</i> <i>horizon</i> corresponde al horizonte de eventos y <i>particle horizon</i> corresponde al horizonte de partículas	19
2.2.	Predicción de r y ns para ϕ^p en el rango de $50 \le N \le 60$ <i>e-fold</i> comparado con las constricciones observaciones dada por los datos de Planck en combinación con BAO, <i>CMB lensing data</i> y <i>BICEP/Keck (BK18) data</i> [21]	19
2.3.	n_s y r predichas por el modelo α -atractor en comparación con los datos de Planck + BK18 [27]	20
2.4.	n_s y r predichas por el modelo RGI en comparación con los datos de $Planck + BK18$ [27]	21
3.1.	Estructura del código empleado para resolver las ecuaciones del fondo cosmo- lógico. Los paralelogramos azules contienen variables de entrada o salida, los rombos verdes contienen condicionales y los rectángulos café claros denotan los	
3.2.	procesos	29
3.3.	los procesos	34 35
4.1.	Forma del potencial inflacionario para el modelo LFI con $p = 2/3$	37
4.2.	Evolución de los parámetros que describen el fondo cosmológico durante inflación para el modelo inflacionario LFI con $p = 2/3$.	38
4.3.	Solución de la ecuación de Mukhanov-Sasaki para las perturbaciones escalares, ambas u_{k_s} y $\delta \phi_{k_s}$ se calcularon para un $k = 4.85 \times 10^8 \text{ Mpc}^{-1}$, la línea vertical	40
4.4.	representa el horizonte cuando $k = aH$	ŧ0
4.5.	punteada representa el horizonte cuando $k = aH$	10
	la solución análitica en la aproximación de <i>slow-roll</i>	11

4.6.	Espectro de potencia primordial tensorial para el modelo LFI con $p = 2/3$, la curva sólida negra representa la solución numérica y la curva a trazos azul	
	representa la solución análitica en la aproximación de <i>slow-roll</i> .	42
4.7.	<i>Tensor-to-scalar ratio</i> para el modelo LFI con $p = 2/3$, la curva sólida negra	
	representa la solución numérica. la curva a trazos azul representa la solución ana-	
	lítica en la aproximación de <i>slow-roll</i> , la recta vertical punteada ilustra la escala	
	pivote y la recta horizontal punteada ilustra el límite superior de r restringido	
	por las observaciones [8]	43
4.8.	Forma del potencial inflacionario para el modelo steplike potential con ϕ_{step} va-	10
	riable en el rango de [7.3, 7.55], con $\beta = 0.07$ v $\delta = 0.056$ M _{pl} , las líneas verticales	
	delimitan la región donde se generan los pasos.	45
49	Solución numérica de las ecuaciones del fondo cosmológico para el modelo <i>stenli</i> -	10
1.0.	ke potential con ϕ_{ctor} variable v con β v δ filos, la región sombreada roja (entre	
	$N \approx 20.3$ v $N \approx 23.3$) delimita la región donde se generan los pasos para el	
	rango de ϕ_{step} empleado.	46
4.10.	Espectro de potencia primordial escalar para el modelo <i>steplike potential</i> con	
	ϕ_{step} variable en el rango de 7.30 M _{pl} a 7.55 M _{pl} , los parámetros δ v β se mantu-	
	vieron fijos en 0.056 M_{pl} y 0.07, respectivamente, las líneas verticales punteadas	
	dividen las tres regiones donde el comportamiento de P_R cambia	48
4.11.	Espectro de potencia primordial tensorial para el modelo <i>steplike potential</i> con	
	ϕ_{step} variable en el rango de 7.30 M _{pl} a 7.55 M _{pl} , los parámetros δ y β se mantu-	
	vieron fijos en 0.056 M_{pl} y 0.07, respectivamente, las líneas verticales punteadas	
	dividen las tres regiones donde el comportamiento de P_t cambia	49
4.12.	tensor-to-scalar ratio para el modelo steplike potential con ϕ_{step} variable en el	
	rango de 7.30 M_{pl} a 7.55 M_{pl} , los parámetros δ y β se mantuvieron fijos en	
	$0.056 \ M_{\rm pl}$ y 0.07, respectivamente, las líneas verticales punteadas dividen las	
	tres regiones donde el comportamiento de r cambia	50
4.13.	Forma del potencial inflacionario para el modelo steplike potential con δ variable	
	en el rango de 0.02 $\rm M_{pl}$ a 0.3 $\rm M_{pl},$ los valores de $\phi_{\rm step}$ y β se mantuvieron fijos	
	en 7.425 $\rm M_{pl}$ y en 0.075, respectivamente, la línea vertical punteada índica la	
	posición en ϕ donde se genera el paso	51
4.14.	Solución numérica de las ecuaciones del fondo cosmológico para el modelo ste-	
	plike potential con δ variable y con ϕ_{step} y β fijos en 7.425 M _{pl} y 0.075, respec-	
	tivamente.	52
4.15.	Espectro de potencia primordial escalar para el modelo steplike potential con δ	
	variable en el rango de 0.02 M_{pl} a 0.3 M_{pl} , los parámetros ϕ_{step} y β se mantuvie-	
	ron fijos en 7.425 M_{pl} y 0.075, respectivamente, las líneas verticales punteadas	
	dividen las tres regiones donde el comportamiento de P_R es diferente	54
4.16.	Espectro de potencia primordial tensorial para el modelo steplike potential con δ	
	variable en el rango de 0.02 M_{pl} a 0.3 M_{pl} , los parámetros ϕ_{step} y β se mantuvie-	
	ron fijos en 7.425 M_{pl} y 0.075, respectivamente, las líneas verticales punteadas	
	dividen las tres regiones donde el comportamiento de P_t es diferente	55
4.17.	<i>Tensor-to-scalar ratio</i> para el modelo <i>steplike potential</i> con δ variable en el rango	
	de $0.02 \text{ M}_{\text{pl}}$ a $0.3 \text{ M}_{\text{pl}}$, los parametros ϕ_{step} y β se mantuvieron fijos en 7.425 M _{pl}	
	y 0.075, respectivamente, las lineas verticales punteadas dividen las tres regiones	-
	donde el comportamiento de r es diferente	56

4.18.	Forma del potencial inflacionario para el modelo steplike potential con β variable	
	en el rango de 0.01 a 0.23, los valores de ϕ_{step} y β se mantuvieron fijos en	
	7.425 M_{pl} y en 0.055 M_{pl} , respectivamente, la línea vertical punteada índica la	
	posición en ϕ donde se genera el paso	57
4.19.	Solución numérica de las ecuaciones del fondo cosmológico para el modelo ste-	
	plike potential con β variable en el rango de 0.01 a 0.3, los parámetros $\phi_{\text{step}} \neq \delta$	
	se mantuvieron fijos en 7.425 M_{pl} y 0.055 M_{pl} , respectivamente.	59
4.20.	Espectro de potencia primordial escalar para el modelo <i>steplike potential</i> con	
	β variable en el rango de 0.02 M _{pl} a 0.3 M _{pl} , los parámetros ϕ_{step} v δ se man-	
	tuvieron fijos en 7.425 M_{pl} y 0.055 M_{pl} , respectivamente, las líneas verticales	
	punteadas dividen las tres regiones donde el comportamiento de P_B es diferente.	60
4.21.	Espectro de potencia primordial tensorial para el modelo <i>steplike potential</i> con	
	β variable en el rango de 0.02 M _{pl} a 0.3 M _{pl} , los parámetros ϕ_{step} v δ se man-	
	tuvieron fijos en 7.425 M_{pl} v 0.055 M_{pl} , respectivamente, las líneas verticales	
	punteadas dividen las tres regiones donde el comportamiento de P_t es diferente.	61
4.22.	tensor-to-scalar ratio para el modelo steplike potential con β variable en el rango	
	de 0.02 M _{pl} a 0.3 M _{pl} , los parámetros ϕ_{step} v δ se mantuvieron fijos en 7.425 M _{pl}	
	v $0.055 M_{\rm pl}$, respectivamente, las líneas verticales punteadas dividen las tres	
	regiones donde el comportamiento de P_t es diferente	62
4.23.	Forma del potencial en el modelo α -attractor.	63
4.24.	Solución a las ecuaciones de fondo para ambos escenarios del modelo α -attractor.	
	La curva celeste corresponde a $\alpha = 3$ y la curva naranja corresponde a $\alpha = 6$.	64
4.25.	Espectro de potencia primordial escalar para dos escenarios del modelo α -attractor,	
	el primer escenario con $\alpha = 3$ y el segundo con $\alpha = 6$.	65
4.26.	Espectro de potencia primordial tensorial para dos escenarios del modelo α -	
	<i>attractor</i> , el primer escenario con $\alpha = 3$ y el segundo con $\alpha = 6$	66
4.27.	Tensor-to-scalar ratio para dos escenarios del modelo α -attractor, el primer es-	
	cenario con $\alpha = 3$ y el segundo con $\alpha = 6$.	66
4.28.	Forma del potencial inflacionario para el modelo <i>RGI</i>	67
4.29.	Solución a las ecuaciones del fondo cosmológico para ambos escenarios del mo-	
	delo RGI, la curva celeste corresponde a $\alpha = 5$ y la curva naranja corresponde	
	a $\alpha = 10$.	68
4.30.	Espectro de potencia primordial escalar para ambos escenarios del modelo RGI,	
	el primer escenario corresponde a $\alpha = 5$ y el segundo a $\alpha = 10. \ldots \ldots$	69
4.31.	Espectro de potencia primordial tensorial para ambos escenarios del modelo	
	<i>RGI</i> , el primer escenario corresponde a $\alpha = 5$ y el segundo a $\alpha = 10$	69
4.32.	Tensor-to-scalar ratio para ambos escenarios del modelo RGI, el primer escenario	
	corresponde a $\alpha = 5$ y el segundo a $\alpha = 10$	70

Resumen

En esta tesis se presentan los resultados del cálculo numérico del espectro de potencia primordial escalar, el espectro de potencia primordial tensorial y el tensor-to-escalar ratio para diferentes escenarios de cuatro modelos inflacionarios que son: Large Field Inflation (LFI), Steplike potential, α -attractor Inflation y Radion Gaunge Inflation (RGI) (haciendo mayor énfasis en el modelo *steplike potential*, para el cual se analizó los efectos que surgen en ambos espectros de potencia primordial al variar sus parámetros libres); el cálculo se hizo en el rango de números de onda que va desde $k \approx 10^{-3} \text{ Mpc}^{-1}$ a $k \approx 10^9 \text{ Mpc}^{-1}$ (en unidades naturales), a través de códigos creados en el lenguaje de programación *python*. Para lograrlo, primero, se hizo una revisión teórica de la teoría de la Relatividad General, el modelo del Big Bang Caliente, el modelo de inflación cosmológica, la teoría de Perturbaciones Cosmológicas y de las herramientas matemáticas y computacionales necesarias para el desarrollo del provecto; luego, para cada escenario de cada modelo se resolvieron numéricamente las ecuaciones del fondo cosmológico, con el propósito de conocer la evolución de parámetros como el parámetro de Hubble, el radio comóvil de Hubble, el campo del inflatón, los parámetros de *slow-roll*, entre otros; los cuales sirven para conocer como evoluciona el Universo en la época inflacionaria para el modelo específico analizado. Además, estos parámetros, junto a la ecuación de Mukhanov-Sasaki, son necesarios para estudiar las perturbaciones escalares (perturbaciones en la densidad de energía) y las perturbaciones tensoriales (ondas gravitacionales primordiales) que surgen durante inflación, ambas perturbaciones evolucionan para ser la semilla de la estructura a gran escala del Universo. A partir de la amplitud que tienen estas perturbaciones al cruzar el horizonte, se calculan los espectros de potencia primordial escalar y tensorial (estos contienen información estadística de la amplitud de las perturbaciones (escalares o tensoriales) en función del número de onda de la perturbación). Una de las principales conclusiones de esta tesis es que en los modelos LFI, α -attractor Inflation y RGI tanto el espectro de potencia primordial escalar como el espectro de potencia primordial tensorial siguen una lev de potencias, mientras que en el modelo steplike potential ambos espectro de potencia primordial presentan tres regiones donde el comportamiento es diferente, dichas regiones se etiquetan como: primera región, segunda región y tercera región, en la primera y tercera región el espectro de potencia primordial escalar sigue una ley de potencias, pero con una potencia distinta en cada región, mientras que en la segunda región presenta oscilaciones que se amortiguan a medida crece el número de onda en esa región. De igual forma, el espectro de potencia primordial tensorial en la primera y tercera región sigue una ley de potencias, con potencia distinta en cada región, mientras que en la segunda región presenta un paso (escalón decreciente), seguido de pequeñas oscilaciones que se amortiguan rápidamente a medida el número de onda crece.

Palabras claves: Inflación cosmológica, *steplike potential*, espectro de potencia primordial, inflatón, slow-roll, perturbaciones escalares, perturbaciones tensoriales.

Capítulo 1 Introducción

El modelo del Big Bang Caliente describe un Universo dominado por radiación y materia que se expande adiabáticamente [1], este modelo es descrito por medio de la teoría de la Relatividad General, a través de la métrica de Friedmann-Lemaître-Robertson-Walker [2], el cuál, se basa en el supuesto de que a grandes escalas el Universo es homogéneo e isotrópico [3], pero este modelo está incompleto ya que presenta un serie de problemas, dos de los cuales son: el problema de planitud (que cuestiona el porqué el Universo es extremadamente plano) y el problema de horizonte (que cuestiona el porqué el Universo presenta un alto grado de homogeneidad entre regiones causalmente desconectadas aparentemente) [4], como solución a estos problemas se propone el modelo de la inflación cosmológica, el cual consiste en que el Universo en una época muy temprana sufrió una expansión exponencial y por ende acelerada [5], aparte de que inflación resuelve estos problemas, también provee un mecanismo para la generación de perturbaciones en la densidad de energía (perturbaciones escalares) y ondas gravitacionales primordiales (perturbaciones tensoriales) [6]. Estas últimas establecen la semilla para la formación de estructura a gran escala en nuestro Universo por medio de la inestabilidad gravitacional, una importante herramienta para el análisis de estas perturbaciones son los espectros de potencia primordial escalar y tensorial, ya que contienen información estadística de la amplitud de ambas perturbaciones. Las observaciones sugieren un espectro de potencia primordial escalar descrito por una ley de potencias de la forma $P_R \propto k^{n_s-1}$ [7], con $n_s = 0.965 \pm 0.004$ [8].

En la literatura existe una amplia gamma de modelos inflacionario [9, 10], muchos de los cuales ya han sido descartados por las observaciones. En este trabajo solo se estudia modelos basados en un campo escalar homogéneo mínimamente acoplado a la gravedad, denominado inflatón. Además, se considera la siguiente ecuación de estado $\rho = -P$, similar a la ecuación de estado de la energía oscura, la cual describe la expansión acelerada del Universo.

La presente tesis se divide en 4 capítulos principales que son los capítulos 2, 3, 4 y 5. En el capítulo 2 se describe la teoría necesaria para el desarrollo de la investigación. En el capítulo 3 se describe la metodología utilizada para el cálculo de los espectros de potencia primordial. En el capítulo 4 se presentan y se analizan los resultados obtenidos y finalmente, en el capítulo 5 se presentan las conclusiones del trabajo y algunas recomendaciones para trabajos futuros.

Capítulo 2

Marco teórico

2.1. Modelo del Big Bang Caliente.

El modelo del big bang caliente describe un Universo que obedece el principio cosmológico y su evolución está determinada por las ecuaciones de Friedmann obtenidas a partir de las ecuaciones de campo de Einstein [11], los constituyentes del Universo pueden modelarse a partir de un fluido perfecto con ecuación de estado politrópica.

2.1.1. Principio Cosmológico

El principio cosmológico establece que el Universo a escalas cosmológicas es homogéneo e isotrópico [11, 12], es decir, que bajo transformaciones de traslación y rotación un observador miraría la misma estructura en el Universo. Una evidencia observacional de este principio se puede ver en el alto grado de isotropía presente en las observaciones del espectro de temperaturas del Fondo Cósmico de Microondas (CMB por sus siglas en inglés).

2.1.2. Relatividad General

A escalas cosmológicas la fuerza predominante en el Universo es la fuerza gravitacional [11], por lo que para hacer una adecuada descripción del Universo se necesita una teoría de la gravedad, actualmente la mejor candidata es la teoría de la relatividad general de Einstein.

En relatividad especial (RS), al igual que el espacio, el tiempo no es absoluto, este depende del marco de referencias del observador, esto permite ver desde el pundo de vista físico que un evento ocurre en un espacio-tiempo cuadridimensional [13]. Einstein en su teoría de la relatividad general (RG) muestra que la geometría que presenta el espacio-tiempo es equivalente a la gravedad y por ende dicha geometría está determinada por la distribución de materia y energía en el espacio, esto reafirma la idea de que el espacio y el tiempo no pueden existir de manera independiente, además, el espacio y el tiempo tienen la misma importancia como coordenadas en un sistema de referencias. Matemáticamente las coordenadas del espacio-tiempo se representan como las cuatro componentes de un cuadrivector de posición x^{μ} ($\mu = 0, 1, 2, 3$), donde x^{0} representa la componente temporal y los índices 1, 2 y 3 representan las coordenadas espaciales (en este trabajo los índices latinos representan coordenadas espaciales y los índices griegos denotarán el conjunto de coordenadas en general). En RG el intervalo entre dos eventos es escrito como

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}, \qquad (2.1)$$

donde $g_{\mu\nu}$ es el tensor métrico el cual describe la geometría del espacio-tiempo, además, se ha empleado la convención de Einstein para la sumatoria (índices repetidos indican sumatorio) y para la métrica se ha usado la siguiente convención de signos (+ - - -), el tensor métrico cumple la siguiente propiedad: $g_{\mu\nu}g^{\nu\beta} = \delta^{\beta}_{\mu}$. En un espacio curvo descrito por la métrica, las trayectorias que toman las partículas se concen como geodésicas y vienen descritas por la siguiente ecuación

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = 0, \qquad (2.2)$$

donde $\Gamma^{\mu}_{\alpha\beta}$ son los símbolos de Christoffel y se definen en términos del tensor métrico como sigue [11]

$$\Gamma^{\alpha}_{\mu\nu} = \frac{1}{2}g^{\alpha\beta} \left[\frac{\partial g_{\nu\beta}}{\partial x^{\mu}} + \frac{\partial g_{\beta\mu}}{\partial x^{\nu}} - \frac{\partial g_{\mu\nu}}{\partial x^{\beta}} \right].$$
(2.3)

Las ecuaciones en RG son ecuaciones tensoriales; un tensor es un objeto matemático en el que sus componentes, bajo transformaciones de coordenadas, transforman de la siguiente manera [11]

$$A_{pq\cdots}^{\prime kl\cdots} = \frac{\partial x^{\prime k}}{\partial x^m} \frac{\partial x^{\prime l}}{\partial x^n} \cdots \frac{\partial x^r}{\partial x^{\prime p}} \frac{\partial x^s}{\partial x^{\prime q}} \cdots A_{rs\cdots}^{mn\cdots}$$

donde los índices superiores se conocen como índices contravariantes y los índices inferiores como índices covariantes. A partir de aquí se introducen algunos tensores que son importantes para obtener las ecuaciones de campo de Einstein, el primero que se define es el tensor de energía-momento $(T_{\mu\nu})$, el cual describe como se distribuye la materia y la energía en el espacio-tiempo. Para un fluido perfecto con presión P y densidad de energía ρ , el tensor de energía-momento es el siguiente (en unidades naturales, donde c=1)

$$T_{\mu\nu} = (P + \rho)U_{\mu}U_{\nu} - Pg_{\mu\nu}, \qquad (2.4)$$

donde U_{μ} es la cuadrivelocidad. Se puede mostrar que la derivada ordinaria de un tensor no es invariante bajo transformaciones de coordenadas, por lo que se introduce la derivada covariante, el cual si es un tensor. La derivada covariante de un tensor A^{μ}_{α} se define como sigue

$$A^{\mu}_{\nu;\alpha} = \frac{\partial A^{\mu}_{\nu}}{dx^{\alpha}} + \Gamma^{\mu}_{\gamma\alpha}A^{\gamma}_{\nu} - \Gamma^{\beta}_{\nu\alpha}A^{\mu}_{\beta}.$$
 (2.5)

En la mecánica Newtoniana y en RS las leyes de conservación son importantes y RG no es la excepción, en RG una ley de conservación está dada a partir de la derivada covariante del tensor de energía-momento [11],

$$T_{\mu\nu;\alpha} = 0. \tag{2.6}$$

Otro tensor importante es el tensor de Riemann, este tensor contiene información de la curvatura del espacio-tiempo. El tensor de Riemann se define como

$$R^{\beta}_{\mu\alpha\nu} = \frac{\partial\Gamma^{\beta}_{\mu\nu}}{\partial x^{\alpha}} - \frac{\partial\Gamma^{\beta}_{\mu\alpha}}{\partial x^{\nu}} + \Gamma^{\beta}_{\gamma\alpha}\Gamma^{\gamma}_{\mu\nu} - \Gamma^{\beta}_{\gamma\nu}\Gamma^{\gamma}_{\mu\alpha}.$$
 (2.7)

A partir del tensor de Riemann se obtiene el tensor de Ricci, el cual es la contracción del primer y tercer índice del tensor de Riemann, es decir,

$$R_{\mu\nu} = R^{\beta}_{\mu\beta\nu} = \frac{\partial\Gamma^{\beta}_{\mu\nu}}{\partial x^{\beta}} - \frac{\partial\Gamma^{\beta}_{\mu\beta}}{\partial x^{\nu}} + \Gamma^{\beta}_{\gamma\beta}\Gamma^{\gamma}_{\mu\nu} - \Gamma^{\beta}_{\gamma\nu}\Gamma^{\gamma}_{\mu\beta}.$$
 (2.8)

Además, a partir del tensor de Ricci se obtine el escalar de Ricci el cual

$$R = g^{\mu\nu} R_{\mu\nu}.$$
 (2.9)

Finalmente, a partir del tensor de Ricci, el escalar de Ricci y el tensor métrico se construye el tensor de Einstein, el cual se define como

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R,$$
 (2.10)

y por la propiedad de Bianchi se puede mostrar que la derivada covariante del tensor de Einstein es nula

$$G_{\mu\nu;\alpha} = 0. \tag{2.11}$$

Einstein aprovechó este resultado, ya que ambos, la derivada covariante de $G_{\mu\nu}$ y la derivada covariante de $T_{\mu\nu}$ son cero, para conectar la geometría del espacio-tiempo con la materia que curva dicho espacio-tiempo. Así Einstein propone sus ecuaciones de campo como sigue

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}.$$
 (2.12)

En unidades naturales c = 1, por lo que las ecuaciones de campo se reducen a

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}.\tag{2.13}$$

2.1.3. Historia Térmica del Universo

El modelo del Big Bang Caliente nos dice que el Universo parte (en t=0) de un estado muy denso y muy energético, pero a medida que el Universo evolucionó este se fue expandiendo adiabáticamente y por ende se fue enfriando, durante toda su evolución el universo a sufrido distintas etapas que pueden ser analizadas a partir de la comparación entre la tasa de interacción Γ y la tasa expansión H [7]. Cuando $\Gamma \gg H$, las partículas están acopladas y por ende existe un equilibrio térmico local, pero a medida el Universo se va enfriando la tasa de interacción disminuye y la tasa de expansión aumenta, llegando un momento en que $\Gamma \approx H$, en este momento las partículas se desacoplan del baño térmico. Además, dado que diferentes partículas tienen diferentes tasas de interacción, el momento en que se desacoplan también es diferente. A continuación se detallan algunos eventos claves en la historia térmica del Universo.

En los primeros instantes del Universo $(t = 0 \text{ a } t \approx 10^{-10})$, cuando la densidad de energías es del orden de los TeV o superior, la descripción física del Universo es especulativa dado que necesitamos una probada teoría cuántica de la gravedad. Cuando la energía es 100 GeV las partículas adquieren masa a través del mecanismo de Higgs. A energías por debajo de los 150 MeV, la interacción fuerte entre quarks cobra importancia y se empiezan a formar los bariones y los mesones.

Se sabe que la materia oscura interactúa muy poco con la materia bariónica, por lo que se espera que se haya desacoplado en una época muy temprana, por ejemplo para los WIMPs (*weakly interacting massive particles*) se calcula que sufren el *freeze-out* (momento en que la tasa de interacción es menor a la tasa de expansión del Universo y por ende las interacciones se "congelan") al rededor de 1 MeV.

Los neutrinos solo interactúan a través de la interacción débil, por lo que se estima que los neutrinos se desacoplan a los 0.8 MeV.

Después de unos tres minutos desde Big Bang se empezaron a formar los elementos ligeros. Un evento importante es la recombinación, la recombinación se da cuando la temperatura fue lo suficientemente baja para que la reacción inversa con la que se formaron los primeros átomos de hidrógeno ($P^+ + e^- \rightarrow H + \gamma$) sea enérgicamente desfavorable, después de la recombinación se da el desacople de los fotones formándose el CMB. Durante la evolución el Universo ha sido dominado por distintas componentes, primero, fue dominado por radiación, ya que la densidad de energía de la radiación era la que más aportaba a la densidad de energía total, pero a medida el Universo se fue expandiendo la densidad de energía de la materia fue ocupando su lugar y hoy en día la componente que predomina en el Universo es la de la energía oscura.

2.1.4. Métrica de Friedmann-Lemaître-Robertson-Walker

Para describir el Universo a escalas cosmológicas hay que considerar el principio cosmológico y la expansión del Universo (esta expansión es descrita por la ley de Hubble). La métrica que mejor cumple las característica de homogeneidad e isotropía es la conocida métrica Friedmann-Lemaître-Robertson-Walker (FLRW), que matemáticamente se expresa como

$$ds^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right], \qquad (2.14)$$

donde a(t) se conoce como factor de escala y es función del tiempo propio. Además, a(t) describe la expansión del Universo y su valor evaluado hoy en día es por convención 1, es decir, $a(t_0) = a_0 = 1$ (donde el subíndice 0 en las variables índica que son evaluadas hoy en día). Las coordenadas (r, θ, ϕ) son coordenadas comoviles el cual no dependen del tiempo propio, la dependencia temporal es agregada por medio del factor de escala. k es el parámetro de curvatura y puede tomar los siguentes valores: k = 1 para un espacio cerrado, k = 0 para un espacio plano y k = -1 para un espacio abierto. Podemos obtener una relación entre las distancias físicas (d_f) y las distancias comóviles (d_c) , a partir del factor de escala, como sigue

$$d_f = a(t)d_c. (2.15)$$

También, se define el tiempo conforme como

$$\tau = \int \frac{dt}{a(t)},\tag{2.16}$$

entonces, la métrica FLRW en términos del tiempo conforme es

$$ds^{2} = a^{2}(t) \left[d\tau^{2} - \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right) \right].$$
 (2.17)

Los tensores métricos para le métrica FLRW son:

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -\frac{a^2}{1-kr^2} & 0 & 0 \\ 0 & 0 & -a^2r^2 & 0 \\ 0 & 0 & 0 & -a^2r^2\sin^2\theta \end{pmatrix},$$
$$g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -\frac{1-kr^2}{a^2} & 0 & 0 \\ 0 & 0 & -\frac{1}{a^2r^2} & 0 \\ 0 & 0 & 0 & -\frac{1}{a^2r^2\sin^2\theta} \end{pmatrix}.$$

2.1.4.1. Ecuaciones de Friedmann

Una vez establecida la métrica FLRW se deducen la ecuaciones de Friedmann. Primero se calculan los símbolos de Christoffel distintos de cero a partir de la Ec.(2.3), obteniendo así

$$\Gamma_{ij}^{0} = \frac{\dot{a}}{a}g_{ij} = \dot{a}a\bar{g}_{ij}, \qquad \Gamma_{i0}^{j} = \frac{\dot{a}}{a}\delta_{i}^{j}, \qquad \Gamma_{11}^{1} = \frac{kr}{1-kr^{2}}, \qquad \Gamma_{22}^{1} = -(1-kr^{2})r,$$

$$\begin{split} \Gamma_{33}^1 &= -(1-kr^2)r\sin^2\theta, \qquad \Gamma_{33}^2 = -\sin\theta\cos\theta, \qquad \Gamma_{12}^2 = \Gamma_{21}^2 = \Gamma_{13}^3 = \Gamma_{31}^3 = \frac{1}{r}, \\ & \text{y} \qquad \Gamma_{32}^3 = \Gamma_{23}^3 = \cot\theta, \end{split}$$

donde $\dot{a} = \frac{da}{dt}$ y $g_{ij} = a^2 \bar{g}_{ij}$. El tensor de energía-momento para un fluido perfecto en un espacio descrito por la métrica FLRW donde el marco de referencia es comóvil, el cuadrivector de velocidad es $U^{\mu} = (1, 0, 0, 0)$, así:

$$T^{\nu}_{\mu} = \begin{pmatrix} \rho & 0 & 0 & 0 \\ 0 & -P & 0 & 0 \\ 0 & 0 & -P & 0 \\ 0 & 0 & 0 & -P \end{pmatrix}.$$

Utilizando la Ec.(2.8), se calculan las componentes del tensor de Ricci

$$R_{00} = -3\frac{\ddot{a}}{a}, \qquad R_{ij} = -\left[\frac{\ddot{a}}{a} + 2\frac{\dot{a}^2}{a^2} + 2\frac{k}{a^2}\right]g_{ij}.$$

Una vez obtenido el tensor de Ricci, se calcula el escalar de Ricci a partir de la Ec.(2.9), el cual

$$R = -\frac{6}{a^2} \left[\ddot{a}a + \dot{a}^2 + k \right].$$

A partir del tensor métrico, el tensor de Ricci y el escalar de Ricci se construye el tensor de Einstein, el cual para la métrica FLRW es

$$G_{00} = \frac{3}{a^2}(\dot{a}^2 + k), \qquad G_{ij} = -\left[\frac{2\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2}\right]g_{ij}, \qquad G_{0i} = G_{i0} = 0,$$

por lo que las ecuaciones de campo de Einstein (en unidades naturales) son:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2},\tag{2.18}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3P\right),$$
 (2.19)

En unidades de la masa de planck, donde $8\pi G=M_{pl}^2,$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{M_{pl}^2}{3}\rho - \frac{k}{a^2},$$
(2.20)

$$\frac{\ddot{a}}{a} = -\frac{M_{pl}^2}{6} \left(\rho + 3P\right), \qquad (2.21)$$

y en unidades del sistema internacional

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{c^2 k}{a^2},$$
(2.22)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3\frac{P}{c^2}\right), \qquad (2.23)$$

la Ec.(2.22) y la Ec.(2.23) se conocen como ecuaciones de Friedmann y describen la dinámica del Universo en función de la presión y densidad total del Universo. A partir de la Ec.(2.6)se obtiene la ecuación de continuidad,

$$\dot{\rho} + 3\frac{\dot{a}}{a}(\rho + P) = 0, \qquad (2.24)$$

además, se define el parámetro de Hubble como sigue

$$H \equiv \frac{\dot{a}}{a},\tag{2.25}$$

entonces la Ec.(2.24) se puede escribir como

$$\dot{\rho} + 3H(\rho + P) = 0. \tag{2.26}$$

Para observar como evoluciona la densidad de energía en el tiempo tenemos que encontrar una relación entre ρ y P, para ello se introduce la siguiente ecuación de estado

$$P = \omega \rho, \tag{2.27}$$

donde ω es un parámetro que depende del tipo de fluido que se esté analizando. La densidad total del Universo se compone de tres constituyentes que son: (1) materia ($\omega = 0$), con materia se refiere a partículas no relativistas (como la materia bariónica y la materia oscura) el cual su presión es muy pequeña, $p_m \ll \rho_m$; (2) radiación ($\omega = 1/3$), el cual se refiere a partículas relativistas como los fotones y neutrinos. Finalmente, (3) energía oscura ($\omega = -1$), el cual es la responsable de la expansión acelerada del Universo [11, 14]. Introduciendo Ec.(2.27) en Ec.(2.26) se obtiene

$$\frac{d\rho}{\rho} + 3\frac{da}{a}(1+w) = 0,$$

resolviendo la ecuación diferencial obtenida, por integración directa se obtiene la evolución de la densidad de energía en función del factor de escala como sigue

$$\rho = \rho_0 \left(\frac{a}{a_0}\right)^{-3(w+1)}.$$
(2.28)

Sustituyendo la Ec.(2.28), en la primera ecuación de Friedmann (Ec.(2.20) pero considerando un Universo plano y dominado o constituido por un solo fluido) se obtiene la evolución del factor de escala en función del tiempo

$$a(t) = \begin{cases} a_0 \left(\frac{t}{t_0}\right)^{\frac{2}{3(\omega+1)}} & \text{si } \omega \neq -1\\ e^{Ht} & \text{si } \omega = -1. \end{cases}$$

Para un Universo plano constituido solo por materia, el factor de escala, el parámetro de Hubble y la densidad de energía evolucionan con el tiempo de la siguente manera (el subíndice m denota materia)

$$a(t) = a_0 \left(\frac{t}{t_0}\right)^{\frac{2}{3}}, \qquad H = \frac{2}{3t} \qquad y \qquad \rho_m = \frac{1}{6\pi G t^2}.$$

Para este modelo la edad del Universo es determinada por

$$t_{0m} = \frac{2}{3H_0}.$$

Luego, para un Universo plano constituido solo por radiación, el factor de escala, el parámetro de Hubble y la densidad de energía evolucionan con el tiempo de la siguente manera (el subíndice r denota radiación)

$$a(t) = a_0 \left(\frac{t}{t_0}\right)^{\frac{1}{2}}, \qquad H = \frac{1}{2t} \qquad y \qquad \rho_r = \frac{3}{32\pi G t^2}.$$

Para este modelo la edad del Universo es determinada por

$$t_{0r} = \frac{1}{2H_0}.$$

Finalmente, para un universo constituido solo por energía oscura ($\omega = -1$), el factor de escala, el parámetro de Hubble y la densidad de energía evolucionan con el tiempo de la

siguente manera (el subíndice Λ denota constante cosmológica)

$$a(t) = e^{Ht}, \qquad H = \sqrt{\frac{\Lambda}{3}} = \text{constante} \qquad \text{y} \qquad \rho_{\Lambda} = \frac{\Lambda}{8\pi G} = \text{constante.}$$
(2.29)

2.1.5. Problemas del Modelo del Big Bang Caliente.

La teoría de la inflación cosmológica fue introducida para resolver una serie de problemas que presenta el modelo del Big Bang Caliente [4]. En este trabajo se discuten dos de estos problemas los cuales son

- El problema de horizonte
- El problema de planitud.

Antes de entrar a los problemas del modelo del Big Bang Caliente es importante definir algunos conceptos.

2.1.5.1. Radio de Hubble

Como se mencionó anteriormente nuestro Universo se expande y la velocidad a la cual las galaxias se alejan entre si viene determinada por la ley de Hubble, el cual establece que la velocidad de separación entre dos puntos en el espacio es proporcional a la distancia de separación

$$v = Hr. (2.30)$$

Si la velocidad de separación es la velocidad de la luz (v = c), la distancia de separación es [15]:

$$r_H = H^{-1}, (2.31)$$

donde r_H se conoce como el radio de Hubble. Hoy en día el radio de Hubble es $r_H \approx 13,800$ millones de años luz. Además, al estudiar la cinemática del Universo es muy útil determinar un radio comovil de Hubble, el cual por medio de la Ec.(2.15), el radio comovil de Hubble se define como

$$R_H = (aH)^{-1}. (2.32)$$

Utilizando la ecuación de evolución de la densidad de energía (Ec.(2.28)) y la primera ecuación de Friedmann con k = 0 (Ec.(2.22)), se obtiene para R_H , lo siguiente

$$R_H = (aH)^{-1} = H_0^{-1} a^{\frac{1}{2}(1+3\omega)}, \qquad (2.33)$$

donde se puede observar que sí $1+3\omega > 0$ entonces R_H crecerá con *a* y con el tiempo, pero sí $1+3\omega < 0$, entonces R_H disminuirá con *a* y con el tiempo. Además, es importante analizar la aceleración del Universo, si se toma la derivada temporal de R_H se tiene

$$\frac{dR_H}{dt} = \frac{d}{dt}(aH)^{-1} = -\frac{\ddot{a}}{\dot{a}^2},$$
$$\ddot{a} = -\dot{a}^2 \frac{d}{dt}(aH)^{-1},$$
(2.34)

por lo que

además, combinando la Ec.(2.34) con la Ec.(2.33), se tiene

$$\ddot{a} = -\dot{a}^2 H_0^{-1} \left[\frac{1}{2} (1+3\omega) a^{\frac{1}{2}(3\omega-1)} \right].$$
(2.35)

En la Ec.(2.35), se observa que si $\omega > -1/3$ se tiene un Universo desacelerado, pero si $\omega < -1/3$ se tiene un Universo acelerado y en el caso en que $\omega = -1/3$ se tiene un Universo estático.

2.1.5.2. Horizontes Cosmológicos

El tamaño de una región del espacio causalmente conectada está determinado por la distancia que viaja la luz en un intervalo de tiempo [7], esta luz sufre los efectos de la expansión del Universo y viaja en geodésicas nulas, por lo que, para un rayo de luz radial en un espacio plano descrito por la métrica de FLRW se tiene que

$$dt^2 - a^2 dr^2 = 0, (2.36)$$

por lo que, la distancia que viaja la luz en un intervalo $\delta t = t_f - t_i$ es

$$r = \int_{t_i}^{t_f} \frac{dt}{a},\tag{2.37}$$

el cual podemos escribir en términos del radio de Hubble como sigue

$$r = \int_{a_i}^{a_f} \frac{1}{aH} d(\ln a).$$
 (2.38)

A partir de este resultado se puede definir dos eventos cosmológicos, el primero, denominado horizonte de partículas que limita la distancia para el cual un evento en el pasado puede ser observado. El segundo, se denomina horizonte de eventos que limita la distancia de un evento que puede ser observado en el futuro. Para definir el problema de horizonte es útil el horizonte de partículas.

Horizonte de Partículas.

Este horizonte se define como la distancia que tiene que recorrer la luz desde el origen del Universo $(t_i = 0, a_i = 0)$ hasta un tiempo t y factor de escala $a(t) = a_t$. De la Ec.(2.38) el horizonte comóvil de partículas es

$$r_{hp} = \int_0^{a_t} \frac{1}{aH} d(\ln a).$$
 (2.39)

Combinado la Ec.(2.39) con la Ec.(2.33) se tiene para el horizonte comóvil de partículas lo siguiente

$$r_{hp} = \frac{2}{1+3w} (aH)^{-1}.$$
 (2.40)

El horizonte de partículas y el horizonte de eventos se ilustran en la Fig.2.1.

2.1.5.3. Problema del Horizonte

Como se observó anteriormente $r_{hp} \propto R_H$ y de la Ec.(2.33) se tiene

$$r_{hp} = \frac{2}{1+3w} H_0^{-1} a^{\frac{1}{2}(1+3\omega)}.$$
(2.41)

Figura 2.1: Diagrama de espacio-tiempo para los horizontes cosmológicos [7], donde *event horizon* corresponde al horizonte de eventos y *particle horizon* corresponde al horizonte de partículas.

Por lo que, si el Universo es dominado por materia ($\omega = 0$) o radiación ($\omega = 1/3$) significa que el horizonte de partículas crece con el tiempo y el factor de escala, por lo que, cualquier instante en el pasado el horizonte de partículas era más pequeño que hoy en día y las regiones que entran hoy en día al horizonte de partículas estaban mucho mas alejadas en el pasado [16].

Para ilustrar el problema del horizonte, comparemos el tamaño del Universo visible hoy en día pero evaluado en la época de CMB (cuando los fotones se desacoplan de la materia) con el tamaño del universo visible en la época de CMB, en base a la Ec.(2.15), el tamaño del universo visible hoy en día evaluado en la época de CMB es

$$\lambda(T_{\rm cmb}) = \left(\frac{a_{\rm cmb}}{a_0}\right) r_h(T_0), \qquad (2.42)$$

se puede demostrar que para un fluido relativista, $a \propto T^{-1}$. Sustituyendo este resultado en la Ec.(2.42),

$$\frac{\lambda(T_{\rm cmb})}{r_h(T_0)} = \left(\frac{T_{\rm cmb}}{T_0}\right)^{-1}$$

El radio del Universo visible es aproximadamente el radio de Hubble $(r_H = H^{-1})$, por le que para la época del CMB se tiene que (considerar un universo dominado por radiación)

$$\frac{H(t_{\rm cmb})}{H_0} = \left(\frac{a(t_{\rm cmb})}{a_0}\right)^{-3/2},$$

Equivalentemente,

$$\frac{r_h(t_{\rm cmb})}{r_h(t_0)} = \left(\frac{a(t_{\rm cmb})}{a_0}\right)^{3/2} = \left(\frac{T_{\rm cmb}}{T_0}\right)^{-3/2},\tag{2.43}$$

donde se estima que los fotones se desacoplan de la materia a una temperatura de $T_{\rm cmb} \approx 0.3 \text{ eV}$ y T_0 es la temperatura del Universo hoy en día ($T_0 \approx 23 \times 10^{-5} \text{ eV}$), si se calcula la relación entre los volúmenes (λ_h^3/r_h^3)

$$\frac{\lambda_h(T_{\rm cmb})}{r_h(t_{\rm cmb})} = \left(\frac{T_{\rm cmb}}{T_0}\right)^{3/2} \sim \mathcal{O}(10^6).$$
(2.44)

Lo que significa que nuestro Universo visible tiene 10^6 regiones causalmente desconectadas aparentemente. Sin embargo, el fondo cósmico de microondas presenta una gran isotropía respecto a la temperatura de fondo T = 2.725 K, por lo que en algún momento en el pasado estas regiones debieron estar causalmente conectadas, es decir, en algún punto en el pasado el Universo causalmente conectado fue al menos más grande que hoy en día y por algún mecanismo este se comprimió.

2.1.5.4. Problema de Planitud

La primera ecuación de Friedmann (Ec.(2.20)) se puede escribir como sigue

$$1 = \frac{\rho}{\rho_c} - \frac{k^2}{H^2 a^2},\tag{2.45}$$

donde $\rho_c = 3H^2/8\pi G$ y se conoce como densidad crítica, el cual representa el valor de densidad que debe tener el Universo para que sea plano, si se define $\Omega = \frac{\rho}{\rho_c}$, entonces se obtiene

$$1 - \Omega = -k^2 R_H^2, \tag{2.46}$$

por lo que para un Universo plano, $|1 - \Omega| = 0$. Nuestro Universo hoy en día tiene una planitud de $\Omega_K = 0.001 \pm 0.002$ [17], es decir, es muy plano; en la Ec.(2.46), al aumentar R_H (que es el caso para un Universo dominado por materia o radiación) con el tiempo y con el factor de escala, el Universo se tendría que alejar de la planitud y dado que nuestro Universo hoy en día es aproximadamente plano ($|1 - \Omega_0| \approx 0$), en el pasado debió ser muchísimo más plano y dado que la densidad de energía del Universo pudo tomar cualquier valor inicial, es muy sorprendente que $\Omega \approx 1$ en toda la historia del Universo, siendo este un problema de ajuste fino.

2.2. Inflación Cosmológica

El modelo inflacionario consiste en que el Universo en una etapa temprana sufrió una expansión acelerada, este modelo se propone para resolver los problemas de horizonte y planitud.

2.2.1. Número de e-folds

Debido a que la expansión del Universo es exponencial es útil definir una manera más intuitiva de cuantificar dicha expansión, para ello se introduce el número de e-fold (N), el cual se define como sigue

$$N = ln\left(\frac{a}{a_i}\right) = \int_{t_i}^t H dt.$$
(2.47)

2.2.2. Solución del Problema de Horizonte

El paradigma inflacionario resuelve naturalmente el problema del horizonte. Como se mencionó en la sección 2.1.5.3, el problema del horizonte consiste en que en nuestro Universo visible tenemos 10⁶ regiones causalmente desconectadas según el Big Bang Caliente, sin embargo, estas regiones comparten la misma temperatura de fondo e incluso las mismas anisotropías. Pero que sucede si en una época muy temprana el Universo observable (con radio comóvil de Hubble, $(a_I H_I)^{-1}$) fue mas grande que el Universo observable hoy en día $((a_0 H_0)^{-1})$, es decir, $(a_0 H_0)^{-1} < (a_I H_I)^{-1}$, entonces el problema de horizonte no existiría [7]. Un mecanismo que permite esto es inflación, dado que durante inflación $H = \text{cte y } a \propto e^N$, por lo que $(aH)^{-1} \propto e^{-N}$, es decir que decrece exponencialmente.

A continuación se estimará el número mínimo de *e-folds* que debe durar inflación para que el problema de horizonte quede resuelto, como se mencionó anteriormente se debe de cumplir que

$$(a_0 H_0)^{-1} < (a_I H_I)^{-1} \tag{2.48}$$

donde $(a_I H_I)^{-1}$ es el radio comóvil de Hubble al inicio de inflación. Dividiendo entre el radio comóvil de Hubble al final de inflación $((a_f H_f)^{-1})$

$$\frac{(a_0 H_0)^{-1}}{(a_f H_f)^{-1}} < \frac{(a_I H_I)^{-1}}{(a_f H_f)^{-1}},$$
(2.49)

por el lado derecho de la desigualdad

$$\frac{(a_I H_I)^{-1}}{(a_f H_f)^{-1}} = \frac{a_f}{a_I} = e^N.$$
(2.50)

Asumiendo que después de inflación el Universo fue dominado por radiación e ignorando las épocas donde dominó materia y energía oscura (recordando que $H \propto a^{-2}$ cuando domina radiación), así el lado izquierdo de la desigualdad es

$$\frac{(a_0 H_0)^{-1}}{(a_f H_f)^{-1}} \approx \frac{a_E}{a_0} \left(\frac{a_E}{a_0}\right)^{-2} = \frac{a_0}{a_E} \approx \frac{T_E}{T_0} \approx 10^{28}$$

donde para el cálculo usamos que $T_E \approx 10^{15}$ GeV (en una época muy temprana) y $T_0 = 10^{-3}$ eV. Uniendo la desigualdad (Ec.(2.49))

$$10^{28} < e^N$$
,

es decir,

$$64 < N \tag{2.51}$$

Por lo que la solución del problema de horizonte requiere alrededor de 60 *e-folds* de inflación.

2.2.3. Solución del Problema de Planitud

Si la expansión del Universo es exponencial

$$R_H^2 \approx e^{-2N}$$

si inflación dura N = 60, $R_H^2 \approx 7.66 \times 10^{-53} \approx 0$, por lo que, de la Ec.(2.46) $|1 - \Omega| \approx 0$ y el problema de planitud queda resuelto naturalmente.

2.2.4. Condiciones para Inflación

Para que se de una etapa inflacionaria acelerada se necesita que [7]

$$\ddot{a} > 0, \tag{2.52}$$

como se mencionó en la sección 2.1.5.1 cuando se analizó la evolución del radio comovil de Hubble, la condición para que la aceleración sea positiva es que $\omega < -1/3$. En este trabajo se realiza para el caso de Sitter el cual es un Universo dominado por la constante cosmológica $(\omega = -1)$, en este caso, el Universo se expande exponencialmente ya que *H* es constante (ver Ec.(2.29)) y el factor de escala evoluciona exponencialmente con el tiempo $(a \propto e^{Ht})$. La evolución del radio comovil de Hubble también se puede escribir de la siguiente manera

$$\frac{dR_H}{dt} = \frac{d}{dt}(aH)^{-1} = -\frac{\dot{a}}{Ha^2} - \frac{\dot{H}}{aH^2} = -\frac{1}{a}\left(1 + \frac{\dot{H}}{H^2}\right) \equiv -\frac{1}{a}\left(1 - \epsilon\right),$$

donde

$$\epsilon \equiv -\frac{\dot{H}}{H^2},\tag{2.53}$$

la condición para que se de inflación es que $\epsilon < 1$, donde $\epsilon = 0$ corresponde al caso de Sitter, además, para resolver el problema de horizonte se necesita que inflación dure $N \approx 60$ e-fold. Para que esto se cumpla es necesario que ϵ se mantenga pequeño el tiempo suficiente, esta condición es controlada por el siguiente parámetro

$$\eta = \frac{d\ln\epsilon}{dN} = \frac{\dot{\epsilon}}{H\epsilon},\tag{2.54}$$

 ϵ y η se conocen como los parámetros de *slow-roll* y para tener una expansión acelerada la condición es $\epsilon \ll 1$ y $\eta \ll 1$.

2.2.5. Dinámica del Inflatón

Para describir inflación se puede considerar un campo escalar (ϕ), el cual se denomina inflatón. El cual tiene energía cinética y energía potencial y por lo tanto tiene densidad de energía y presión [18]. Para el análisis de la dinámica del inflatón se considerará como un campo escalar homogéneo (es decir, $\phi = \phi(t)$).

La dinámica de un campo escalar con acoplamiento mínimo a la gravedad puede ser descrito por la acción de Einstein-Hilbert (S_{EH}) más un término de la acción del campo escalar (S_{ϕ}) [16],

$$S = S_{EH} + S_{\phi} = \int d^4 x (\mathcal{L}_{EH} + \mathcal{L}_{\phi}) = \int d^4 x \sqrt{-g} \left[\frac{1}{2} R + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right], \quad (2.55)$$

donde g es el determinante de la métrica, \mathcal{L} es la densidad lagrangiana y $V(\phi)$ es un potencial que describe las interacciones. El langrangiano del campo escalar es el siguiente

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi).$$
(2.56)

Para obtener las ecuaciones de movimiento se calcula las ecuaciones de Euler-Lagrange las cuales son:

$$\frac{\partial \mathcal{L}_{\phi}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) = 0, \qquad (2.57)$$

calculando las ecuaciones de Euler-Lagrange para el lagrangiano descrito en Ec.(2.56) y considerando que el campo escalar es homogéneo se obtiene

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0, \qquad (2.58)$$

esta ecuación se conoce como ecuación de Klein-Gordon para el inflatón.

El tensor de energía-momento $(T_{\mu\nu})$ para el inflatón es

$$T_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi - g_{\mu\nu}\mathcal{L}, \qquad (2.59)$$

calculando la componente temporal $(T_0^0 = \rho_{\phi})$ y las componentes espaciales $(T_i^j = -P_{\phi}\delta_i^j)$ del tensor de energía-momento se obtiene para la densidad de energía del inflatón

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi), \qquad (2.60)$$

donde se puede observar que la densidad de energía es la energía cinética más la energía potencial. De igual forma la presión para el inflatón es

$$P_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi).$$
 (2.61)

Entonces la ecuación de estado es

$$w_{\phi} = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)},$$
(2.62)

que para el caso de de-Sitter donde $P = -\rho$ se tiene que $w_{\phi} = -1$, aplicando este resultado en la Ec.(2.62), se obtienen las siguiente condición $\dot{\phi}^2 \ll V(\phi)$.

2.2.5.1. Condiciones de Slow-roll

De la primera ecuación de Friedmann para un espacio plano $(3H^2 = \rho/M_{\rm pl}^2)$, derivando esta expresión respecto al tiempo se tiene que

$$6H\dot{H} = \frac{\dot{\rho}}{M_{\rm pl}^2} = -\frac{3H}{M_{\rm pl}^2}(\rho_{\phi} + P_{\phi}),$$

por lo que H en función del campo del inflatón es

$$\dot{H} = -\frac{1}{2 \text{ M}_{\text{pl}}^2} \dot{\phi}^2$$

por lo que ϵ es

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{\dot{\phi}^2}{2 \,\,\mathrm{M}_{\rm pl}^2 H^2}.\tag{2.63}$$

Entonces, derivando ϵ respecto al tiempo se tiene que

$$\dot{\epsilon} = \frac{\ddot{\phi}\dot{\phi}}{\mathrm{M}_{\mathrm{pl}}^{2}H^{2}} - \frac{\dot{\phi}^{2}\dot{H}}{\mathrm{M}_{\mathrm{pl}}^{2}H^{3}},$$

por lo que

$$\eta = \frac{\dot{\epsilon}}{H\epsilon} = 2\frac{\ddot{\phi}}{H\dot{\phi}} - 2\frac{\dot{H}}{H^2} \equiv 2(\epsilon - \delta), \qquad (2.64)$$

donde $\delta \equiv -\frac{\ddot{\phi}}{H\dot{\phi}}$, si $\epsilon \ll 1$ y $\delta \ll 1$ implica que $\eta \ll 1$ esta condición se conoce como aproximación de *slow-roll*. Si estás condiciones se cumple significa que inflación ocurre y además persiste. De la primera ecuación de Friedmann para un Universo plano y para el caso de Sitter,

$$H^2 \approx \frac{V}{3 \,\mathrm{M}_{\mathrm{pl}}^2}.\tag{2.65}$$

Si $\delta \ll 1$ implica que $\ddot{\phi} \ll H\dot{\phi}$ por lo que de la ecuación de Klein-Gordon se tiene que $3H\dot{\phi} \approx -\frac{dV}{d\phi} = -V'$, usando este resultado junto con Ec.(2.65)

$$\epsilon = \frac{\dot{\phi}^2}{2 \,\mathrm{M}_{\mathrm{pl}}^2 H^2} \approx \frac{(V')^2}{18 \,\mathrm{M}_{\mathrm{pl}}^2 H^4} = \frac{\mathrm{M}_{\mathrm{pl}}^2}{2} \left(\frac{V'}{V}\right)^2. \tag{2.66}$$

Para encontrar las condición inicial para un potencial inflacionario dado se utiliza la siguiente expresión obtenida a partir de .(2.47)

$$N_{tot} = \int_{\phi_i}^{\phi_{end}} \frac{1}{\sqrt{2\epsilon}} \frac{d\phi}{M_{pl}},$$
(2.67)

donde ϕ_i es el valor de ϕ al inicio de inflación y ϕ_{end} es el valor de ϕ al final de inflación, por medio de la Ec.(2.66) se puede obtener una relación en términos del potencial

$$N_{tot} = \int_{\phi_i}^{\phi_{end}} \left(\frac{V}{V'}\right) \frac{d\phi}{M_{pl}^2}.$$
(2.68)

2.2.6. Modelos Inflacionarios.

Existe una gran diversidad de modelos inflacionarios propuestos para describir inflación, pero en este trabajo se limitará al estudio de modelos inflacionarios basados en un campo escalar homogéneo (ϕ) llamado inflatón, este tipo de modelos se conocen como *single-field inflationary models*. Para definir un modelo inflacionario hay que especificar la acción del inflatón y su acoplamiento a la gravedad [7], esta acción se muestra en la Ec. (2.55), el cual consiste en un campo escalar mínimamente acoplado a la gravedad con un potencial, $V(\phi)$, la forma de este potencial determina la dinámica del inflatón, es por ello que un modelo inflacionario puede ser descrito especificando la forma del potencial, estos modelos inflacionarios basados en un solo campo escalar pueden clasificarse en tres categorías que son: *large field, small field* e *Hibrid* [19, 20], en los modelos de tipo *large field*, el valor de ϕ es más grande que la masa de Planck y este inicialmente está desplazado de un mínimo de potencial y evoluciona hacia él, estos modelos en general pueden ser representado por el siguiente potencial

$$V(\phi) = M^4 \left(\frac{\phi}{M_{\rm pl}}\right)^p \tag{2.69}$$

en los modelos de tipo *small field*, el valor de ϕ es mucho menor que la masa de Planck y este evoluciona alejándose de un máximo de potencial, estos modelos en general pueden ser representado por el siguiente potencial

$$V(\phi) = M^4 \left[1 - \left(\frac{\phi}{M_{\rm pl}}\right)^p \right]$$
(2.70)

finalmente en los potenciales tipo *Hibrid*, ϕ evoluciona hacía un mínimo de energía diferente de cero. A continuación se presentan los modelos que se estudiaron en este trabajo.

2.2.6.1. Large Field Inflation (LFI)

El primer modelo que se estudió es el LFI o también conocido en la literatura como inflación caótica [9]. Este modelo es caracterizado por el siguiente potencial [10],

$$V(\phi) = M^4 \left(\frac{\phi}{M_{\rm pl}}\right)^p,\tag{2.71}$$

Figura 2.2: Predicción de r y ns para ϕ^p en el rango de $50 \le N \le 60$ *e-fold* comparado con las constricciones observaciones dada por los datos de Planck en combinación con BAO, *CMB lensing data* y *BICEP/Keck (BK18) data* [21].

este potencial depende del parámetro M obtenido a partir de renormalización del CMB y del exponente p, el cual puede tomar valores enteros positivos o valores racionales, al comparar con las observaciones muchos de estos modelos estarían descartados (ver Fig.2.2), pero el modelo con p = 2/3, también conocido como monodromy inflation, si se observa en la Fig.2.2 el límite superior de r en función de n_s está dentro de 2σ con relación a los datos de *Planck* TT, TE, EE + lowE + lensing data + BICEP/Keck (BK18) data.

2.2.6.2. Steplike Potential

El segundo modelo explorado es una extensión del modelo anterior, esta extensión es agregar un paso en el potencial, este paso provoca oscilaciones en el espectro de potencia primordial [22, 23], puesto que la forma del espectro de potencia primordial depende del potencial inflacionario. Físicamente el paso en el potencial representa una transición de fase de ruptura de simetría en un campo acoplado con el campo escalar [24], esto es por que la masa cambia repentinamente cuando ocurre la transición.

Generalmente en la literatura se suele agregar este paso al potencial caótico $(V(\phi) \propto \phi^2)$, pero en este trabajo se decidió aplicar el paso en el potencial monódromi $(V(\phi) \propto \phi^{2/3})$, por la misma razón que en el caso anterior, el paso se genera multiplicando a este potencial por un término que contiene tangente hiperbólica, por lo que el potencial para este modelo es

$$V(\phi) = M^4 \left(\frac{\phi}{M_{\rm pl}}\right)^{2/3} \left[1 + \beta \tanh\left(\frac{\phi - \phi_{\rm step}}{\delta}\right)\right],\tag{2.72}$$

donde, ϕ_{step} representa el valor de ϕ para el cual se genera el paso, β representa la amplitud del paso y δ representa el ancho del paso, es decir, que tan abrupto se da el paso.

2.2.6.3. α -attractor

Los siguientes modelos analizado son los α -attractor o también conocidos como *T*-models debido a que son originados a partir de potencias de tangente hiperbólica. Estos modelos son caracterizado por el siguiente potencial [25–27],

$$V(\rho) = M^4 \tanh^{2n} \left(\frac{\phi}{\sqrt{6\alpha} \,\mathrm{M_{pl}}} \right), \tag{2.73}$$

el modelo más simple es cuando n = 1 (el cual es el analizado en este trabajo), de la Ec.(2.73), α es un parámetro que depende de la teoría de donde proviene el modelo, pero se limita a que $\alpha > 1/4$ [27], además este modelo (con $\alpha = 6$) contrasta bastante bien con las observaciones, dado que la curva n_s vs r (ver Fig.2.3), está dentro de 2σ de los datos de *Planck* + *BK18*.

Figura 2.3: n_s y r predichas por el modelo α -atractor en comparación con los datos de *Planck* + *BK18* [27].

2.2.6.4. Radion Gauge Inflation (RGI)

Finalmente, el último modelo analizado es el Radion Gauge Inflation (RGI), este modelo es caracterizado por el potencial [9, 10],

$$V(\phi) = M^4 \frac{(\phi/M_{\rm pl})^2}{\alpha + (\phi/M_{\rm pl})^2},$$
(2.74)

Donde α es un parámetro positivo adimensional, además, $\alpha > 1/2$ [27], el modelo con $\alpha = 19$ contrasta bastante bien con las observaciones dado que la curva n_s vs r (ver Fig.2.4), está dentro de 2σ de los datos de *Planck* + *BK18*, además, M es un parámetro de escalar que típicamente $M \approx 10^{-4}$ M_{pl} [28].

Figura 2.4: n_s y r predichas por el modelo RGI en comparación con los datos de Planck + BK18 [27].

2.3. Perturbaciones Cosmológicas Relativistas

La teoría de perturbaciones es una herramienta matemática que permite encontrar solución a problemas complejos a partir de la solución analítica de un problema más simple, siempre y cuando el problema complejo sea una pequeña variación del problema simple [29].

2.3.1. Perturbaciones en la Métrica

Las perturbaciones cosmológica se desarrollarán en el marco de la métrica FLRW y para un universo plano (k = 0), ya que las observaciones indican que el Universo es aproximadamente plano, entonces se consideran pequeñas perturbaciones ($\delta g_{\mu\nu}$) al rededor de la métrica de FLRW ($g_{\mu\nu}^-$) de la siguiente forma

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu},$$

donde la métrica de FLRW para un espacio plano es [7]

$$ds^2 = a^2(\tau)[d\tau^2 - \delta_{ij}dx^i dx^j)],$$

entonces la mética perturbada se escribe de la siguiente manera

$$ds^{2} = a^{2}(\tau) \left[(1+2A)d\tau^{2} - 2B_{i}dx^{i}d\tau - (\delta_{ij} + \hat{h}_{ij})dx^{i}dx^{j}) \right], \qquad (2.75)$$

donde A, B_i y \hat{h}_{ij} son funciones del espacio-tiempo escalares, vectoriales y tensoriales respec-

tivamente, además, B_i y \hat{h}_{ij} sus índices pueden ser subidos o bajados con δ_{ij} [7].

2.3.2. Descomposición Escalar-Vectorial-Tensorial.

Debido a que el espacio es aproximadamente plano, homogéneo e isótropo tiene un alto grado de simetría el cual permite descomponer la métrica en perturbaciones escalares, vectoriales y tensoriales de manera independiente.

Un vector se puede escribir como el gradiente de un escalar más un vector, el cual su divergencia es cero

$$B_i = \partial_i B + \hat{B}_i,$$

donde $\partial^i \hat{B}_i = 0$, de igual forma se puede hacer para un tensor simétrico de rango 2

$$\hat{h}_{ij} = \underbrace{2C\delta_{ij} + 2\partial_{[i}\partial_{j]}E}_{\mathbf{Escalar}} + \underbrace{2\partial_{(i}\hat{E}_{j)}}_{\mathbf{Vectorial}} + \underbrace{2h_{ij}}_{\mathbf{Tensorial}},$$
(2.76)

donde

$$\partial_{[i}\partial_{j]}E = \left(\partial_{i}\partial_{j} - \frac{1}{3}\delta_{ij}\nabla^{2}\right)E \qquad \mathbf{y}$$
$$\partial_{(i}\hat{E}_{j)} = \frac{1}{2}\left(\partial_{i}E_{j} + \partial_{j}E_{i}\right),$$

de aquí $\partial^i E_i = 0$ y $\partial^i h_{ij} = 0$. Además, la traza de las perturbaciones tensoriales en nula $h_{ii} = 0$, las perturbaciones vectoriales \hat{B}_i y E_j no son creados en inflación [7].

Utilizando Ec.(2.75) con la descomposición escalar-vectorial-tensorial, la forma más general de la métrica para el fondo (la homogénea e isotrópica métrica FLRW) y las perturbaciones escalares de la métrica es dada por

$$ds_s^2 = a^2(\tau) \left\{ (1+2A)d\tau^2 - 2\partial_i B dx^i d\tau - \left[(1-2\Psi)\delta_{ij} + 2\partial_i \partial_j E \right] \right\}$$
(2.77)

donde $\Psi = \frac{1}{6}\nabla^2 E - C$, de forma análoga la forma más general de la métrica para el fondo y las perturbaciones tensoriales es dada por (para un universo plano)

$$ds_t^2 = a^2(\tau) \left[\eta_{\mu\nu} + h_{\mu\nu}\right] dx^{\mu} dx^{\nu}$$
(2.78)

2.4. Perturbaciones Durante Inflación

Una de las consecuencias más importantes de la inflación cosmológica es que provee un mecanismo natural para la generación de perturbaciones cosmológicas con las propiedades estadística correctas para sembrar la semilla de la formación de estructura a gran escala en nuestro Universo a través de la inestabilidad gravitacional [30], durante inflación a través del mismo mecanismo se generan dos tipos de perturbaciones, (1) fluctuaciones en el campo del inflatón que conducen a un estocástico espectro de perturbaciones de densidad (perturbaciones escalares) y (2) fluctuaciones en el campo gravitacional que conducen a un espectro de ondas gravitaciones (perturbaciones tensoriales) [31]. La razón por el cual se producen estas perturbaciones es debido a efectos cuánticos. Por el principio de indeterminación de Heisenberg no podemos conocer con total certeza la ubicación en el espacio de una partícula, por lo que el inflatón debe espacialmente presentar fluctuaciones, estas fluctuaciones pueden escribirse matemáticamente como $\delta\phi(t, \vec{r}) = \phi(t, \vec{r}) - \bar{\phi}(t)$.

A continuación, con la meta de calcular los espectros de las perturbaciones escalares y tensoriales el espacio-tiempo que describe el Universo se ha descompuesto en dos componentes, las cuales representan el fondo y las contribuciones de las perturbaciones. El elemento de línea que describe a el fondo y la contribución de las perturbaciones escalares es el de la Ec.(2.77) y el elemento de línea que describe a el fondo y la contribución de las perturbaciones tensoriales es el de la Ec.(2.78).

2.4.1. Descripción Cuantitativa de las Perturbaciones Escalares

Es conveniente describir las perturbaciones escalares en términos de la perturbación de la curvatura intrínseca de las hipersuperficies comóviles, el cual tiene la forma

$$\mathcal{R} = -\Psi - \frac{H}{\dot{\phi}}\delta\phi. \tag{2.79}$$

Introduciendo el potencial invariante de gauge [31],

$$u \equiv a \left[\delta \phi + \frac{\dot{\phi}}{H} \Psi \right], \qquad (2.80)$$

e introduciendo la variable de Mukhanov

$$z \equiv \frac{a\phi}{H},\tag{2.81}$$

Inmediatamente se obtiene

$$u_s = -z\mathcal{R}.\tag{2.82}$$

La dinámica de las perturbaciones escalares puede ser obtenida expandiendo la acción de Einstein-Hilbert a segundo orden [31], obteniendo así

$$S = \frac{1}{2} \int d\tau d^3 x \left[(u'_s)^2 - (\nabla u_s)^2 + \frac{z''}{z} u_s^2 \right]$$
(2.83)

donde las coordenadas primadas índica que se han derivado respecto al tiempo conforme (por ejemplo, $z' = \partial_{\tau} z$). Aplicando las ecuaciones de Euler-Lagrange

$$u_s'' - \nabla^2 u_s - \frac{z''}{z} u_s = 0, \qquad (2.84)$$

además, es útil analizar u_s en el espacio de momentos, aplicando la transformada de Fourier a u_s

$$u_s = \int \frac{d^3k}{(2\pi)^{3/2}} \exp\{-i\vec{k}\cdot r\} u_{k_s}$$
(2.85)

donde u_{k_s} son los modos de Fourier y a partir de aquí los llamaremos modos escalares.

Sustituyendo Ec.(2.85) en la Ec.(2.84) se obtiene la evolución de los modos escalares

$$u_{ks}'' + \left(k^2 - \frac{z''}{z}\right)u_{ks} = 0, \qquad (2.86)$$

la Ec.(2.86) se conoce como ecuación de Mukhanov-Sasaki para las perturbaciones escalares. De la Ec.(2.85) se sigue que

$$\mathcal{R}_k = \frac{u_{k_s}}{z} \tag{2.87}$$

donde

$$\mathcal{R} = \int \frac{d^3k}{(2\pi)^{3/2}} \exp\left\{-i\vec{k}\cdot r\right\} \mathcal{R}_k$$
(2.88)

2.4.2. Descripción Cuantitativa de las Perturbaciones Tensoriales

La dinámica de las ondas gravitacionales puede ser determinada expandiendo la acción de Einstein-Hilbert a segundo orden en h_{ij} , esta acción toma la siguiente forma [6]

$$S = \frac{\mathrm{M}_{\mathrm{pl}}^2}{64\pi} \int d\tau dx^3 a^2 \partial_\mu h_j^i \partial^\mu h_i^j, \qquad (2.89)$$

para simplificar los cálculos se introduce la siguiente variable

$$P_j^i \equiv \left(\frac{M_{\rm pl}^2}{32\pi}\right)^{1/2} a h_j^i. \tag{2.90}$$

Al hacer este cambio la acción es

$$S = \frac{1}{2} \int d\tau d^3x \left[(\partial_\tau P_i^j) (\partial^\tau P_j^i) - \delta^{rs} (\partial_r P_i^j) (\partial^s P_j^i) + \frac{1}{a} \frac{d^2a}{d\tau^2} P_i^j P_j^i \right].$$
(2.91)

Las ondas gravitacionales tienen dos estados de polarización independientes el cual se denotan como $\lambda = +, \times$, entonces las perturbaciones tensoriales son [7]

$$P_j^i = \frac{1}{\sqrt{2}} \begin{pmatrix} u_+ & u_\times & 0\\ u_\times & -u_+ & 0\\ 0 & 0 & 0 \end{pmatrix}.$$
 (2.92)

Es útil analizar P_j^i en el espacio de Fourier

$$P_{j}^{i} = \frac{1}{2} \sum_{\lambda = +, \times} \int \frac{d^{3}\vec{k}}{(2\pi)^{3/2}} u_{\vec{k}, \lambda}(\tau) \epsilon_{j}^{i}(\vec{k}, \lambda) e^{i\vec{k}\cdot\vec{x}}, \qquad (2.93)$$

donde $\epsilon_j^i(\vec{k},\lambda)$ es el tensor de polarización y $u_{k\lambda}$ son los modos de polarización. Por lo que la acción efectiva (Ec.(2.91)) es [6]

$$S = \sum_{\lambda=+,\times} \frac{1}{2} \int d\tau d^3 \vec{k} \left[(\partial_\tau (u_{\vec{k},\lambda}))^2 - \left(k^2 - \frac{a''}{a}\right) (u_{\vec{k},\lambda})^2 \right].$$
 (2.94)

Para encontrar las ecuaciones de movimiento se aplica el principio de mínima acción, el cual da como resultado una ecuación independiente, es decir, la misma ecuación aplica para los dos modos de polarización $u_{k,+}$ y $u_{k,\times}$. Por lo que a partir de aquí solo se utilizará u_{k_t} . Entonces la ecuación que se obtiene es

$$u_{k_t}'' + \left(k^2 - \frac{a''}{a}\right)u_{k_t} = 0.$$
(2.95)

La Ec.(2.95) se conoce como la **ecuación de Mukhanov-Sasaki** para las perturbaciones tensoriales.

También podemos obtener una relación entre las fluctuaciones en el inflatón y los modos de polarización, el cual las perturbaciones en ϕ se puede escribir como

$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t), \qquad (2.96)$$

esta perturbación en el espacio de momentos es

$$\delta\phi = \int \frac{d^3k}{(2\pi)^{3/2}} \delta\phi_k e^{i\vec{k}\cdot\vec{x}},\tag{2.97}$$

donde

$$u_k = a\delta\phi_k. \tag{2.98}$$

2.4.3. Espectro de Potencia Primordial

El espectro de potencias primordial escalar, $P_{\mathcal{R}}(k)$, es importante ya que contiene información estadística de las fluctuaciones tensoriales en el espacio de Fourier y puede ser definido a partir del valor esperado del cuadrado de \mathcal{R} , es decir

$$\left\langle \mathcal{R}^2 \right\rangle = \int \frac{d^3k}{(2\pi)^3} |\mathcal{R}_k|^2$$

como $\mathcal{R}_k(k)$ es función solo de k se puede integrar la parte angular, entonces

$$\left\langle \mathcal{R}^2 \right\rangle = \int \frac{k^2 dk}{2\pi^2} |\mathcal{R}_k|^2 = \int \frac{k^3 dk}{2\pi^2 k} |\mathcal{R}_k|^2 = \int \frac{dk}{k} \left(\frac{k^3}{2\pi^2} |\mathcal{R}_k|^2 \right) = \int \frac{dk}{k} P_{\mathcal{R}}(k)$$

donde $P_{\mathcal{R}}(k)$ es el espectro de potencia primordial escalar

$$P_{\mathcal{R}}(k) = \frac{k^3}{2\pi^2} |\mathcal{R}_k|^2, \qquad (2.99)$$

el cual en términos de los modos escalares es

$$P_{\mathcal{R}}(k) = \frac{k^3}{2\pi^2} \left| \frac{u_{k_s}}{z} \right|^2.$$
(2.100)

Para las perturbaciones tensoriales también se tiene un espectro de potencia primordial tensorial, el cual es definido por la siguiente expresión

$$P_t(k) = \frac{k^3}{2\pi^2} \left| \frac{u_{k_t}}{a} \right|^2.$$
(2.101)

Capítulo 3 Metodología

En esta sección se presenta la metodología empleada para: (1) resolver numéricamente las ecuaciones del fondo cosmológico, (2) resolver la ecuación de Mukhanov-Sasaki para las perturbaciones escalares y tensoriales, (3) calcular el espectro de potencia primordial para ambas perturbaciones, todo lo anterior se hizo para cada modelo analizado. Para el desarrollo de este trabajo se utilizó códigos propios escritos en el lenguaje de programación *Python*.

3.1. Metodología para Resolver las Ecuaciones del Fondo Cosmológico

Como se menciona en la sección 2.2.1, para visualizar y cuantificar inflación de manera más intuitiva se analiza en términos del número de e-fold (N), además, esto también permite optimizar el análisis computacional [32], por lo que todas las magnitudes presentes en las ecuaciones del fondo cosmológico se describen en función de N. En esta sección se encontrará una expresión equivalente para la ecuación de Klein-Gordon (Ec.(2.58)) en función de N. Para ello partimos del resultado de la Ec.(2.47) donde se tiene que

$$dN = Hdt, (3.1)$$

entonces, por medio de la regla de la cadena las derivadas temporales se convierten en derivadas respecto a N a partir de la siguiente expresión

$$\frac{d}{dt} = \frac{dN}{dt}\frac{d}{dN} = H\frac{d}{dN},\tag{3.2}$$

además, por simplicidad se define lo siguiente, $\frac{df}{dN} = f_N$ y $\frac{d^2f}{dN^2} = f_{NN}$, donde f puede ser una función arbitraria, por ejemplo ϕ . La primera derivada temporal de ϕ es

$$\dot{\phi} = H \frac{d\phi}{dN} = H \phi_N,$$

$$\dot{\phi} = H \phi_N.$$
 (3.3)

es decir,

La segunda derivada de ϕ es
$$\ddot{\phi} = H \frac{d(H\phi_N)}{dN} = H(H_N\phi_N + \phi_{NN}H),$$

Reordenando

$$\ddot{\phi} = H^2 \phi_{NN} + H H_N \phi_N. \tag{3.4}$$

Sustituyendo la Ec.(3.3) y la Ec.(3.4) en la ecuación de Klein-Gordon (Ec.(2.58)) se tiene

$$H^2\phi_{NN} + HH_N\phi_N + 3H^2\phi_N + \frac{\partial V(\phi)}{\partial \phi} = 0$$

Si se divide por H^2 ambos lados de la ecuación, se obtiene la primera ecuación del fondo cosmológico, la cual describe la dinámica de ϕ , así

$$\phi_{NN} + \left(\frac{H_N}{H} + 3\right)\phi_N + \frac{1}{H^2}\frac{\partial V(\phi)}{\partial \phi} = 0.$$
(3.5)

Combinando la ecuación de continuidad (Ec.(2.26)) con la densidad de energía y presión del inflatón, Ec.(2.60) y Ec.(2.61), respectivamente, se tiene que

$$\dot{\rho} = -3H\dot{\phi}^2. \tag{3.6}$$

Por otra parte, una de las ecuaciones de Friedmann (Ec.(2.20)) con k = 0 se puede escribir como sigue

$$\rho = 3 \,\mathrm{M}_{\rm pl}^2 H^2,$$

tomando la derivada temporal a esta ecuación se tiene que

$$\dot{\rho} = 6 \,\,\mathrm{M}_{\rm pl}^2 H \dot{H}.\tag{3.7}$$

Combinando las Ec.(3.6) y Ec.(3.7) se tiene

$$2 \mathrm{M}_{\mathrm{pl}}^2 \dot{H} = -\dot{\phi}^2.$$

De la Ec.(3.2), $\dot{H} = HH_N$ y $\dot{\phi}^2 = H^2 \phi_N^2$, por lo que

$$2 \operatorname{M}_{\mathrm{pl}}^2 H H_N = -H^2 \phi_N^2,$$

simplificando se obtiene la segunda ecuación del fondo cosmológico, el cual describe la evolución de ${\cal H}$ como función de N,así

$$H_N = -\frac{H\phi_N^2}{2 \,\,\mathrm{M}_{\rm pl}^2}.$$
(3.8)

Combinando las Ec.(3.5) y la Ec.(3.8) se puede obtener una sola ecuación de fondo, como sigue

$$\phi_{NN} + \left(3 - \frac{\phi_N^2}{2 M_{\rm pl}^2}\right)\phi_N + \frac{1}{H^2}\frac{\partial V(\phi)}{\partial \phi} = 0.$$
(3.9)

Además, para las condiciones de *slow-roll* se tiene

$$\epsilon = -\frac{H}{H^2} = -\frac{H_N}{H}.$$
(3.10)

Reordenando las ecuaciones del fondo cosmológico (Ec.(3.8)y Ec.(3.9)), se obtiene el siguiente sistema de ecuaciones diferenciales

$$\begin{cases}
H_N = -\frac{H\phi_N^2}{2 M_{\rm pl}^2} \\
\phi_{NN} = -\left(3 - \frac{\phi_N^2}{2 M_{\rm pl}^2}\right)\phi_N - \frac{1}{H^2}\frac{\partial V(\phi)}{\partial \phi},
\end{cases} (3.11)$$

como el sistema de ecuaciones obtenido está conformado por dos ecuaciones diferenciales acopladas, una de primer orden en H y una de segundo orden en ϕ , es necesario calcular condiciones iniciales para H, ϕ y ϕ_N . La condición inicial para ϕ se deduce a partir de la Ec.(2.68) donde se debe cumplir que

$$\int_{\phi_i}^{\phi_{\text{end}}} \frac{1}{\sqrt{2\epsilon}} \frac{d\phi}{M_{\text{pl}}^2} > 60, \qquad (3.12)$$

donde ϕ_{end} representa el valor de ϕ en el que inflación termina, este puede ser calculado a partir del parámetro de *slow-roll* (ϵ), ya que para que el Universo se expanda se debe cumplir que $\epsilon < 1$, es por eso que se toma que $\epsilon(\phi_{\text{end}}) = 1$. Una vez calculada la condición inicial para ϕ se calcula las condiciones iniciales para H y para ϕ_N , esto a partir de las ecuaciones del fondo cosmológico (Ec. (3.11)).

Para resolver las ecuaciones del fondo cosmológico en el código se empleó la función solve_ivp del subpaquete integrate del paquete scipy de python, integrate provee herramientas numéricas para la resolución de integrales y ecuaciones diferenciales [33]. La función solve_ivp está diseñada para resolver ecuaciones diferenciales ordinarias (ODEs por sus siglas en inglés) de la forma

$$\frac{dy}{dt} = f(y,t).$$

donde y es la solución de la ecuación diferencial a calcular dada su condición inicial, t es la variable independiente y f(y,t) es una función que puede depender de y y t. La estructura del código empleado se muestra en el diagrama de flujo de la Fig.3.1.

Figura 3.1: Estructura del código empleado para resolver las ecuaciones del fondo cosmológico. Los paralelogramos azules contienen variables de entrada o salida, los rombos verdes contienen condicionales y los rectángulos café claros denotan los procesos.

3.2. Metodología para Resolver la Ecuación de Mukhanov-Sasaki

De la misma forma que en la sección 3.1, u_{k_s} y u_{k_t} serán determinados en términos de N, por lo que en esta sección se expresa la ecuación de Mukhanov-Sasaki para las perturbaciones escalares y tensoriales (Ec.(2.86) y Ec.(2.95), respectivamente) en función de N. La relación de N con t es dN = Hdt y la relación de t con el tiempo conforme (τ) es $dt = ad\tau$, combinado estas relaciones se tiene que

$$\frac{dN}{d\tau} = aH,$$

por medio de la regla de la cadena las derivadas respecto al tiempo conforme se convierten en derivadas respecto a N, de la siguiente forma

$$\frac{d}{d\tau} = \frac{dN}{d\tau}\frac{d}{dN} = aH\frac{d}{dN},\tag{3.13}$$

por simplicidad para una función f arbitraria la derivada respecto a N se expresará como sigue $\frac{df}{dN} = f^{(N)}$. Primero se deduce la ecuación de Mukhanov-Sasaki para las perturbaciones escalares. La primera derivada de u_{k_s} respecto a τ es

$$u_{k_s}' = a H u_{k_s}^{(N)}. ag{3.14}$$

De igual forma la segunda derivada de u_{k_s} respecto al tiempo conforme es

$$u_{k_s}'' = aH \frac{d(aHu_{k_s}^{(N)})}{dN} = a^2 H^2 u_{k_s}^{(NN)} + aa^{(N)} H^2 u_{k_s}^{(N)} + a^2 H H^{(N)} u_{k_s}^{(N)}.$$
 (3.15)

Además, se tiene que encontrar una relación para $z^{\prime\prime}$ en términos de N, pero antes se deduce lo siguiente

$$H = \frac{a'}{a^2} = \frac{aHa^{(N)}}{a^2} = \frac{a^{(N)}H}{a},$$
$$\frac{a^{(N)}}{a} = 1.$$
(3.16)

La variable de Mukhanov (z) se define como $z = \frac{a^2 \phi'}{a'}$ (Ec.(2.81)), en términos de N se tiene que $z = a \phi^{(N)}$, si se deriva esta expresión respecto a N

$$z' = aH\frac{d(a\phi_N)}{dN} = a^2H(\phi^{(N)} + \phi^{(NN)}),$$

Derivando una vez más y dividiendo por el factor aH (recordar que $a^{(N)} = a$)

$$\frac{z''}{aH} = \frac{d}{dN} \left(a^2 H(\phi^{(N)} + \phi^{(NN)}) \right),$$

desarrollando

por lo que

$$\frac{z''}{aH} = a^2 H^{(N)} \phi^{(N)} + a^2 H^{(N)} \phi^{(NN)} + 2a^2 H \phi^{(N)} + 2a^2 H \phi^{(NN)} + a^2 H \phi^{(NN)} + a^2 H \phi^{(NNN)}.$$
 (3.17)

De una de las ecuaciones del fondo cosmológico (Ec.(3.11))

$$\phi^{(NN)} = -\left(3 - \frac{(\phi^{(N)})^2}{2 M_{\rm pl}^2}\right)\phi^{(N)} - \frac{1}{H^2}\frac{\partial V(\phi)}{\partial \phi},$$

usando este resultado en el último término de la Ec.(3.17)

$$\phi^{(NNN)} = \frac{d}{dN} \left(-\left(3 - \frac{(\phi^{(N)})^2}{2 M_{\rm pl}^2}\right) \phi^{(N)} - \frac{1}{H^2} \frac{\partial V(\phi)}{\partial \phi} \right), \tag{3.18}$$

desarrollando esta expresión, sustituyendo en Ec.(3.17) y con un poco de álgebra se tiene que

$$\frac{z''}{z} = a^2 H^2 \left(2 - \frac{5H^{(N)}}{H} - 2\left(\frac{H^{(N)}}{H}\right)^2 - 4\frac{H^{(N)}\phi^{(NN)}}{H\phi^{(N)}} - \frac{1}{H^2}\frac{\partial^2 V(\phi)}{\partial\phi^2} \right).$$
(3.19)

Sustituyendo la Ec.(3.14) y Ec.(3.15) en la ecuación de Mukhanov-Sasaki para las perturbaciones escalares (Ec.(2.86)),

$$a^{2}H^{2}u_{k_{s}}^{(NN)} + aa^{(N)}H^{2}u_{k_{s}}^{(N)} + a^{2}HH^{(N)}u_{k_{s}}^{(N)} + \left(k^{2} - \frac{z''}{z}\right)u_{k_{s}} = 0,$$

simplificando

$$u_{k_s}^{(NN)} + \left(1 + \frac{H^{(N)}}{H}\right)u_{k_s}^{(N)} + \left(k^2 - \frac{z''}{z}\right)\frac{u_{k_s}}{a^2H^2} = 0,$$
(3.20)

esta es la ecuación diferencial que se resolverá numéricamente para determinar los modos escalares y posteriormente el espectro de potencia primordial escalar por medio de la Ec.(2.100).

Para el caso de las perturbaciones tensoriales $u_{kt}^{(N)}$ y $u_{kt}^{(NN)}$ toman la misma forma que en el caso de los modos escalares, por lo que solo hay que encontrar a'' en función de N, así

$$\frac{a''}{a} = H \frac{d(aHa^{(N)})}{dN} = H \frac{d(a^2H)}{dN} = Ha[2Ha + aH^{(N)}] = H^2 a^2 \left[2 + \frac{H^{(N)}}{H}\right],$$
(3.21)

finalmente, utilizando la Ec.(3.10)

$$\frac{a''}{a} = H^2 a^2 \left[2 + \epsilon\right]. \tag{3.22}$$

La ecuación de Mukhanov-Sasaki para las perturbaciones tensoriales en función de N es

$$u_{k_t}^{(NN)} + \left(1 + \frac{H^{(N)}}{H}\right) u_{k_t}^{(N)} + \left(k^2 - \frac{a''}{a}\right) \frac{u_{k_t}}{a^2 H^2} = 0,$$
(3.23)

la Ec.(3.23) es la ecuación diferenciales la que se resolverá numéricamente para determinar los modos tensoriales y posteriormente el espectro de potencia primordial tensorial por medio de la Ec.(2.101).

3.2.1. Condiciones Iniciales

Como se puede observar la Ec.(3.23) y la Ec.(3.20) son ecuaciones diferencial de segundo orden, por lo que para resolverlas numéricamente se necesita condiciones iniciales para u_{ki}^N y para u_{ki} (el índice *i* representa cuales quiera de los dos modos, escalares (*i* = *s*) o tensoriales (i = t)), para encontrar estás condiciones iniciales simplificaremos la ecuación de Mukhanov-Sasaki (Ec.(2.86) o Ec.(2.95), se puede demostrar que al inicio de inflación ambas convergen a una misma ecuación), para ello sabemos que cuando la longitud de onda de las perturbaciones es menor que el horizonte de Hubble, $\lambda \ll (aH)^{-1}$, o equivalentemente, $(aH)^2 \ll k^2$. Además, al inicio de inflación $\epsilon \ll 1$ (condición de *slow-roll*), por lo que, $a''/a \propto (a^2H^2)$ (o $z''/z \propto (a^2H^2)$). Entonces, la ecuación de Mukhanov-Sasaki para esta aproximación es

$$u_{ki}'' + k^2 u_{ki} = 0, (3.24)$$

como puede observarse es la ecuación del oscilador armónico, el cual tiene como solución

$$u_{ki} = A e^{-ik\tau}, (3.25)$$

donde A es una constante a normalizar, si se realiza en analogía a la cuantización del oscilador armónico y para el estado base, se obtiene que

$$u_{ki} = \frac{1}{\sqrt{2k}} e^{-ik\tau},\tag{3.26}$$

y en términos del número de e-fold, se tiene que

$$u_{ki} = \frac{1}{\sqrt{2k}} \exp\left\{-i\frac{kN}{aH}\right\},\tag{3.27}$$

por lo que la condición inicial para u_k es

$$u_{ki}(0) = \frac{1}{\sqrt{2k}}.$$
(3.28)

Para encontrar la condición inicial de u_k^N , tomamos la derivada de la Ec.(3.27), es decir,

$$u_{ki}^{N} = -i\sqrt{\frac{k}{2}}\frac{1}{aH}\exp\left\{-i\frac{kN}{aH}\right\},\,$$

por lo que la condición inicial para u_k^N es

$$u_{ki}^{N}(0) = -i\sqrt{\frac{k}{2}}\frac{1}{aH}.$$
(3.29)

Estas condiciones iniciales sirven para ambas ecuaciones, la ecuación de Mukhanov-Sasaki para las perturbaciones escalares y la ecuación de Mukhanov-Sasaki para las perturbaciones tensoriales.

Como se puede ver la Ec.(3.23) y la Ec.(3.20) son muy similares a la ecuación de la onda amortiguada con una frecuencia ω dependiente del número de onda, es por ello que para resolver estas ecuaciones se empleará la siguiente librería de *python: Pyoscode*, esta librería está diseñada para resolver eficientemente ecuaciones diferenciales oscilatorias [34] de la forma

$$y'' + 2\gamma(x)y' + \omega^2(x)y = 0,$$

para nuestro caso (para la ecuación de Mukhanov-Sasaki para las perturbaciones escalares, por ejemplo)

$$2\gamma(N) = \left(1 + \frac{H^N}{H}\right) \qquad \text{y} \qquad \omega^2(N) = \left(k^2 - \frac{z''}{z}\right)\frac{1}{a^2H^2},$$

además, la estructura del código empleada es la descrita en el diagrama de flujo de la Fig.3.3

3.2.2. Metodología para Calcular los Espectros de Potencia Primordial

Una vez se conoce la solución a las ecuaciones del fondo cosmológico y la evolución de los modos escalares (tensoriales) para un modelo específico, se puede calcular el espectro de potencia primordial escalar (tensorial). Estos espectros de potencia son importantes porque contienen información estadística de la amplitud de los modos. Particularmente se está interesado en calcular estos espectros cuando las perturbaciones salen del horizonte, ya que con la amplitud que salen es con la que entran posteriormente, estableciendo así las condiciones iniciales de la formación de estructura en el Universo. Para el cálculo del espectro de potencia primordial (ya sea el escalar o el tensorial) primero, se calculó la evolución de los modos escalares o tensoriales, dependiendo el caso, para 2000 distintos valores de k contenidos en una ventana entre $k = 10^{-4} \text{ Mpc}^{-1}$ y $k = 10^9 \text{ Mpc}^{-1}$, esto para tener en cada uno de los modelos el comportamiento de sus respectivos espectros de potencia primordial en una amplia ventana de k, con el fin de posteriormente contrastar con las futuras observaciones. Medidas en las anisotropías del CMB y de la estructura a gran escala determinan un espectro de potencia primordial escalar de la forma $P(k) \propto k^{n_s-1}$ con $n_s = 0.965 \pm 0.004$, en el rango de $k = 10^{-4} \text{ Mpc}^{-1}$ a $k = 0.1 \text{ Mpc}^{-1}$ [35]. Además, un tema muy importante en inflación son las distorsiones espectrales (distorsiones en el espectro de energía del CMB), estas distorciones espectrales son sensibles a la energía invectada en el CMB en distintas épocas [36], además, dependen de la amplitud de las perturbaciones primordiales (estas amplitudes son registradas en los espectros de potencia primordial) a escalas entre $k = 1 \text{ Mpc}^{-1}$ y $k = 10^4$ Mpc^{-1} [37], se espera que estas distorsiones sean exploradas en los próximos años a partir de misiones experimentales como *PIXIE* (Primordial Inflation Explorer [38]), la medida de estas distorsiones espectrales permitirá descartar aquellos modelos que no produzcan distorsiones espectrales a partir de un cierto límite. A partir de los modos escalares obtenidos y por medio de la Ec.(2.100) se calculó el espectro de potencia primordial escalar y por medio de la Ec.(2.101) el espectro de potencia primordial tensorial, finalmente, a partir de ambos espectros se calculó el tensor-to-scalar ratio, a partir de la siguiente expresión

$$r = \frac{P_t}{P_R}.$$
(3.30)

En cada modelo, el espectro de potencia primordial escalar, el espectro de potencia primordial tensorial y el tensor-to-scalar ratio, han sido ajustados a la escala pivote ($k_* = 0.05$ Mpc⁻¹), donde en base a las observaciones, se tiene que la amplitud de las perturbaciones escalares (A_s) es $\ln(10^{10}A_s) = 3.040 \pm 0.016$ y r es acotado tal que r < 0.11, estos valores son reportados en [8]. La estructura del código empleado para el cálculo se muestra en la Fig.3.2. En la Fig.3.3 se muestra la estructura global del código empleado para el desarrollo de este trabajo.

Figura 3.2: Estructura del código empleado para resolver la ecuación de Mukhanov-Sasaki y para calcular los espectros de potencia primordial, k_s denota la ventana de números de onda empleada en el cálculo, k_{max} es el valor máximo en k_s y j es un contador. Los paralelogramos azules contienen variables de entrada o salida, los rombos verdes contienen condicionales y los rectángulos café claros denotan los procesos.

Figura 3.3: Estructura global del código empleado para resolver las ecuaciones del fondo cosmológico, la ecuación de Mukhanov-Sasaki y para calcular los espectros de potencia primordial, k_s denota la ventana de números de onda empleada en el cálculo, $k_{\rm max}$ es el valor máximo en k_s y j es un contador. Los paralelogramos azules contienen variables de entrada o salida, los rombos verdes contienen condicionales y los rectángulos café claros denotan los procesos.

Capítulo 4 Resultados y Discusión

En este sección se presentan los resultados del calculó numérico del espectro de potencia primordial escalar y del espectro de potencia primordial tensorial para los siguientes modelos inflacionarios: Large Field Inflation (LFI), steplike potential, α -attractor y Radion Gauge Inflation (RGI). Para analizar a profundidad cada modelo inflacionario, primero se resolvió numéricamente las ecuaciones del fondo cosmológico (Ecs. (3.11)) para obtener la evolución de diferentes parámetros necesarios para describir el Universo durante inflación, algunos de estos son: El radio comóvil de Hubble (R_H) , el parámetro de Hubble (H), el campo del inflatón (ϕ) y uno de los parámetros de *slow-roll* (ϵ); todos estos parámetros mencionados anteriormente se visualizan en función del número de e-fold (N). Una vez se conoce como evoluciona el fondo cosmológico, para cada modelo se resuelve la ecuación de Mukhanov Sasaki para las perturbaciones escalares y tensoriales (Ec.(3.20) para las perturbaciones escalares y Ec.(3.23)para las perturbaciones tensoriales), la solución de esta ecuación nos permite ver como evolucionan durante inflación tanto los modos escalares como los modos tensoriales, a partir de los modos escalares podemos calcular el espectro de potencia primordial escalar y a partir de los modos tensoriales podemos calcular el espectro de potencia primordial tensorial; ambos espectros nos dan información importante del origen de la estructura de nuestro Universo. Además, a través de las observaciones podemos conocer algunos parámetros importantes en inflación, como lo son: el tensor-to-scalar ratio (r) y el índice espectral (n_s) . Así, con el modelo inflacionario podemos obtener información de nuestro Universo en una etapa muy temprana. Es por eso que en este trabajo también se calculó numéricamente el tensor-to-scalar ratio (r)para cada modelo inflacionario analizado.

4.1. Large Field Inflation con p = 2/3.

El primer modelo presentado es el LFI el cual es caracterizado por el potencial inflacionario de la Ec.(2.71), para este modelo se empleó p = 2/3, ya que para $V(\phi) \propto \phi^{2/3}$ los valores de r y n_s se encuentran en el límite 2σ en el espacio de parámetros obtenidos con las observaciones de *Planck TT*, *TE*, *EE* + *lowE* + *lensing data* (ver Fig.2.2). El parámetro de masa empleado fue $M^4 = \frac{1}{2}m^2$, donde $m = 1 \times 10^{-7}$ M_{pl}, este valor es obtenido a través de normalización del CMB, el cual se estima que $M/M_{\rm pl} \approx 3 \times 10^{-3}$ [9]. El potencial de este modelo se presenta en la Fig.4.1.

Figura 4.1: Forma del potencial inflacionario para el modelo LFI con p = 2/3.

4.1.1. Evolución del Fondo Cosmológico

Las condiciones iniciales para los parámetros ϕ , ϕ_N y H obtenidas para este modelo se muestran en la Tab.4.1, donde el valor obtenido para ϕ_{end} fue $\phi_{\text{end}} \approx 0.47 \text{ M}_{\text{pl}}$.

$H_i (M_{\rm pl})$	ϕ_i (M _{pl})	ϕ_{Ni} (M _{pl})
8.47898×10^{-8}	8.95896	-0.07441

Tabla 4.1: Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para Large field inflation con p = 2/3.

Utilizando las condiciones iniciales se resolvieron las ecuaciones del fondo cosmológico (Ecs.(3.11)), obteniendo como solución la evolución de H, R_H , ϕ y ϵ , los cuales se muestran en la Fig.4.2.

Durante inflación el Universo se expande exponencialmente, es decir, $a(N) \propto e^N$, además, como se menciona anteriormente en este trabajo se empleó una ecuación de estado para el campo inflacionario con $\omega = -1$, es decir, $P = -\rho$, aplicando esta condición en la ecuación de continuidad (Ec.(2.26)) se obtiene que la densidad de energía es constante ($\rho = cte$), utilizando este resultado en una de las ecuaciones de Friedmann con k=0 (Ec.(2.20) en el cual $H^2 \propto \rho$) se obtiene que también el parámetro de Hubble es constante. La evolución del parámetro de Hubble calculado numéricamente para el modelo LFI se muestra en la Fig.4.2.a, como se puede observar durante casi toda la etapa inflacionaria (entre $N \approx 1$ y $N \approx 50$) el parámetro de Hubble varía muy poco (varía entre $H \approx 8 \times 10^{-8}$ y $H \approx 6.5 \times 10^{-8}$), es decir que $H \approx cte$ en esta etapa, esto es debido a que el parámetro de slow-roll (ϵ) en esta etapa es muy pequeño ($\epsilon \ll 1$, ver Fig.4.2.d), cumpliéndose la aproximación de *slow-roll*. Además, en esta etapa ϵ permanece aproximadamente constante, ya en la etapa final (entre $N \approx 50$ y $N \approx 60$), ϵ crece rápidamente por lo que la condición de slow-roll ($\epsilon \ll 1$) deja de cumplirse a medida N crece. Es por eso que en la solución numérica de H, para N grandes, H decrece rápidamente y deja de comportarse como $H \approx cte$.

Figura 4.2: Evolución de los parámetros que describen el fondo cosmológico durante inflación para el modelo inflacionario LFI con p = 2/3.

A partir de la evolución del parámetro de Hubble obtenida numéricamente, se puede calcular la evolución de R_H , el cual es importante para analizar como evoluciona el Universo causalmente conectado durante inflación, este radio comóvil de Hubble calculado numéricamente se muestra en la Fig.4.2.b. Como se puede observar R_H decrece exponencialmente durante inflación, por lo que ha medida el Universo se va expandiendo exponencialmente las regiones con contacto causal se van haciendo cada vez más pequeñas, obteniendo cada vez (durante inflación), más regiones que no tienen contacto causal entre ellas, pero, en algún punto en el tiempo estuvieron conectadas causalmente, esto permite explicar porque hoy en día tenemos un Universo bastante homogéneo e isotrópico, ya que nuestro Universo observable devió estar causalmente conectado en el pasado. Dada que $R_H = (aH)^{-1}$ y para la aproximación de slow-roll, $H \approx cte$ y $a \propto e^N$, es correcto esperar que R_H tenga un comportamiento exponencial decreciente tal y como se obtuvo en la solución numérica. Otro parámetro importante obtenido de la solución numérica de las ecuaciones del fondo cosmológico es la evolución de ϕ , esta evolución se muestra en la Fig.4.2.c. Lo que se observa es que durante inflación este campo escalar decrece, pasa de $\phi_i \approx 8.96 \text{ M}_{pl}$ a $\phi_{end} \approx 0.47 \text{ M}_{pl}$, durante casi toda inflación (entre $N \approx 1 \text{ y } N \approx 50$) se observa que ϕ decrece linealmente y ya en la parte final (entre $N \approx 50 \text{ y } N \approx 60$) decrece más rápidamente, lo que significa que a medida que el universo se va expandiendo la partícula que provoca esta inflación va perdiendo energía potencial, la cual es empleada para expandir el universo.

4.1.2. Evolución de las Perturbaciones Durante Inflación

Una vez obtenida la solución de las ecuaciones del fondo cosmológico se puede calcular la evolución de los modos escalares (u_{k_s}) , a partir de la solución numérica de la ecuación de Mukhanov-Sasaki (Ec.(3.20)), de la solución numérica de u_{k_s} se puede calcular la evolución de las perturbaciones del campo escalar, dado que

$$\delta\phi_{k_s} = \frac{u_{k_s}}{z}$$

De igual forma se puede obtener la evolución de los modos gravitacionales, a partir de la solución de la ecuación de Mukhanov-Sasaki para las perturbaciones tensoriales (Ec.(3.23)), análogo al caso escalar, se puede obtener las perturbaciones tensoriales del campo del inflatón a partir de u_{k_t} , puesto que

$$\delta\phi_{k_t} = \frac{u_{k_t}}{a}.$$

4.1.2.1. Perturbaciones Escalares

La solución obtenida para las perturbaciones escalares se muestra en la Fig.4.3, en la cual se muestran la evolución de u_{k_s} y $\delta\phi_{k_s}$ para un solo valor de k ($k = 4.85 \times 10^8 \text{ Mpc}^{-1}$), esto simplemente para ilustrar su comportamiento, pero, para el cálculo del espectro de potencia primordial escalar se ha obtenido la evolución de los modos escalares para diferentes valores de k.

La evolución de los modos escalares en función de N se presenta en la Fig.4.3.a, tal como se espera al inicio los modos escalares se comportan como ondas planas, debido a que al inicio de inflación $aH \ll k$, por lo que la ecuación de Mukhanov-Sasaki se aproxima a la ecuación del oscilador armónico $(u_{k_s}' + k^2 u_{k_s} = 0)$, pero a medida el universo se va expandiendo las regiones causalmente conectadas se van haciendo cada vez más pequeñas, provocando así que los modos escalares se vayan amortiguando. Cuando las oscilaciones salen del horizonte (aH = k), las amplitudes de las perturbaciones sufren freeze-out ("congelamiento") esto se puede ver en la evolución de la perturbaciones en el campo del inflatón (Fig.4.3.b), que como se puede observar su amplitud va decayendo hasta que se cruza el horizonte (línea vertical punteada) es allí cuando la amplitud converge a un valor constante, El comportamiento de los modos escalares una ves las perturbaciones salen del horizonte, es exponencial.

(a) Evolución de los modos escalares. (b) Evolución de las perturbaciones escalares.

Figura 4.3: Solución de la ecuación de Mukhanov-Sasaki para las perturbaciones escalares, ambas u_{k_s} y $\delta\phi_{k_s}$ se calcularon para un $k = 4.85 \times 10^8$ Mpc⁻¹, la línea vertical representa el horizonte cuando k = aH.

4.1.2.2. Perturbaciones Tensoriales

La solución obtenida para las perturbaciones tensoriales se muestra en la Fig.4.4. De manera análoga a como se hizo en las perturbaciones escalares, en las perturbaciones tensoriales también solo se presenta la evolución de u_{k_t} y $\delta\phi_{k_t}$ para un solo valor de k ($k = 4.85 \times 10^8$ Mpc⁻¹). Pero, para el cálculo del espectro de potencia primordial tensorial, se analiza la evolución de u_{k_t} y $\delta\phi_{k_t}$ para distintos valores de k.

(a) Evolución de los modos tensoriales.

(b) Evolución de las perturbaciones tensoriales.

Figura 4.4: Solución de la ecuación de Mukhanov-Sasaki para las perturbaciones tensoriales, ambas u_{k_t} y $\delta\phi_{k_t}$ se calcularon para un $k = 4.85 \times 10^8$ Mpc⁻¹, la línea vertical punteada representa el horizonte cuando k = aH.

La evolución de los modos tensoriales obtenida (ver Fig.4.4.a) es similar a la evolución de los modos escalares, esto es porque la ecuación de Mukhanov-Sasaki es muy similar para ambas perturbaciones. Al inicio los modos tensoriales se comportan como onda plana dado que la ecuación de Mukhanov-Sasaki se aproxima a ecuación del oscilador armónico, pero ha medida el Universo se va expandiendo estos modos tensoriales se van amortiguando, dado que el término a''/a en la ecuación de Mukhanov-Sasaki comienza a hacer efecto, una vez las perturbaciones salen del Horizonte la amplitud de las perturbaciones sufre *freeze-out* (ver Fig.4.4.b) y los modos tensoriales crecen exponencialmente, puesto que, $u_k = \delta \phi_k/a$ ($\delta \phi_k$ converge a un valor constante y *a* crece exponencialmente).

El efecto de *freeze-out* que sufren tanto las perturbaciones escalares como las perturbaciones tensoriales es muy importante ya que con la amplitud con la que salen las perturbaciones durante inflación es la misma amplitud con la que entran nuevamente cuando el Universo evoluciona según el big bang caliente, esto nos permite analizar estas perturbaciones hoy en día y así obtener información de nuestro Universo primitivo dado que con las características con las que entraron son con las que salieron.

4.1.3. Espectro de Potencia Primordial Escalar

El espectro de potencia primordial escalar contiene información estadística de la amplitud de las perturbaciones escalares cuando estas cruzan el horizonte ya que este está relacionado con la amplitud de los modos escalares por medio de la ecuación Ec.(2.100).

Figura 4.5: Espectro de potencia primordial escalar para el modelo LFI con p = 2/3, la curva sólida negra representa la solución numérica y la curva a trazos azul representa la solución análitica en la aproximación de *slow-roll*.

El espectro de potencia primordial escalar obtenido para el modelo LFI se presenta en la Fig.4.5, como se puede observar el espectro de potencia primordial escalar decrece levemente con k, ya que la ventana en k empleada es grande $(10^{-3} \text{ Mpc}^{-1} < k < 10^9 \text{ Mpc}^{-1})$, a lo largo de esta ventana el espectro de potencia primordial escalar varía de 2.4×10^{-9} a 0.8×10^{-9} aproximadamente. Además, D. Baumann [7], establece una relación analítica para P_R en la

aproximación de *slow-roll*, esta relación es

$$P_R = \left[\frac{1}{8\pi^2 M_{\rm pl}^2} \frac{H^2}{\epsilon}\right]_{k=aH},\tag{4.1}$$

esta solución analítica se presenta en la Fig.4.5 y como se puede observar la solución numérica encaja bastante bien con esta solución analítica. Además, en casi toda inflación ϵ es aproximadamente constante y H decrece levemente (esto en la solución numérica), por lo que, en base a la relación de la Ec.(4.1) se espera que en la aproximación de *slow roll* al igual que H, P_R decrezca levemente. A medida k crece, la amplitud de los modos escalares decrece levemente, además, podemos observar que el espectro de potencia primordial escalar sigue una ley de potencias, es decir, $P_r \propto k^{n_s-1}$, el cual haciendo cálculos sencillos se estima que $n_s = 0.973$. Observacionalmente $n_s = 0.9646 \pm 0.0042$ [8].

4.1.4. Espectro de Potencia Primordial Tensorial

De forma análoga a como se calculó el espectro de potencia primordial escalar se puede calcular el espectro de potencia primordial tensorial para el modelo LFI, esto se puede hacer a partir de la solución de los modos tensoriales por medio de la ecuación Ec.(2.101). Este espectro también tiene información estadísticas de la amplitud de los modos tensoriales cuando estos cruzan el horizonte.

Figura 4.6: Espectro de potencia primordial tensorial para el modelo LFI con p = 2/3, la curva sólida negra representa la solución numérica y la curva a trazos azul representa la solución análitica en la aproximación de slow-roll.

El espectro de potencia primordial tensorial calculado numéricamente se presenta en la

Fig.4.6, como se puede observar este decrece a medida que k crece, pero decrece levemente ya que la ventana en k es amplia (10^{-3} Mpc⁻¹ $< k < 10^{9}$ Mpc⁻¹) y a lo largo de esta ventana el espectro de potencia primordial tensorial varía de 2.38×10^{-10} a 1.8×10^{-10} aproximadamente. Además, D. Baumann [7], establece que el espectro de potencia primordial tensorial cuando k = aH y para la aproximación de *slow-roll* tiene el siguiente comportamiento

$$P_t(k) = \left[\frac{2}{\pi^2} \frac{H^2}{\mathrm{M}_{\mathrm{pl}}^2}\right]_{k=aH}$$

es decir, el espectro de potencia primordial tensorial en la aproximación de slow roll evoluciona como H^2 , esta solución analítica se presente en la Fig.4.6 con la curva a trazos de color azul, como podemos observar la solución analítica encaja bastante bien con la solución numérica. El espectro de potencial primordial tensorial obtenido muestra que la amplitud de los modos tensoriales en el horizonte disminuye con k y de forma análoga al espectro de potencia primordial escalar, el espectro de potencia primordial tensorial también sigue una ley de potencia, es decir, $P_t \propto k^{n_t}$, donde para este modelo y en base a la Fig.4.6 se estima que $n_t = -0.007$.

4.1.5. Tensor-to-Scalar Ratio

Figura 4.7: Tensor-to-scalar ratio para el modelo LFI con p = 2/3, la curva sólida negra representa la solución numérica, la curva a trazos azul representa la solución analítica en la aproximación de *slow-roll*, la recta vertical punteada ilustra la escala pivote y la recta horizontal punteada ilustra el límite superior de r restringido por las observaciones [8].

Finalmente, una vez calculado el espectro de potencia primordial escalar y el espectro de potencia primordial tensorial se puede calcular el tensor-to-scalar ratio (r) (por medio de la Ec.(3.30)). Delimitado por las observaciones, r < 0.11 en k_* ($k_* = 0.05 \text{ Mpc}^{-1}$) [8], también para r se calcula una solución analítica en la aproximación de slow-roll, donde $r = 16\epsilon$ [7], esta solución analítica se presenta en la Fig.4.7 con la curva a trazos azul. El r obtenido de forma numérica para el modelo LFI se muestra en la Fig.4.7. Como se puede observar r crece con k siguiendo un ley de potencia, además, la solución numérica coincide bastante bien con la solución analítica.

4.2. Steplike Potential

El segundo modelo analizado es el *steplike potential* el cual, es una extensión del modelo LFI con p = 2/3, en el que se le ha agregado un paso al potencial, este paso puede ser modelado introduciendo un término proporcional igual a $1 + \tanh\left(\frac{\phi-\phi_{\text{step}}}{\delta}\right)$ en el potencial $V = M^4 \left(\frac{\phi}{M_{\text{pl}}}\right)^{2/3}$ tal y como se muestra en la Ec.(2.72), esto con el fin de observar los effectos de esta extensión en los espectros de potencia primordial y poder posteriormente contrastar con observaciones futuras.

Este modelo consta de cuatro parámetros libres que son: El parámetro de masa (M), el parámetro ϕ_{step} que representa el valor de ϕ donde se da el paso, el parámetro β que representa la amplitud del paso, generalmente el valor de β es pequeño dado que como se verá más adelante este parámetro afecta en la evolución del parámetro de *slow-roll* (ϵ), por lo que un valor grande de β puede frenar inflación antes de N = 60 y finalmente el parámetro δ que determina el ancho del paso. El parámetro de masa (M) empleado en este potencial es el mismo al empleado en LFI.

En este sección se estudia el efecto que tiene este paso tanto en el espectro de potencia primordial escalar como en el espectro de potencia primordial tensorial, para ello se calcula ambos espectros para diferente valores de ϕ_{step} , $\delta y \beta$, específicamente por cada parámetro se tomaron 4 valores y cada uno de estos valores representará un escenario del modelo, en total se tienen 12 escenarios (la elección de cada escenario se detalla en las siguientes secciones).

4.2.1. Variación en ϕ_{step}

Primero, se estudió el efecto que provoca variar el parámetro ϕ_{step} en ambos espectros de potencia primordial (el escalar y el tensorial), los cuatro valores de ϕ_{step} escogidos para observar los efectos de esta variación son: $\phi_{\text{step}} = 7.3 \text{ M}_{\text{pl}}$, $\phi_{\text{step}} = 7.38 \text{ M}_{\text{pl}}$, $\phi_{\text{step}} = 7.47 \text{ M}_{\text{pl}}$ y $\phi_{\text{step}} = 7.55 \text{ M}_{\text{pl}}$, además, el valor de β se mantuvo fijo en $\beta = 0.07$ y δ se mantuvo fijo en $\delta = 0.056 \text{ M}_{\text{pl}}$. El potencial de cada uno de estos cuatro escenarios se muestra en la Fig.4.8, como se puede observar este potencial es similar al potencial del modelo *LFI* (curva de color negro de la Fig.4.8), con la diferencia que se genera una paso en el respectivo ϕ_{step} (por ejemplo el primer paso aparece en $\phi = 7.3 \text{ M}_{\text{pl}}$ (este valor en Fig.4.8 se visualiza con la línea vertical punteada negra) que corresponde al escenario con $\phi_{\text{step}} = 7.3 \text{ M}_{\text{pl}}$, lo mismo sucede con los demás escenarios), el paso generado en cada escenario tiene la misma amplitud y el mismo ancho dado que β y δ se mantienen fijos, además, en cada uno de los escenarios de este modelo se calculó que $\phi_{\text{end}} \approx 0.47$.

Figura 4.8: Forma del potencial inflacionario para el modelo *steplike potential* con ϕ_{step} variable en el rango de [7.3, 7.55], con $\beta = 0.07$ y $\delta = 0.056$ M_{pl}, las líneas verticales delimitan la región donde se generan los pasos.

4.2.1.1. Solución de las Ecuaciones del Fondo Cosmológico

Las condiciones iniciales calculadas numéricamente para los parámetros H, $\phi \neq \phi_N$ para estos primeros cuatro escenarios en los que se varía el parámetro del potencial ϕ_{step} , se muestran en la Tab.4.2, además, podemos observar que estas condiciones iniciales no varían demasiado entre cada escenario, dado que el paso se genera (para el rango de ϕ_{step} estudiado) en una étapa intermedia en inflación (de N = 20.8 a N = 22.8) y como se observará más adelante, H, R_H , $\phi \neq \epsilon$ en cada escenario, solo difieren en la región donde se da el paso, en otras regiones toman el mismo valor.

$\phi_{\rm step}({\rm M_{pl}})$	$H_i(M_{\rm pl})$	$\phi_i(M_{\rm pl})$	$\phi_{Ni}(M_{\rm pl})$
7.3	8.82707×10^{-8}	9.13273	-0.0720
7.38	8.82801×10^{-8}	9.13564	-0.072975
7.47	8.82863×10^{-8}	9.13758	-0.07296
7.55	8.82957×10^{-8}	9.14049	-0.07294

Tabla 4.2: Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para $\delta = 0.056 \text{ M}_{\rm pl}$ y $\beta = 0.07$, mientras que $\phi_{\rm step}$ se varía en los valores presentados.

Utilizando las condiciones iniciales de la Tab.4.2 se resolvió numéricamente las ecuaciones del fondo cosmológico para cada escenario de esta sección, la solución obtenida se muestra en la Fig.4.9, donde se puede observar la evolución de H, R_H , ϕ y ϵ .

(a) Evolución del parámetro de Hubble.

10-

10

20

21

22

23

(b) Evolución del radio comóvil de Hubble.

(d) Evolución de ϵ .

(c) Evolución del campo del inflatón, la línea punteada horizontal azul y la línea punteada horizontal negra ilustran la posición en ϕ donde se generan el primer y último paso, respectivamente.

Figura 4.9: Solución numérica de las ecuaciones del fondo cosmológico para el modelo *steplike potential* con ϕ_{step} variable y con β y δ fijos, la región sombreada roja (entre $N \approx 20.3$ y $N \approx 23.3$) delimita la región donde se generan los pasos para el rango de ϕ_{step} empleado.

La evolución de H se muestra en la Fig.4.9.a. Al igual que en LFI el universo se expande exponencialmente, es decir, $a \propto e^N$. Recordando que $\omega = -1$, por lo que, tanto ρ como Hson aproximadamente constantes en casi toda la etapa inflacionaria, es decir que H en este modelo evoluciona similar a H del modelo LFI, pero con la diferencia en que en este caso Hexperimenta un paso decreciente, en el escenario con $\phi_{\text{step}} = 7.3 \text{ M}_{\text{pl}}$ aparece en $N \approx 22.8$, en el escenario con $\phi_{\text{step}} = 7.38 \text{ M}_{\text{pl}}$ en $N \approx 22.5$, en el escenario con $\phi_{\text{step}} = 7.47 \text{ M}_{\text{pl}}$ en $N \approx 21.7$ y en el escenario con $\phi_{\text{step}} = 7.55 \text{ M}_{\text{pl}}$ en $N \approx 20.8$, esto es por el paso del potencial, el cual provoca un pico en ϵ en el mismo N que en H para el respectivo escenario, rompiendo brevemente la aproximación de *slow-roll* ($\epsilon \ll 1$). Se puede observar en la Fig.4.9 que para cada parámetro ($H, R_H, \phi \neq \epsilon$) el primer paso se genera para el escenario con $\phi_{\text{step}} = 7.55 \text{ M}_{\text{pl}}$ y a medida ϕ_{step} disminuye, la posición del paso se va corriendo hacia la derecha, esto es ya que durante inflación el campo del inflatón decrece (ver Fig.4.9.c), pero en el caso de la variación de ϕ_{step} el paso que se genera no sufre cambios en la amplitud ni en el ancho, dado que β y δ son fijos.

A partir de de la evolución de H se puede calcular la evolución de R_H , esta evolución se presenta en la Fig.4.9.b, como se mencionó antes, a crece exponencialmente, por lo que se espera que R_H decrezca exponencialmente, tal como se obtuvo en la solución numérica. Debido a este comportamiento exponencial el paso en este parámetro es poco perceptible a simple vista, sin embargo, si se genera el paso en el respectivo N_{step} (N_{step} representa el valor de N donde aparece el paso) de cada escenario, el cual los podemos observar si hacemos una expansión en la gráfica en la región donde se genera el paso (ver en la parte superior derecha de la Fig.4.9.b).

La evolución de ϕ (ver Fig.4.9.c) también presenta un paso decreciente en el respectivo ϕ_{step} , la línea horizontal punteada azul indica la posición del primer paso, el cual corresponde a $\phi_{\text{step}} = 7.55 \text{ M}_{\text{pl}}$ y la línea horizontal punteada negra indica la posición del último paso, el cual corresponde a $\phi_{\text{step}} = 7.55 \text{ M}_{\text{pl}}$. Además, vale rescatar que como podemos observar en la región sombreada de rojo (ver Fig.4.9) los parámetros H, R_H, ϕ y ϵ de cada escenario, solo difieren en la región donde se da el paso (entre $N \approx 20.3 \text{ y } N \approx 23.3$) en cualquier otra región cada parámetro toma el mismo valor en cada uno de los cuatro escenarios y finalmente, recapitulando el efecto que tiene ϕ_{step} en cada uno de los parámetros de la Fig.4.9 es desplazar la posición del pazo hacia la izquierda si ϕ_{step} aumenta o equvialentemente, hacia la derecha si ϕ_{step} disminuye.

4.2.1.2. Espectros de Potencia Primordial Escalar y Tensorial

Una vez conocida la evolución de H, R_H , ϕ y ϵ , se calculó la evolución de los modos escalares y tensoriales para diferentes valores de k, a partir de los modos escalares se calculó el espectro de potencia primordial escalar (P_R) para cada escenario por medio de la Ec.(2.100), estos se presenta en la Fig.4.10, como se puede observar hay tres regiones bien marcadas, la primera entre $k \approx 10^{-3} - 10 \text{ Mpc}^{-1}$, en esta región el espectro de potencia primordial escalar sigue una ley de potencias de la forma $P_R(k) \propto k^{n_s-1}$ (para los siguientes resultados esta expresión será referida como: " ley de potencia escalar"), similar que en el caso de *LFI*, además, en esta región el espectro de potencia toma el mismo valor en cada escenario, es decir, que no hay diferencias perceptibles y n_s es igual en cada uno de los escenarios, haciendo cálculos se estima que en esta región $n_s \approx 0.974$, es por ello que el espectro de potencia primordial escalar decrece muy levemente.

La segunda región está entre $k \approx 10 - 10^4 \text{ Mpc}^{-1}$, en esta región el espectro de potencia primordial escalar experimenta oscilaciones, que al inicio son oscilaciones fuertes pero a medida k crece estas oscilaciones se van amortiguando hasta que cesan, el efecto que tiene variar ϕ_{step} , es que el punto donde aparecen por primera vez las oscilaciones se va desplazando hacia la derecha a medida que ϕ_{step} decrece, las oscilaciones aparecen primero para el escenario en el que $\phi_{\text{step}} = 7.55 \text{ M}_{\text{pl}}$, posteriormente aparecen para el escenario en el que $\phi_{\text{step}} = 7.47 \text{ M}_{\text{pl}} \text{ y}$ así sucesivamente hasta el último escenario en el que $\phi_{\text{step}} = 7.30 \text{ M}_{\text{pl}}$. En los cuatro escenarios se mantuvo la forma del espectro, solo sufre un corrimiento hacia la derecha a medida ϕ_{step} decrece, vale rescatar que el rango elegido para ϕ_{step} se tomó de tal forma que las variaciones que presenta el espectro de potencia primordial escalar respecto a la ley de potencias están en la región entre $k \approx 1 - 10^4 \text{ Mpc}^{-1}$, esto por dos motivos, primero, observacionalmente sabemos (como se explicó en la sección 3.2.2) que en el rango de $k = 10^{-4} - 0.1 \text{ Mpc}^{-1}$ el espectro de potencia primordial escalar sigue una ley de potencias, es por eso si nuestro modelo produce una desviación en esta región estaría descartado y segundo, a través de las distorsiones espectrales se espera explorar la región entre $k \approx 1 - 10^4 \text{ Mpc}^{-1}$ [37] y puede ser que en esta región el espectro no necesariamente se comporte como en la región de $k = 10^{-4} - 0.1 \text{ Mpc}^{-1}$.

Figura 4.10: Espectro de potencia primordial escalar para el modelo steplike potential con ϕ_{step} variable en el rango de 7.30 M_{pl} a 7.55 M_{pl}, los parámetros δ y β se mantuvieron fijos en 0.056 M_{pl} y 0.07, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de P_R cambia.

Finalmente, la tercera region está entre $k \approx 10^4 - 10^9 \text{ Mpc}^{-1}$, en esta región el espectro de potencia primordial escalar vuelve a comportarse como una ley de potencia pero con un n_s distinto, el cual calculando, en esta región $n_s \approx 0.953$.

De manera análoga, a partir de los modos tensoriales se calculó el espectro de potencia primordial tensorial (P_t) por medio de la Ec.(2.101) este espectro de potencia primordial tensorial calculado numéricamente para cada escenario se presenta en la Fig.4.11. De manera similar al espectro de potencia primordial escalar, aquí también se pueden ver las mismas tres regiones bien marcadas. En primera región (entre $k \approx 10^{-3} - 10 \text{ Mpc}^{-1}$) el espectro de potencia primordial tensorial decrece con k y lo hace con una ley de potencias de la forma $P_t(k) \propto k^{n_t}$ (para los siguientes resultados esta expresión será referida como: " ley de potencia tensorial", para diferenciar la forma que toma el espectro de potencia primordial escalar y el espectro de potencia primordial tensorial), en esta región se estima que $n_t \approx -0.007$ y, además, no hubo diferencias entre los espectros de potencia primordial tensorial de cada escenario.

Figura 4.11: Espectro de potencia primordial tensorial para el modelo steplike potential con ϕ_{step} variable en el rango de 7.30 M_{pl} a 7.55 M_{pl}, los parámetros δ y β se mantuvieron fijos en 0.056 M_{pl} y 0.07, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de P_t cambia.

En la segunda región (entre $k \approx 10 - 10^4 \text{ Mpc}^{-1}$), el espectro de potencia primordial tensorial en cada escenario experimenta un fuerte paso decreciente y al final del paso termina oscilando débilmente, estas oscilaciones se amortiguan rápidamente hasta que cesan, este comportamiento es debido al paso en el potencial, el efecto que tiene ϕ_{step} en el espectro de potencia primordial tensorial es desplazar el paso hacia la derecha a medida ϕ_{step} disminuye, es decir, que el primer paso aparece para el escenario en el que $\phi_{\text{step}} = 7.55 \text{ M}_{\text{pl}}$, luego aparece para el escenario en el que $\phi_{\text{step}} = 7.47 \text{ M}_{\text{pl}}$ y así sucesivamente hasta el último escenario en el que $\phi_{\text{step}} = 7.30 \text{ M}_{\text{pl}}$. La amplitud del paso y su forma no se vieron modificadas dado que β y δ son fijos, finalmente en la tercera región (entre $k \approx 10^4 - 10^9 \text{ Mpc}^{-1}$) el espectro volvió a su comportamiento inicial (como ley de potencias), pero con un valor distinto de n_t , el cual en esta región $n_t \approx -0.012$.

Finalmente, una vez obtenido el espectro de potencia primordial escalar y el espectro de potencia primordial tensorial, estos pueden ser empleados para calcular el *tensor-to-scalar ratio* (r), este se presenta en la Fig.4.12. Podemos observar que en la primera región crece levemente con k, en base a una ley de potencias de la forma $r(k) \propto k^{n_t-n_s+1} = k^{0.019}$, obteniendo un r casi constante, de igual forma que en P_R y P_t , en esta región r no mostró diferencias entre los escenarios.

En la segunda región, r también experimentó oscilaciones fuertes, dado que en esta región los efectos que predominan son los del espectro de potencia primordial escalar, dado que es el que mayor rango tiene (este se extiende desde $P_R \approx 10^{-12}$ a $P_R \approx 10^{-7}$, mientras que el espectro de potencia primordial tensorial se extiende desde $P_t \approx 1.6 \times 10^{-10}$ a $P_t \approx$ 2.4×10^{-10} , como se puede observar la diferencia es significativa), además, a medida k crece estas oscilaciones se van amortiguando hasta que desaparecen, de igual forma que en P_R y en P_t el efecto que tiene ϕ_{step} en r es desplazar el punto donde inician las oscilaciones hacia la derecha a medida ϕ_{step} disminuye.

Figura 4.12: tensor-to-scalar ratio para el modelo steplike potential con ϕ_{step} variable en el rango de 7.30 M_{pl} a 7.55 M_{pl}, los parámetros δ y β se mantuvieron fijos en 0.056 M_{pl} y 0.07, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de r cambia.

En la tercera región r volvió a comportarse como una ley de potencias, pero en este caso con un exponente distinto, en el cual $r(k) \propto k^{0.035}$ y en esta región no hubo diferencias respecto al r de cada escenario.

4.2.2. Variación en δ

Luego se estudió los efectos producidos por el parámetro δ , los cuatro valores de δ elegidos son: $\delta = 0.02 \text{ M}_{\rm pl}$, $\delta = 0.11 \text{ M}_{\rm pl}$, $\delta = 0.21 \text{ M}_{\rm pl}$ y $\delta = 0.3 \text{ M}_{\rm pl}$, esta elección se hizo de tal forma que los efectos del paso sean perceptibles, ya que a medida se aumenta el valor de δ los efectos van desapareciendo, además, β se mantuvo fijo en $\beta = 0.075$ y $\phi_{\rm step}$ se mantuvo fijo en $\phi_{\rm step} = 7.425 \text{ M}_{\rm pl}$.

El efecto que tiene variar δ en el potencial se ilustra en la Fig.4.13, donde para cada escenario se genera un paso en el potencial con diferente ancho, siendo para el escenario con $\delta = 0.02 \text{ M}_{\rm pl}$ el paso menos ancho (o menos suave) y a medida δ crece, el paso se va suavizando, siendo el escenario con $\delta = 0.3 \text{ M}_{\rm pl}$ el más suave, los cuatro pasos tienen la misma amplitud (determinada por β) y son generados en el mismo ϕ ($\phi = 7.425 \text{ M}_{\rm pl}$) dado que $\phi_{\rm step}$ se mantiene fijo.

Figura 4.13: Forma del potencial inflacionario para el modelo steplike potential con δ variable en el rango de 0.02 M_{pl} a 0.3 M_{pl}, los valores de ϕ_{step} y β se mantuvieron fijos en 7.425 M_{pl} y en 0.075, respectivamente, la línea vertical punteada índica la posición en ϕ donde se genera el paso.

4.2.2.1. Solución de las Ecuaciones del Fondo Cosmológico

Las condiciones iniciales obtenidas para H, $\phi \neq \phi_N$, en los cuatro escenarios del parámetro δ se muestran en la Tab.4.3. La solución de las ecuaciones del fondo cosmológico para estas condiciones iniciales se muestra en la Fig.4.14, donde se presenta la evolución de H, R_H , $\phi \neq \epsilon$ (esto en analogía a como se hizo en la variación de ϕ_{step}).

$\delta(M_{\rm pl})$	$H_i(M_{\rm pl})$	$\phi_i(M_{\rm pl})$	$\phi_{Ni}(M_{\rm pl})$
0.02	8.81781×10^{-8}	9.04057	-0.07374
0.11	8.88728×10^{-8}	9.25593	-0.07203
0.21	8.93023×10^{-8}	9.39078	-0.07099
0.3	8.96118×10^{-8}	9.48876	-0.07026

Tabla 4.3: Condiciones iniciales para resolver las ecuaciones del fondo cosmológicos para $\phi_{\text{step}} = 7.425 \text{ M}_{\text{pl}}$ y $\beta = 0.075$, mientras que δ se varía en los valores presentados.

(d) Evolución de ϵ .

(c) Evolución del campo del inflatón, la línea horizontal punteada indica la posición central donde se da el paso en cada escenario que corresponde a $\phi = 7.425 \text{ M}_{pl}$.

Figura 4.14: Solución numérica de las ecuaciones del fondo cosmológico para el modelo steplike potential con δ variable y con ϕ_{step} y β fijos en 7.425 M_{pl} y 0.075, respectivamente.

De manera individual en la Fig.4.14.a se muestra la evolución de H para los cuatro escenarios descritos anteriormente, en la figura se puede observar una evolución similar que en el

caso de ϕ_{step} , pero con un comportamiento diferente en la región donde se generan los pasos (entre $N \approx 20$ a $N \approx 25$), en esta región lo que sucede es que el paso en cada escenario presenta diferentes inclinaciones, siendo el escenario con el menor δ ($\delta = 0.02 \text{ M}_{pl}$) donde se da el paso más abrupto y a medida que δ va aumentando este paso se va suavizando, provocando que dicho paso tenga una "mayor duración" en los escenarios con mayor δ y esto a su vez (como podemos observar en cada una de las evoluciones de la Fig.4.14) al ser más suave el paso, provoca que los efectos del paso se vayan atenuando. A partir de H se puede calcular la evolución de R_H , esta evolución se muestra en la Fig.4.14.b, como se puede observar este decrece exponencialmente con N, tal como se espera y de igual forma que en la variación de ϕ_{step} , R_H presenta los pasos de los distintos escenarios, pero debido a su carácter exponencial estos pasos se ven estirados y por ende poco perceptibles, siendo más perceptible en el escenario con $\delta = 0.02 \text{ M}_{pl}$, dado que su paso es más abrupto y sus efectos son más fuertes. El motivo de por que el paso es más abrupto en los escenarios con δ más pequeños se puede ver más claro en la evolución de ϵ (ver Fig.4.14.d), ya que como se puede observar para delta más pequeños este presenta un pico con mayor amplitud y menor ancho. Al tener una mayor amplitud significa que se da un mayor rompimiento de la condición de slow-roll ($\epsilon \ll 1$) y recordando, cuando se cumple la condición de slow-roll, $H = cte, \phi$ evoluciona suavemente y de manera linealmente, es decir, sin alteraciones bruscas en la evolución.

En el caso del campo del inflatón este decrece durante inflación (ver Fig.4.14.c), aquí también se genera un paso en cada escenario, de igual forma el escenario con $\delta = 0.02 \text{ M}_{\rm pl}$ presenta el paso más abrupto y el escenario con $\delta = 0.3 \text{ M}_{\rm pl}$ presenta el paso más suave y a medida δ crece los efectos del paso se van atenuando.

4.2.2.2. Espectros de Potencia Primordial Escalar y Tensorial

En esta sección se presenta la evolución del espectro de potencia primordial escalar, la evolución del espectro de potencia primordial tensorial y la evolución del tensor-to-scalar ratio (r) para cada escenario del modelo steplike potential con δ variable, los espectros de potencia primordial escalar se muestran en la Fig.4.15, similar que en la variación de ϕ_{step} aquí también tenemos tres regiones bien definidas, la primera región está entre $k \approx 10^{-3} - 10 \text{ Mpc}^{-1}$, la segunda región está entre $k \approx 10-10^6 \text{ Mpc}^{-1}$ y la tercera región está entre $k \approx 10^6 - 10^9 \text{ Mpc}^{-1}$.

Tanto en la primera región como en la tercera el espectro de potencia primordial escalar sigue la ley de potencia escalar, siendo $n_s = 0.974$ en la primera región y $n_s = 0.950$ en la tercera región, además, en estas regiones, P_R de cada escenario no presentó diferencias apreciables.

En la segunda región se generaron oscilaciones en el espectro de potencia primordial escalar de cada escenario, en cada escenario las características de estas oscilaciones fueron diferentes, siendo estás mas fuertes y con mayor número de oscilaciones en el escenario con $\delta = 0.02 \text{ M}_{\rm pl}$, además, se puede observar que a medida δ aumenta, las oscilaciones son más débiles y el número de oscilaciones va disminuyendo, siendo el escenario con $\delta = 0.3 \text{ M}_{\rm pl}$ el que menor número de oscilaciones presenta, como se puede observar este solo presenta un pico, otro efecto que se puede apreciar es que a medida δ aumenta también lo hace el ancho de las oscilaciones, esto debido a que el paso en el potencial se hace más ancho y a su vez más suave, es por eso que el número de oscilaciones también disminuye. El espectro de potencia primordial tensorial calculado numéricamente para cada escenario de δ se muestra en la Fig.4.16, como se puede observar aquí también aparecen tres regiones bien marcadas (regiones donde el comportamiento del espectro de potencia primordial es diferente). La primera región es la misma que en el espectro de potencia primordial escalar, pero la segunda y tercera región si se ven un poco modificadas dado que los efectos del paso en el espectro de potencia primordial tensorial se atenúan más rápido que en el espectro de potencia primordial escalar, es por ello que la segunda región está entre $k \approx 10 - 10^5$ Mpc⁻¹ y la tercera región está entre $k \approx 10^5 - 10^9$ Mpc⁻¹.

Figura 4.15: Espectro de potencia primordial escalar para el modelo steplike potential con δ variable en el rango de 0.02 M_{pl} a 0.3 M_{pl}, los parámetros ϕ_{step} y β se mantuvieron fijos en 7.425 M_{pl} y 0.075, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de P_R es diferente.

En la primera y tercera región el espectro de potencia primordial tensorial sigue la ley de potencia tensorial, con $n_t = 0.006$ en la primera región y $n_t = 0.013$, al igual que en los casos anteriores el espectro de potencia primordial tensorial es el mismo en los cuatro escenarios.

En la tercera región en cada escenario el espectro de potencia primordial tensorial experimenta un fuerte paso y al final de este paso experimenta pequeñas oscilaciones que se van amortiguando a medida que el número de onda (k) aumenta, los efectos que provoca variar δ en el espectro de potencia primordial tensorial son que el paso que se genera en el espectro es más abrupto en el escenario con $\delta = 0.02 \text{ M}_{\text{pl}}$ y a medida δ aumenta este paso se va suavizando, siendo el escenario con $\delta = 0.3 \text{ M}_{\text{pl}}$ el más suave, además, en las oscilaciones que se generan al final del paso, son más fuertes en el escenario con $\delta = 0.02 \text{ M}_{\text{pl}}$ y con mayor

número de oscilaciones, pero a medida δ aumenta estás van disminuyendo en amplitud, también disminuye el número de oscilaciones y se hacen más anchas, es decir, que aumenta su longitud de onda (no confundir esta longitud de onda con la longitud de onda de los modos), por lo que los efectos van desapareciendo con el crecimiento de δ , por ejemplo en el escenario con $\delta = 0.3$ M_{pl} estás oscilaciones prácticamente han desaparecido.

El motivo de que la segunda región sea más extensa en el espectro de potencia primordial escalar que en el espectro de potencia primordial tensorial es que en P_R inicialmente se ve afectada por un pico, pero P_t es afectado por un paso, y los picos son doblemente ensanchadas que el paso, dado que en el paso solo hay una caída, pero en el pico hay una caída y una subida.

Figura 4.16: Espectro de potencia primordial tensorial para el modelo *steplike potential* con δ variable en el rango de 0.02 M_{pl} a 0.3 M_{pl}, los parámetros ϕ_{step} y β se mantuvieron fijos en 7.425 M_{pl} y 0.075, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de P_t es diferente.

Finalmente, como se ha hecho en los casos anteriores, a partir de ambos espectros de potencia primordial (escalar y tensorial) se calcula el *tensor-to-scalar ratio* por medio de la Ec.(3.30), este se presenta en la Fig.4.17, las regiones que aparecen aquí son las mismas que en el espectro de potencia primordial escalar.

En la primera y tercera región, r se comporta como ley de potencia, con $r \propto k^{0.020}$ en la primera región y $r \propto k^{0.037}$ en la segunda región. Similar a los casos anteriores, en estas regiones r es igual en cada escenario.

En la tercera región, r experimenta fuertes oscilaciones dado que al igual que el r en la variación de ϕ_{step} , aquí los efectos que predominan son los del espectro de potencia primordial escalar (por la misma razón que en la variación de ϕ_{step}). En los escenarios con menor δ , r oscila con mayor amplitud y se generan mayor número de ondas, que en los escenarios con δ mayor, también aquí las oscilaciones se van amortiguando con el crecimiento de k.

De manera general, en los tres $(P_R, P_t \ge r)$ los efectos del paso son menores a medida que δ crece, esto por que el paso del potencial se hace más suave, generándose un menor rompimiento de la aproximación de *slow-roll* y por ende se desvían menos del comportamiento en base a una ley de potencia.

Figura 4.17: Tensor-to-scalar ratio para el modelo steplike potential con δ variable en el rango de 0.02 M_{pl} a 0.3 M_{pl}, los parámetros ϕ_{step} y β se mantuvieron fijos en 7.425 M_{pl} y 0.075, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de r es diferente.

4.2.3. Variación en β

Finalmente para concluir con el análisis del *steplike potential* se estudió los efecto de variar el parámetro β en el potencial, en este caso se empleó la misma mecánica que en el caso de ϕ_{step} y δ , es decir, que se tomaron cuatro valores de β y cada valor representa un escenario del potencial, en total se analizó cuatro escenarios, los valores de β utilizados son: $\beta = 0.01, \beta = 0.083, \beta = 0.16$ y $\beta = 0.23$, los parámetros ϕ_{step} y δ se mantuvieron fijos en $\phi_{\text{step}} = 7.425$ M_{pl} y $\delta = 0.055$ M_{pl}. El rango de β fue elegido de tal manera (como se verá en la evolución de ϵ , Fig.4.19.d) que inflación no se vea interrumpida en el intervalo de N = 0a N = 60, ya que esta es la condición necesaria para explicar el problemas del horizonte, el parámetro de δ se eligió tal que los efectos sean observado claramente, ya que como se mencionó anteriormente al aumentar este valor los efectos se van atenuando y finalmente el valor de ϕ_{step} se eligió el valor central de el rango descrito en la variación de ϕ_{step} , esto para garantizar que los efectos en los espectros de potencia primordial aparezcan en la ventana de k que va desde $k = 1 \text{ Mpc}^{-1}$ a $k = 10^4 \text{ Mpc}^{-1}$ (ya que es la ventana que se espera explorar experimentalmente con distorsiones espectrales).

En la Fig.4.18 se muestra la forma del potencial inflacionario de los cuatro escenarios del modelo steplike potential cuando se varía el parámetro β , de los tres parámetros ϕ_{step} , β y δ , la variación del parámetro β fue el que más afectó la forma del potencial. En cada escenario se generó un paso en el potencial en $\phi_{\text{step}} = 7.425 \text{ M}_{\text{pl}}$ y con un mismo ancho, determinado por $\delta = 0.055 \text{ M}_{\text{pl}}$, pero en cada escenario varió la amplitud del paso, siendo el escenario con $\beta = 0.01$ el que menor amplitud del paso se observa y el escenario con $\beta = 0.23$ es el que mayor amplitud del paso presenta, es decir, que a medida el parámetro β crece, la amplitud del paso también crece y caso contrario a medida el parámetro β disminuye la forma del potencial tiende a la del modelo LFI (ver Fig.4.18).

Figura 4.18: Forma del potencial inflacionario para el modelo steplike potential con β variable en el rango de 0.01 a 0.23, los valores de ϕ_{step} y β se mantuvieron fijos en 7.425 M_{pl} y en 0.055 M_{pl}, respectivamente, la línea vertical punteada índica la posición en ϕ donde se genera el paso.

4.2.3.1. Solución de las Ecuaciones del Fondo Cosmológico

Tal y como se ha hecho en los escenarios de la variación en ϕ_{step} , de la variación en δ y en el modelo *LFI*, en esta sección se presenta para estos últimos cuatro escenarios gobernados por la variación en β la evolución de H, R_H , ϕ y ϵ , las condiciones iniciales para H, ϕ y ϕ_N de estos cuatro escenarios se presentan en la Tab.4.4.

La solución numérica obtenida de resolver las ecuaciones del fondo cosmológico (Ec.(3.11)) aplicando las condiciones de la Tab.4.4 se muestra en la Fig.4.19 y de manera específica en la Fig.4.19.d se presenta como evoluciona ϵ , el pico que se genera debido al paso del potencial tiene el mismo ancho en cada escenario y está ubicado en en el mismo N ($N_{\text{step}} \approx 23$), pero la amplitud del pico aumenta a medida aumenta β , siendo el escenario con $\beta = 0.23$ donde mayor amplitud del pico se observa y por ende donde mayor rompimiento de la aproximación de *slow-roll* se genera (ya que es donde ϵ está más próximo a la unidad) y por lo cual los efectos del paso serán más intensos, además, debido a este comportamiento se intuye que si se sigue aumentando el valor de β eventualmente ϵ superará la unidad produciendo una interrupción parcial y prematura de la etapa inflacionaria.

β	$H_i(M_{\rm pl})$	$\phi_i(M_{\rm pl})$	$\phi_{Ni}(M_{\rm pl})$
0.01	8.54768×10^{-8}	9.04251	-0.07373
0.083	8.88504×10^{-8}	9.14243	-0.07292
0.16	9.19090×10^{-8}	9.17251	-0.07268
0.23	9.48412×10^{-8}	9.19094	-0.07254

Tabla 4.4: Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para $\phi_{\text{step}} = 7.425 \text{ M}_{\text{pl}} \text{ y } \delta = 0.055 \text{ M}_{\text{pl}}$, mientras que β se varía en los valores presentados.

En la Fig.4.19.a se presenta la evolución de H, como se puede observar, a diferencia que en la variación de ϕ_{step} y δ la curva de cada escenario están desfasadas respecto a la de los demás escenarios (esto sucede en cada una de las evoluciones de la Fig.4.19), el paso que se genera en la evolución de H (ubicado en $N = N_{\text{step}}$ al igual que en las demás evoluciones de la Fig.4.19) tiene una amplitud diferente en cada escenario, donde se puede observar que a medida β crece también lo hace la amplitud del paso, siendo en este caso el escenario con $\beta = 0.23$ el que mayor amplitud en el paso presenta. A partir de la solución de H podemos determinar como evoluciona R_H , esta evolución se presenta en la Fig.4.19.b, como se puede observar el radio comóvil decrece exponencialmente durante inflación en cada escenario, aquí también se genera el paso el cual es poco perceptible a simple vista, debido a su carácter exponencial, sin embargo al ampliar la gráfica si se observa y de hecho en la variación de β es donde mejor se observa el paso de R_H . Finalmente, en la Fig.4.19.c se presenta la evolución de ϕ para cada escenario de β , el paso que se genera en este parámetro se comporta de manera similar que en los otros parámetros, apareciendo un paso con el mismo ancho y a medida β crece también la amplitud del paso crece.

(c) Evolución del campo del inflatón, la línea horizontal punteada índica la posición en ϕ donde se genera el paso.

(d) Evolución de ϵ .

Figura 4.19: Solución numérica de las ecuaciones del fondo cosmológico para el modelo *steplike potential* con β variable en el rango de 0.01 a 0.3, los parámetros ϕ_{step} y δ se mantuvieron fijos en 7.425 M_{pl} y 0.055 M_{pl}, respectivamente.

4.2.3.2. Espectros de Potencia Primordial Escalar y Tensorial

Para la variación en β , el espectro de potencia primordial escalar obtenido se presenta en la Fig.4.20, el espectro de potencia primordial tensorial en la Fig.4.21 y el tensor-toscalar ratio en la Fig.4.22. Como se pude observar en los tres casos aparecen tres regiones en la cual el comportamiento es diferente, estas tres regiones coinciden con las tres regiones que aparecen en la variación de ϕ_{step} (el cual recordando, la primera región está entre entre $k \approx 10^{-3} - 10 \text{ Mpc}^{-1}$, la segunda región está entre $k \approx 10 - 10^4 \text{ Mpc}^{-1}$ y la tercera región está entre $k \approx 10^4 - 10^9 \text{ Mpc}^{-1}$, el cual en las Fig.4.20, Fig.4.21 y Fig.4.22 estas regiones están delimitadas por las líneas verticales punteadas), en la primera y tercer región, el espectro de potencial primordial escalar sigue la ley de potencia escalar, el espectro de potencia primordial tensorial la ley de potencia tensorial y $r \propto k^{0.019}$ y las curvas son iguales en cada escenario; en la tercera región $n_s = 0.95$, $n_t = -0.013$ y $r \propto k^{0.037}$, pero en esta región las curvas de cada escenario están desfasadas respecto a las curvas de los demás escenarios.

Figura 4.20: Espectro de potencia primordial escalar para el modelo steplike potential con β variable en el rango de 0.02 M_{pl} a 0.3 M_{pl}, los parámetros ϕ_{step} y δ se mantuvieron fijos en 7.425 M_{pl} y 0.055 M_{pl}, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de P_R es diferente.

En la segunda región, P_R experimentó oscilaciones que se amortiguan con el crecimiento de k, P_t experimentó un paso seguido de pequeñas oscilaciones que también se amortiguan con el crecimiento de k; en r dado que en esta región sus efectos son determinados por P_R , rtambién experimenta oscilaciones que se amortiguan, el motivo de que se atenúen los efectos a medida k incrementa es por que el paso de H tiene un ΔN (el cual se denotará como ΔN_{step} y $\Delta N_{\text{step}} \approx 22.25 - 21.5 = 0.75$) de duración el cual antes y después del paso se comporta aproximadamente como LFI, por ende también se tiene un ΔH (este ΔH es diferente en cada escenario y va depender de la amplitud del paso, es decir, que depende de β) donde los efectos del paso son relevantes. Dado que en el instante en que las perturbaciones salen del horizonte se tiene que k = aH, por ende también existe un Δk determinado por $\Delta(aH)$ y como a evoluciona exponencialmente por eso el Δk tiene un tamaño de $\Delta k \approx 9.99 \times 10^3$, en el caso de la variación en δ , ΔH es mayor dado que en el escenario con $\delta = 0.3$ M_{pl} hay una mayor duración, es decir, ΔN_{step} es mayor.

Las oscilaciones que aparecen en P_R son más fuertes y con mayor número de ondas en el escenario con $\beta = 0.23$ que en los demás; a medida β disminuye la amplitud y el numero de oscilaciones también lo hacen, siendo el escenario con $\beta = 0.01$ el que menor amplitud y

menos número de oscilaciones presenta, por que lo se puede afirmar que a medida el valor de β disminuye los efectos del paso se van atenuando en P_R (similar que en la variación de δ). Además, comparando entre las tres variaciones, los efectos del paso en el potencial que aparecen son más sensibles al cambio en β .

Figura 4.21: Espectro de potencia primordial tensorial para el modelo *steplike potential* con β variable en el rango de 0.02 M_{pl} a 0.3 M_{pl}, los parámetros ϕ_{step} y δ se mantuvieron fijos en 7.425 M_{pl} y 0.055 M_{pl}, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de P_t es diferente.

El paso que aparece en P_t tiene una mayor amplitud en el escenario con $\beta = 0.23$ que en los demás, y a medida β disminuye, la amplitud del paso también lo hace, es decir, que el comportamiento se va pareciendo más al de ley de potencia tensorial, como se puede observar en el escenario con $\beta = 0.1$, los efectos del paso son casi imperceptibles; las oscilaciones que aparecen al final del paso en P_t , siguen la misma lógica que en P_R , pero en P_t son más débiles, el motivo del desface de las curvas en la tercera región se puede ver claramente en la evolución de P_t y es debido a que el paso tiene una amplitud diferente en cada escenario.

Finalmente, las oscilaciones que aparecen en r, son más fuerte en el escenario con $\beta = 0.23$ y más débiles en el escenario con $\beta = 0.01$, además, se puede deducir el siguiente patrón, si β aumenta, la amplitud de las oscilaciones y el número de ondas también aumenta.

Figura 4.22: tensor-to-scalar ratio para el modelo steplike potential con β variable en el rango de 0.02 M_{pl} a 0.3 M_{pl}, los parámetros ϕ_{step} y δ se mantuvieron fijos en 7.425 M_{pl} y 0.055 M_{pl}, respectivamente, las líneas verticales punteadas dividen las tres regiones donde el comportamiento de P_t es diferente.
4.3. α -attractor

El siguente modelo analizado es el α -attractor con n = 1, este modelo es descrito por el potencial de la Ec.(2.73), para analizar la forma de los espectros de potencia primordial predichos por este modelo se tomaron dos escenarios, uno con $\alpha = 3$ y el otro con $\alpha = 6$, estos valores se tomaron en base a dos criterios, el primero, como se detalla en la sección 2.2.6.3, $\alpha > 1/4$, el segundo, $\alpha = 6$ es el que mejor contrasta con los datos de n_s y r de las observaciones de *Planck* + *BK18*, $\alpha = 3$ se tomó para ver los efectos al variar α ; la forma del potencial para cada escenario se muestra en la Fig.4.23, como se puede observar toda la curva es un paso similar al que se da en *steplike potential*, siendo más abrupta la subida en el escenario con $\alpha = 3$ que en el escenario con $\alpha = 6$.

Figura 4.23: Forma del potencial en el modelo α -attractor.

4.3.1. Solución de las Ecuaciones del Fondo Cosmológico

En este modelo el valor de ϕ_{end} presenta un leve cambio entre cada escenario, siendo que para el primer escenario $\phi_{end} = 1.33 \text{ M}_{pl}$ mientras que en el segundo escenario $\phi_{end} = 1.37 \text{ M}_{pl}$, las condiciones iniciales calculadas a partir de los valores de ϕ_{end} para H, $\phi \neq \phi_N$, para ambos escenarios están contenidas en la Tab.4.5.

α	$H_i(M_{\rm pl})$	$\phi_i(M_{\rm pl})$	$\phi_{Ni}(M_{\rm pl})$
3	$5.56992 imes 10^{-8}$	8.52841	-0.03385
6	5.38654×10^{-8}	10.08530	-0.04629

Tabla 4.5: Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para los dos escenarios del modelo α -attractor.

La evolución de H se muestra en la Fig.4.24.a (el cual su evolución y la de los demás parámetros es similar que en LFI), el efecto que tiene en H variar el parámetro α en el potencial es, primero, que H inicia en un valor mayor en el escenario con $\delta = 3$ con respecto al escenario con $\delta = 6$, además, a medida δ crece en la etapa final de inflación la caída es más suave.

Figura 4.24: Solución a las ecuaciones de fondo para ambos escenarios del modelo α -attractor. La curva celeste corresponde a $\alpha = 3$ y la curva naranja corresponde a $\alpha = 6$.

La evolución del radio comóvil de Hubble obtenido numéricamente se muestra en la Fig.4.24.b y su evolución es exponencialmente decreciente, en la Fig.4.24.c se muestra la evolución del campo del inflatón, el cual en ambos escenarios decrece y en cada escenario el ϕ inicia en valores diferentes, siendo que entre más grande es el parámetro α más grande será el valor inicial de ϕ , pero ambas curvas convergen en la etapa final.

4.3.2. Espectro de Potencia Primordial Escalar y Tensorial

El espectro de potencia primordial escalar obtenido numéricamente para los dos escenarios seleccionados del modelo α -attractor se presenta en la Fig.4.25, este sigue la ley de potencias escalar, con $n_s \approx 0.96$ en cada escenario, es por ello que este espectro de potencia primordial escalar no presentó diferencias significativas entre los dos escenarios.

Figura 4.25: Espectro de potencia primordial escalar para dos escenarios del modelo α -attractor, el primer escenario con $\alpha = 3$ y el segundo con $\alpha = 6$.

El espectro de potencia primordial tensorial obtenido numéricamente para el modelo α attractor en ambos escenarios ($\alpha = 3$ y $\alpha = 6$) se muestra en la Fig.4.25. Como se puede observar sigue la ley de potencias tensorial, con $n_t = -0.0017$ para el escenario con $\alpha = 3$ y $n_t = -0.0032$ para el escenario con $\alpha = 6$, en este caso si hubo diferencias entre cada escenario, el escenario con $\alpha = 3$ presenta un comportamiento más suave que el escenario con $\alpha = 6$.

Finalmente, se calcula el tensor-to-scalar ratio el cual se muestra en la Fig.4.27, el comportamiento general de r en función de k para el modelo es como el de una potencia, con $r \propto k^{0.0383}$ en el escenario con $\alpha = 3$ y $r \propto k^{0.0368}$ en el escenario con $\alpha = 6$ debido a esto hay un pequeño desface entre las curvas de cada escenario.

Figura 4.26: Espectro de potencia primordial tensorial para dos escenarios del modelo α -attractor, el primer escenario con $\alpha = 3$ y el segundo con $\alpha = 6$.

Figura 4.27: Tensor-to-scalar ratio para dos escenarios del modelo α attractor, el primer escenario con $\alpha = 3$ y el segundo con $\alpha = 6$.

4.4. Radion Gauge Inflation

Finalmente, el último modelo analizado es el RGI este modelo es caracterizado por el potencial de la Ec.(2.74), como se puede observar este consta de un parámetro libre (α), para describir los espectros de potencia primordial predichos por este modelo se tomaron dos valores de α , $\alpha = 5$ y $\alpha = 10$ (la condición para el parámetro α es que $\alpha > 1/2$), cada valor representa un escenario del modelo, la forma del potencial para ambos escenarios se muestra en la Fig.4.28, como se puede observar la forma del potencial RGI es parecida a la forma del potencial en α -attractor, pero en el caso de RGI, el potencial barre un rango más grande.

Figura 4.28: Forma del potencial inflacionario para el modelo RGI.

En este modelo el valor de ϕ_{end} es distinto en ambos escenarios, para el escenario con $\alpha = 5$ $\phi_{\text{end}} = 1.13 M_{\text{pl}}$ y para el escenario con $\alpha = 10 \phi_{\text{end}} = 1.22 M_{\text{pl}}$, las condiciones iniciales para cada escenario se muestran en la Tab.4.6.

α	$H_i(M_{\rm pl})$	$\phi_i(M_{\rm pl})$	$\phi_{Ni}(M_{\rm pl})$
5	$5.47345 imes 10^{-8}$	6.66238	-0.03039
10	$5.34673 imes 10^{-8}$	7.76128	-0.03669

Tabla 4.6: Condiciones iniciales para resolver las ecuaciones del fondo cosmológico para el modelo RGI.

La solución a las ecuaciones del fondo cosmológico obtenida numéricamente para ambos escenarios se muestra en la Fig.4.29, como se puede observa el comportamiento de cada parámetro $(H, R_H, \phi \ y \ \epsilon)$ es similar al del modelo α -attractor, además α produce el mismo efecto.

Figura 4.29: Solución a las ecuaciones del fondo cosmológico para ambos escenarios del modelo RGI, la curva celeste corresponde a $\alpha = 5$ y la curva naranja corresponde a $\alpha = 10$.

El espectro de potencia primordial escalar obtenido numéricamente para ambos escenarios se presentan en la Fig.4.30, al igual que en los casos anteriores sigue la ley de potencias escalar, donde $n_s \approx 0.968$ en el escenario con $\alpha = 10$ y $n_s \approx 0.967$ en el escenario con $\alpha = 5$, es por ello que hay una pequeña rotación en entre las curvas de cada escenario respecto a k_* .

El espectro de potencia primordial tensorial obtenido se presenta en la Fig.4.31, para este modelo, $n_t = -0.0013$ en el escenario con $\alpha = 5$ y $n_t = -0.0019$ en el escenario con $\alpha = 10$, debido a esto la rotación que presentan las curvas al rededor de k_* es mas apreciable que en el espectro de potencia primordial escalar, dado que hay una mayor diferencia en las potencias.

Finalmente, el r calculado numéricamente para ambos escenarios se muestra en la Fig.4.32, dado que P_R y P_t siguen un ley de potencia, es por ello que también r lo hace, siendo $r(k) \propto k^{0.0307}$ para el escenario con $\alpha = 5$ y $r(k) \propto k^{0.0311}$ en el escenario con $\alpha = 10$, los efectos de variar α son casi imperceptibles dado que la diferencia el la potencia es leve, pero si se observa la pequeña rotación al rededor de k_* .

Figura 4.30: Espectro de potencia primordial escalar para ambos escenarios del modelo RGI, el primer escenario corresponde a $\alpha = 5$ y el segundo a $\alpha = 10$.

Figura 4.31: Espectro de potencia primordial tensorial para ambos escenarios del modelo RGI, el primer escenario corresponde a $\alpha = 5$ y el segundo a $\alpha = 10$.

Figura 4.32: Tensor-to-scalar ratio para ambos escenarios del modelo RGI, el primer escenario corresponde a $\alpha = 5$ y el segundo a $\alpha = 10$.

Capítulo 5

Conclusiones y Recomendaciones

5.1. Conclusiones

En este trabajo se ha analizado como evoluciona el Universo en la época inflacionaria para diferente escenarios de los cuatro modelos inflacionarios siguientes: *LFI*, steplike potential, α -attractor y RGI, esto se hizo resolviendo las ecuaciones del fondo cosmológico para conocer la evolución de H, ϕ , R_H , ϵ y a, que indirectamente nos dicen como evoluciona ρ , P, entre otros parámetros. Pero, principalmente se ha analizado el comportamientos de las perturbaciones escalares y tensoriales generadas durante inflación, específicamente cuando estas cruzan el horizonte, esto se ha hecho a partir del cálculo de la evolución del espectro de potencia primordial escalar y del espectro de potencia primordial tensorial, el cual ambos tienen información estadística de la amplitud de las perturbaciones respectivas cuando cruzan el horizonte.

Los escenarios analizados se distribuyen de la siguiente manera: uno para *LFI*, doce para el modelo *steplike potential* (cuatro por cada parámetro libre siguiente: ϕ_{step} , $\delta \neq \beta$), dos para α -attractor (determinados por el parámetro α) y dos para *RGI* (determinados por un parámetro α , el cual no tiene relación con el α del α -attractor).

En cada escenario de los modelos LFI, α -attractor y RGI los espectros de potencia primordial escalar y tensorial siguen una ley de potencia, $P_R(k)$, sigue la ley de potencia escalar descrita en secciones anteriores. Para el escenario LFI, $n_s = 0.973$, con 0.82% de error respecto al dato observacional ($n_s = 0.965$), para el modelo α -attractor en ambos escenarios $n_s \approx 0.96$, repesentando un error del 0.52% respecto al dato observacional y para el modelo RGI, $n_s = 0.968$ para el escenario con $\alpha = 5$ (0.31% de error) y $n_s = 0.967$ para el escenario con $\alpha = 10$ (0.21% de error), de todos los escenario el escenario con $\alpha = 10$ de modelo RGIes el que mejor concuerda con las observaciones. En el caso de P_t , sigue la ley de potencia tensorial, donde para el escenario LFI, $n_t = -0.007$, para el modelo α -attractor, $n_t = -0.0017$ para el escenario con $\alpha = 3$ y $n_7 = -0.0032$ para el escenario con $\alpha = 6$ y para el modelo RGI, $n_t = -0.0013$ para el escenario con $\alpha = 5$ y $n_s = -0.0019$ para el escenario con $\alpha = 10$.

En el caso del modelo *steplike potential* en el cual el potencial presenta un paso, cuyas características vienen descritas por los parámetros ϕ_{step} , $\delta \ y \ \beta$, ambos espectros de potencia primordial y r, presentan tres regiones donde el comportamiento de estos es diferente, en la primera y tercera región, P_R sigue la ley de potencia escalar, donde en cada escenario, en la

primera región $n_s \approx 0.974$ (con aproximadamente 0.93 % de error respecto al dato observacional), mientras que en la tercera región, en cada escenario $n_s \approx 0.95$ (no tenemos referencia observacional para comparar en esta región); en estas regiones P_t sigue la ley de potencias tensorial, en el cual en la primera región en cada escenario $n_t \approx -0.007$, mientras que en la tercera región $n_t \approx -0.013$, en estas regiones en los escenarios de ϕ_{step} y δ , P_R no presenta diferencias, sin embargo para los escenarios de β , las curvas están desfasadas respecto a las demás debido a que el paso del potencia cambia de amplitud.

Los efectos del paso en el potencial aparecen en la segunda región, donde debido a este paso, P_R presenta oscilaciones que se amortiguan según k crece, este amortiguamiento depende de los parámetros $\delta y \beta$, haciéndose más violento cuando δ disminuye o cuando β aumenta, en el caso de δ sucede porque el paso se va suavizando cuando δ aumenta, esto provoca que los efectos del paso se vayan atenuado, mientras que en el caso de β sucede porque al aumentar β aumenta la amplitud del paso y por ende aumenta la amplitud de las oscilaciones provocando que se produzcan más oscilaciones, haciendo más lento el amortiguamiento, finalmente el parámetro ϕ_{step} genera un desplazamiento de las oscilaciones hacia números de onda menores al aumentarlo, es decir, ϕ_{step} modifica la ubicación donde aparecen estas oscilaciones. En el caso de P_t el efecto principal que provoca el paso en el potencial es que se genera un paso decreciente seguido de pequeñas oscilaciones que se amortiguan con el crecimiento de k en esta región, las características de este paso son determinadas por los parámetros ϕ_{step} , $\delta \neq \beta$, el parámetro ϕ_{step} modifica la posición donde aparece el paso, cuando este aumenta provoca un desplazamiento del paso hacia números de onda menores; el parámetro δ modifica el ancho del paso, haciendo el paso más suave cuando este aumenta, provocando que los efectos se vayan atenuando, ya que para $\delta = 0.3$ las pequeñas oscilaciones son casi imperceptibles en comparación con los demás escenarios y finalmente el parámetro β modifica la amplitud del paso, siendo mayor cuando este aumenta, cuando β disminuye se van atenuando los efectos del paso, dado que al tener una amplitud pequeña, el potencial del modelo steplike poten*tial* se va aproximar al potencial del model LFI y por ende el comportamiento de P_t se va aproximar al de la ley de potencia tensorial. De los tres parámetros, variar β es el que más modifica los efectos que aparecen en P_R y P_t debido al paso.

En cuanto a r en los modelos LFI, α -attractor y RGI se comporta en base a una ley de potencias, con potencia positiva, los mismo pasa en la primera y tercera región del modelo steplike potential, en la segunda región el comportamiento de r es dominado por el comportamiento de P_R , dado que varía (por mucho) en un mayor rango que en el que varía P_t y por ende r presenta oscilaciones que se amortiguan con el crecimiento de k.

5.2. Recomendaciones

Algunas recomendaciones para mejorar este trabajo o para el desarrollo de uno similar son:

- Explorar otros métodos numéricos para resolver las ecuaciones diferenciales y contrastar con los empleados en este trabajo, por dos motivos, uno, para medir la eficiencia del método usado (tiempo de ejecución, calidad de los datos, etc.), dos, para tener un contraste de los resultados.
- Aumentar el número de datos de k, para mejorar las curvas obtenidas (tomando en

cuenta que al aumentar este número también aumenta el tiempo de compilación).

• Elegir modelos que se ajusten bastante bien a los datos observacionales en la ventana de k entre $k = 10^{-4} \text{ Mpc}^{-1}$ a $k = 0.1 \text{ Mpc}^{-1}$.

5.3. Trabajo a futuro

Para continuar con esta investigación se plantea los siguientes trabajos.

- Calcular P_R y P_t , para otros modelos inflacionarios con características interesantes que puedan producir distorsiones espectrales importantes en la ventana de k entre k = 1 Mpc^{-1} y $k = 10^4$ Mpc^{-1} y además, que el espectro de potencia primordial escalar siga una ley de potencia en la ventana de k entre $k = 10^{-4}$ Mpc^{-1} a k = 0.1 Mpc^{-1} .
- Realizar el cálculo de las distorsiones espectrales ($\mu \in y$) para el modelo *steplike potential*, donde se recomienda usar el mismo espacio de parámetros empleado en esta tesis para los parámetros ϕ_{step} , $\delta \neq \beta$.
- Utilizar P_R del modelo *step potential* (siempre con p = 2/3) con la configuración de parámetros que mejor se ajuste a los datos observacionales, para la reconstrucción de la dinámica inflacionaria pero abordado desde la teoría de dispersión inversa.

Bibliografía

- Guth, A. H., "Inflationary universe: A possible solution to the horizon and flatness problems," Phys. Rev. D, vol. 23, pp. 347–356, 1981, doi:10.1103/PhysRevD.23.347.
- [2] "La métrica friedmann-lemaître-robertson-walker.".
- [3] Stoica, C., "Beyond the friedmann—lemaî tre—robertson—walker big bang singularity," Communications in Theoretical Physics, vol. 58, pp. 613–616, 2012, doi:10.1088/0253-6 102/58/4/28.
- [4] Nastase, H. y Skenderis, K., "Holography for the very early universe and the classic puzzles of hot big bang cosmology," Physical Review D, vol. 101, 2020, doi:10.1103/ph ysrevd.101.021901.
- [5] Clesse, S., "An introduction to inflation after planck: from theory to observations," 2015, doi:10.48550/ARXIV.1501.00460.
- [6] Lidsey, J. E., Liddle, A. R., Kolb, E. W., Copeland, E. J., Barreiro, T., y Abney, M., "Reconstructing the inflaton potential-an overview," Reviews of Modern Physics, vol. 69, no. 2, pp. 373–410, 1997, doi:10.1103/RevModPhys.69.373.
- Baumann, D., "Inflation," en Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pp. 523–686, 2011, doi:10.1142/9789 814327183_0010.
- [8] Planck Collaboration, "Planck 2018 results. X. Constraints on inflation," vol. 641, p. A10, 2020, doi:10.1051/0004-6361/201833887.
- [9] Martin, J., Ringeval, C., y Vennin, V., "Encyclopaedia inflationaris," 2013, doi:10.48550 /ARXIV.1303.3787.
- [10] Martin, J., Ringeval, C., Trotta, R., y Vennin, V., "The best inflationary models after planck," Journal of Cosmology and Astroparticle Physics, vol. 2014, pp. 039–039, 2014, doi:10.1088/1475-7516/2014/03/039.
- [11] Coles, P. y Lucchin, F., Cosmology: The Origin and Evolution of Cosmic Structure, Second Edition. 2002.
- Secrest, N. J., von Hausegger, S., Rameez, M., Mohayaee, R., Sarkar, S., y Colin, J., "A Test of the Cosmological Principle with Quasars,", vol. 908, no. 2, p. L51, 2021, doi:10.3847/2041-8213/abdd40.
- [13] Cheng, T., Relativity, Gravitation and Cosmology: A Basic Introduction. Oxford Master Series in Physics, OUP Oxford, 2010, https://books.google.com.sv/books?id=Q6p0D gAAQBAJ.
- [14] Melia, F., "The cosmic equation of state," Astrophysics and Space Science, vol. 356,

pp. 393–398, 2014, doi:10.1007/s10509-014-2211-5.

- [15] Carbajal, S., "inflación vectorial en universos cíclicos," 2018, https://hdl.handle.net/20. 500.12672/16358.
- [16] Martínez Somonte, G., "Inflación cósmica: modelos inflacionarios con déficit de potencia a gran escala y comparación con observaciones," 2016, http://hdl.handle.net/10902/9 647.
- [17] Planck Collaboration, "Planck 2018 results. VI. Cosmological parameters,", vol. 641, p. A6, 2020, doi:10.1051/0004-6361/201833910.
- [18] Elgaroy, O., "Cosmology I," en class notes for AST3220. Universidad de Oslo.
- [19] J. A. Vazquez Gonzalez, L. E. Padilla, and T. Matos, "Inflationary cosmology: from theory to observations," Rev. Mex. Fis. E, vol. 17, pp. 73–91, 2020, doi:https://doi.or g/10.31349/RevMexFisE.17.73.
- [20] Pieroni, M., Classification of inflationary models and constraints on fundamental physics. Theses, Université Paris 7 - Diderot, 2016.
- [21] Ade, P., Ahmed, Z., Amiri, M., Barkats, D., Thakur, R. B., Bischoff, C., Beck, D., Bock, J., Boenish, H., Bullock, E., Buza, V., Cheshire, J., Connors, J., Cornelison, J., Crumrine, M., Cukierman, A., Denison, E., Dierickx, M., Duband, L., Eiben, M., Fatigoni, S., Filippini, J., Fliescher, S., Goeckner-Wald, N., Goldfinger, D., Grayson, J., Grimes, P., Hall, G., Halal, G., Halpern, M., Hand, E., Harrison, S., Henderson, S., Hildebrandt, S., Hilton, G., Hubmayr, J., Hui, H., Irwin, K., Kang, J., Karkare, K., Karpel, E., Kefeli, S., Kernasovskiy, S., Kovac, J., Kuo, C., Lau, K., Leitch, E., Lennox, A., Megerian, K., Minutolo, L., Moncelsi, L., Nakato, Y., Namikawa, T., Nguyen, H., O'Brient, R., Ogburn, R., Palladino, S., Prouve, T., Pryke, C., Racine, B., Reintsema, C., Richter, S., Schillaci, A., Schwarz, R., Schmitt, B., Sheehy, C., Soliman, A., Germaine, T., Steinbach, B., Sudiwala, R., Teply, G., Thompson, K., Tolan, J., Tucker, C., Turner, A., Umiltà, C., Vergès, C., Vieregg, A., Wandui, A., Weber, A., Wiebe, D., Willmert, J., Wong, C., Wu, W., Yang, H., Yoon, K., Young, E., Yu, C., Zeng, L., Zhang, C., y and, S. Z., "Improved constraints on primordial gravitational waves using planck, WMAP, and BICEP/ keck observations through the 2018 observing season," Physical Review Letters, vol. 127, 2021, doi:10.1103/physrevlett.127.151301.
- [22] Rojas, C. y Hernández-Jiménez, R., "Inflation from a chaotic potential with a step," 2022, doi:10.48550/ARXIV.2205.00575.
- [23] Chen, X., Easther, R., y Lim, E. A., "Large non-gaussianities in single-field inflation," Journal of Cosmology and Astroparticle Physics, vol. 2007, pp. 023–023, 2007, doi: 10.1088/1475-7516/2007/06/023.
- [24] Adams, J., Cresswell, B., y Easther, R., "Inflationary perturbations from a potential with a step," Physical Review D, vol. 64, 2001, doi:10.1103/physrevd.64.123514.
- [25] Kallosh, R. y Linde, A., "Non-minimal inflationary attractors," Journal of Cosmology and Astroparticle Physics, vol. 2013, pp. 033–033, 2013, doi:10.1088/1475-7516/2013/1 0/033.
- [26] Kallosh, R. y Linde, A., "Universality class in conformal inflation," Journal of Cosmology and Astroparticle Physics, vol. 2013, pp. 002–002, 2013, doi:10.1088/1475-7516/2013/0 7/002.

- [27] Drewes, M. y Ming, L., "Connecting cosmic inflation to particle physics with litebird, cmb s4, euclid and ska," 2022, doi:10.48550/ARXIV.2208.07609.
- [28] Fairbairn, M., Honorez, L. L., y Tytgat, M. H. G., "Radion assisted gauge inflation," Physical Review D, vol. 67, 2003, doi:10.1103/physrevd.67.101302.
- [29] Unánue, A. D., "Revisión de la teoría de perturbaciones en relatividad general," Rev. Mex. Física, vol. 57, pp. 276–303, 2011, https://www.scielo.org.mx/pdf/rmf/v57n4/v5 7n4a1.pdf.
- [30] Mastache, J., Zago, F., y Kosowsky, A., "Inflationary dynamics reconstruction via inverse-scattering theory," Physical Review D, vol. 95, 2017, doi:10.1103/physrevd .95.063511.
- [31] Tiec, A. L. y Novak, J., "Theory of gravitational waves," en An Overview of Gravitational Waves, pp. 1–41, WORLD SCIENTIFIC, 2017, doi:10.1142/9789813141766_0001.
- [32] Liu, Z.-G., Zhang, J., y Piao, Y.-S., "Phantom inflation with a steplike potential," Physics Letters B, vol. 697, no. 5, pp. 407–411, 2011, doi:10.1016/j.physletb.2010.12.055.
- [33] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., y and, Y. V.-B., "SciPy 1.0: fundamental algorithms for scientific computing in python," Nature Methods, vol. 17, pp. 261–272, 2020, doi:10.1038/s41592-019-0686-2.
- [34] Agocs, F. J., "(py)oscode: fast solutions of oscillatory odes," Journal of Open Source Software, vol. 5, no. 56, p. 2830, 2020, doi:10.21105/joss.02830.
- [35] Chluba, J., Abitbol, M. H., Aghanim, N., Ali-Haïmoud, Y., Alvarez, M., Basu, K., Bolliet, B., Burigana, C., de Bernardis, P., Delabrouille, J., Dimastrogiovanni, E., Finelli, F., Fixsen, D., Hart, L., Hernández-Monteagudo, C., Hill, J. C., Kogut, A., Kohri, K., Lesgourgues, J., Maffei, B., Mather, J., Mukherjee, S., Patil, S. P., Ravenni, A., Remazeilles, M., Rotti, A., Rubiño-Martin, J. A., Silk, J., Sunyaev, R. A., y Switzer, E. R., "New horizons in cosmology with spectral distortions of the cosmic microwave background," Experimental Astronomy, vol. 51, pp. 1515–1554, 2021, doi:10.1007/s10686-021-09729-5.
- [36] Henríquez-Ortiz, R., Mastache, J., y Ramos-Sánchez, S., "Spectral distortions from axion

monodromy inflation," Journal of Cosmology and Astroparticle Physics, vol. 2022, p. 054, 2022, doi:10.1088/1475-7516/2022/08/054.

- [37] Chluba, J., Kogut, A., Patil, S. P., Abitbol, M. H., Aghanim, N., Ali-Haimoud, Y., Amin, M. A., Aumont, J., Bartolo, N., Basu, K., Battistelli, E. S., Battye, R., Baumann, D., Ben-Dayan, I., Bolliet, B., Bond, J. R., Bouchet, F. R., Burgess, C. P., Burigana, C., Byrnes, C. T., Cabass, G., Chuss, D. T., Clesse, S., Cole, P. S., Dai, L., de Bernardis, P., Delabrouille, J., Desjacques, V., de Zotti, G., Diacoumis, J. A. D., Dimastrogiovanni, E., Di Valentino, E., Dunkley, J., Durrer, R., Dvorkin, C., Ellis, J., Eriksen, H. K., Fasiello, M., Fixsen, D., Finelli, F., Flauger, R., Galli, S., Garcia-Bellido, J., Gervasi, M., Gluscevic, V., Grin, D., Hart, L., Hernandez-Monteagudo, C., Hill, J. C., Jeong, D., Johnson, B. R., Lagache, G., Lee, E., Lewis, A., Liguori, M., Kamionkowski, M., Khatri, R., Kohri, K., Komatsu, E., Kunze, K. E., Mangilli, A., Masi, S., Mather, J., Matarrese, S., Miville-Deschenes, M. A., Montaruli, T., Munchmeyer, M., Mukherjee, S., Nakama, T., Nati, F., Ota, A., Page, L. A., Pajer, E., Poulin, V., Ravenni, A., Reichardt, C., Remazeilles, M., Rotti, A., Rubino-Martin, J. A., Sarkar, A., Sarkar, S., Savini, G., Scott, D., Serpico, P. D., Silk, J., Souradeep, T., Spergel, D. N., Starobinsky, A. A., Subrahmanyan, R., Sunyaev, R. A., Switzer, E., Tartari, A., Tashiro, H., Thakur, R. B., Trombetti, T., Wallisch, B., Wandelt, B. D., Wehus, I. K., Wollack, E. J., Zaldarriaga, M., y Zannoni, M., "Spectral distortions of the cmb as a probe of inflation, recombination, structure formation and particle physics," 2019, doi:10.48550/ARXIV.1903.04218.
- [38] Fu, H., Lucca, M., Galli, S., Battistelli, E. S., Hooper, D. C., Lesgourgues, J., y Schöneberg, N., "Unlocking the synergy between CMB spectral distortions and anisotropies," Journal of Cosmology and Astroparticle Physics, vol. 2021, p. 050, 2021, doi:10.1088/1475-7516/2021/12/050.