T-UES 1503 1503 1995 ET-2

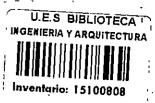
UNIVERSIDAD DE EL SALVADOR

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE INGENIERIA MECANICA

"DISEÑO Y CONSTRUCCION DE UN HORNO ELECTRICO PARA EFECTUAR LABORATORIOS

DE TRATAMIENTOS TERMICOS

BIBL OTEGA


PRESENTADO POR:

JUAN CARLOS ALFARO AGUILAR
VICTOR MANUEL MARQUEZ LINARES
RILDO PAZ NUÑEZ
MARTIN ERNESTO VELASCO RODRIGUEZ

15100808

INGENIERO MECANICO

CIUDAD UNIVERSITARIA, DICIEMBRE DE 1995.

UNIVERSIDAD DE EL SALVADOR.

RECTOR:

DR. JOSE BENJAMIN LOPEZ GUILLEN.

SECRETARIO GENERAL:

LIC. ENNIO ARTURO LUNA.

FACULTAD DE INGENIERIA Y ARQUITECTURA.

DECANO:

ING. JOAQUIN ALBERTO VANEGAS AGUILAR.

SECRETARIO:

ING. JOSE RIGOBERTO MURILLO CAMPOS.

ESCUELA DE INGENIERIA MECANICA.

DIRECTOR:

ING. RIGOBERTO VELASQUEZ PAZ.

UNIVERSIDAD DE
FL SALVADOR
ESHELA DE RECHIEGA
MECANICA
Facultad de Ingenieria
y Argultactura

TRABAJO DE GRADUACION APROBADO POR:

COORDINADOR Y ASESOR: ING. SATURNINO GAMEZ GUADRON.

ASESOR: ING. GUSTAVO SALOMON TORRES RIOS LAZO.

ASESOR: ING. JAGUSTIN BARRERA CARPIO.

AL SER SUPREMO: Que me concedió el don maravilloso de la

vida, y guia mi camino para cumplir con mi

mision.

A MI MADRE : IMELDA AGUILAR V. DE ALFARO

Quien con su sencillez y coraje de

campesina supo enseñarme a tener fe en

Dios, y luchar para obtener mejores

condiciones de vida.

A MI PADRE : VICTOR MANUEL ALFARO (Q.D.D.G.)

Que siempre estuvo junto a mi madre y fue

su apoyo.

A MI TIO-PADRÍNO: JESUS AMILCAR ALFARO

Quien tuvo siempre una frase de aliento y

me incentivó para seguir adelante.

A MIS HERMANOS: NICDAS ALBERTO, ANA MARIA Y JUANA CATALINA

Con quienes compartí buenos y malos

momentos, pero siempre salimos adelante.

A MIS SOBRINAS : KARLA GABRIELA Y YANCY CAROLINA

Que con su inocencia y sonrisa me hicieron

descubrir que en todo principio de vida hay

amor. '

JUAN CARLOS.

Este triunfo lo dedico a:

DIOS OMNIPOTENTE : Por darme la luz y sabiduría para

conquistar el largo camino de la vida,

por guiarme y concederme fortaleza

para salir adelante en todo momento.

MI QUERIDA MADRE : Porque siempre me concedió su apoyo

incondicional sin importar el

sacrificio realizado. En este sencillo

pero gran homenaje yo reconozco tu

sacrificio y amor que siempre me has

brindado.

MI PADRE : Por ser el pilar fundamental de mi

triunfo, nunca exigió nada, pero

siempre reconoció el sacrificio

realizado, a pesar de todos los

inconvenientes siempre estuvo a mi

lado, ahora celebramos este triunfo.

MIS HERMANOS : Que de alguna u otra forma me

ayudaron, les dedico este triunfo

DE MAS FAMILIARES Y AMIGOS

VICTOR MANUEL.

A DIOS TODO PODEROSO: Porque sin la fe en ti no hubiera sido

posible superar problemas que casi me

alejan de este triunfo, te pido que

siempre ilumines mi vida...

A LA VIRGEN MARIA : A tí que eres la madre de todos los

cristianos, que siempre has cuidado de

mi y has sido mi auxilio y mi guia.

A MI MADRE : Que siempre tuvo fe en mi, por su

sacrificio, especialmente a ella le

dedico este triunfo, porque más que

mio es un triunfo de ella.

A ZAYRA : Que siempre a esperado este momento,

porque yo se que este logro le llena

de mucha alegría y orgullo.

A MIS HIJOS : Porque mis sacrificios también han

sido sacrificios de ellos, y han sido

la motivación principal para este

triunfo.

A ROXANA : Por su esfuerzo y sacrificio.

A MI PADRE Y ABUELA: . Con mucho cariño.

A MIS COMPANEROS DE TRABAJO:

Porque me apoyaron y aconsejaron para seguir adelante, ellos saben que les agradezco mucho por creer en mi.

MARTIN ERNESTO.

A DIOS TODOPODEROSO: Porque me distes fuerza en los

momentos de flaqueza y oistes mis

oraciones para seguir adelante.

A MI MADRE : Porque me ayudaste en los momentos más

dificiles, brindandome tu cariño,

sacrificio y dedicación.

A ti te dedico este triunfo, porque mi

triunfo es tu triunfo.

A MI PADRE (Q.E.P.D): Porque me brindó su apoyo en los

inicios de mi carrera, deseándole que

esté gozando de la bondad de Dios.

A MIS HERMANOS : Porque siempre desearon que llegara

este momento y me ayudaron a superar

obstáculos, por lo cual les estoy muy

agradecido.

· A MIS COMPAÑEROS DE TRABAJO:

Que con sus consejos y apoyo me animaron a seguir adelante, es por ello que les doy mis más sinceros agradecimientos.

RILDO.

INDICE.

Int	roducción	i
0bj	etivos	· v
CAP	ITULO 1. MARCO TEORICO	
1.1	Tratamientos Térmicos. Generalidades	1
	1.1.1 Principales Tratamientos Térmicos	1
	1.1.1.1 Recocido o Recocido Total	1
	1.1.1.2 Normalizado	4
	1.1.1.3 Temple	6
	1.1.1.4 Revenido	8
	1.1.1.5 Tratamientos Térmicos Superficiales	10
1.2	Generalidades sobre Hornos para Tratamientos	
	Térmicos	14
	1.2.1 Hornos de Control Manual	15
	1.2.1.1 Fraguas	15
	1.2.1.2 Horno de Cámara	16
	1.2.1.3 Horno de Mufla	16
	1.2.1.4 Horno de Semimufla	1.6
	1.2.2 Hornos de Atmosfera Controlada	17
	1.2.3 Hornos de Baños Líquidos	19
	1.2.3.1 Baño de Plomo	19
	1.2.3.2 Baños de sales	20
	1.2.4 Calentamiento por Flama	20
	1.2.5 Hornos de Tratamiento Térmico al Vacio	21
1.3	Hornos Eléctricos. Clasificación	22

	·	
	1.3.1 Hornos de Inducción	24
	1.3.1.1 Hornos de Inducción sin Núcleo	27
	1.3.1.2 Hornos de Inducción con Núcleo	28
	1.3.2 Hornos de resistencias	29
CAPI	TULO II. SELECCION, DIMENSIONAMIENTO Y ANALISIS	
2.1	Materiales Refractarios	32
	2.1.1 Clasificación de los refractarios de	
	acuerdo a su uso en los laboratorios de	
•	Tratamientos Térmicos	33
	2.1.2 Tipos y Propiedades de Algunos Refractarios	34
	2.1.3 Formas de Refractarios Disponibles	38
	2.1.4 Selección de Materiales Refractarios	39
	2.1.5 Espesor de pared	40
2.2	Dimensionamiento del Horno	42
	2.2.1 Dimensionamiento de la Cámara	42
	2.2.2 Dimensiones Exteriores del Horno	45
2.3	Selección de la Temperatura de Diseño	47
2.4	Análisis de Transferencia de Calor en estado	
	Estacionario	48
	2.4.1 Transferencia de calor por conducción	
	a través de una pared plana	48
	2.4.2 Convección	54
	2.4.3 Radiación	57
2.5	Cálculo de pérdidas de calor en Estado	
	Estacionario	63

	2.5.1 Análisis de Transferencia de calor por	
	las paredes verticales	65
	2.5.2 Transferencia de calor por el techo	
	o pared Superior	. 72
	2.5.3 Transferencia de calor por la Base	
	del Horno	76
	2.5.4 Pérdidas Totales	78
2.6	Requerimientos de calor para el horno y la carga	78
	2.6.1 Calor Almacenado por los Ladrillos	78
2.7	Selección de la Resistencia Eléctrica	82
2.8	Potencia Requerida	88
2.9	Control de Temperatura	92
	2.9.1 Selección del Control de Temperatura	103
2.10	Termocupla	103
	2.10.1 Selección de Termocupla	116
CAPI	TULO III. DISENO DEL HORNO	
3.1	Estructura Metálica	117
	3.1.1 Armazón Metálica del Horno	117
	3.1.1.1 Cálculo de la resistencia de	
	la soldadura	117
	3.1.1.2 Descripción de la Estructura	124
	3.1.2 Descripción de puerta y Mirilla	122
3.2	Panel de Control Eléctrico	123
3.3	Resistencia Eléctrica	124
3.4	Disposición de los Elementos de Control	131
3.5	Diagrama Eléctrico	133

CAP	ITULO IV. PROCESO DE FABRICACION DEL HORNO.	
4.1	Materia Prima	135
4.2	Estructura Metálica	136
4.3	Cubierta Protectora	139
4.4	Pared de Ladrillo Refractario y Aislante	141
4.5	Control Electrico	146
4.6	Matriz de costos	148
CAP)	TULO V. DETERMINACION EXPERIMENTAL DE LOS PARAMETROS DEL HORNO	
5.1	Curva de Calentamiento	149
5.2	Potencia Consumida	150
5.3	Temperatura de Operación	156
5.4	Mantenimiento y Operación	156
5.5	Guias de laboratorio	161
5.6	Análisis Económico de los Ensayos	169
	5.6.1 Depreciación del Horno	172
	5.6.2 Evaluación del Funcionamiento	177
	,	
•	CONCLUSIONES Y RECOMENDACIONES	179
	REFERENCIAS BIBLIOGRAFICAS	180
ANEX	·	
1:	DIAGRAMA PRACTICO DE EQUILIBRIO Fe - C	184
2 :	CARACTERISTICAS DEL ACERO AISI 1045	185
3:	PROPIEDADES DE LADRILLOS REFRACTARIOS	186
4:	DATOS TECNICOS SOBRE FIBRAS CERAMICAS	107

5 : VENTAJAS DE FIBRAS CERAMICAS	188
6 : PROPIEDADES FISICAS Y QUIMICAS DE LAS	
ALEACIONES RESISTENTES AL CALOR	189
7 : TABLAS DE CONVERSION DE TEMPERATURAS A	
MILIVOLTIOS PARA TERMOCUPLAS TIPO K	191
8 : CURVA DE CALIBRACION DEL HORNO	194
ANEXO B: DIBUJOS TECNICOS - MECANICOS	
3-1 : LISTA DE PIEZAS	196
3-2 : DIBUJOS	197

GLOSARIO DE TERMINOS

INTRODUCCION.

En el País, con el desarrollo industrial y la liberalización de la economía, resulta necesario contar con el recurso humano técnico - científico para hacer frente a las necesidades y retos que ésta plantea en los actuales niveles de competitividad.

Actualmente la Universidad de El Salvador, en la Facultad de Ingeniería y Arquitectura, específicamente la Escuela de ingeniería Mecánica se encuentra desarrollando proyectos y trabajos prácticos en los que se apliquen de manera práctica los conocimientos adquiridos durante el desarrollo de la carrera como parte de la formación del estudiante y futuro profesional.

Dadas las circunstancias anteriores y el desarrollo cada vez mayor de la industria salvadoreña en el campo de los tratamientos térmicos, se plantea la necesidad de avanzar en esa dirección.

Esto requiere de una actualización y especialización en lo que son los tratamientos térmicos, así como el diseño y construcción del equipo idóneo.

Es así como se da paso a la realización del presente Trabajo de Graduación titulado: "Diseño y Construcción de un Horno Eléctrico para Efectuar Laboratorios de Tratamientos Térmicos", que además de cumplir con los requerimientos

anteriores, se provee a la Escuela de Ingeniería Mecánica de un Horno eficiente e idóneo para realizar prácticas de Tratamientos Térmicos.

El trabajo incluye además del horno construido un trabajo bibliográfico donde se da una fundamentación teórica, diseño y secuencia de la construcción. Básicamente el trabajo bibliográfico está dividido en cinco capítulos.

En el Primer Capítulo denominado: "Marco Teórico", se incluyen los conceptos y principales tratamientos térmicos, así como los hornos usados para tal fin.

En el Segundo Capítulo se describen los materiales refractarios, llegándose a seleccionar el tipo a utilizar en la construcción del horno.

También se dimensiona la cámara y el exterior del horno, seguidamente se fija la temperatura de diseño, haciendo después un análisis de transferencia de calor.

Es importante también seleccionar el tipo de resistencia y el control de temperatura dando para ello una breve descripción de los tipos que existen.

El Tercer Capítulo constituye el Diseño del Horno, dimensionando todas las partes de las que está formado: Armazón metálica, estructura de ladrillo, diagrama eléctrico, etc.

Siguiendo una secuencia lógica se describe el proceso de fabricación en el Cuarto Capítulo indicando cada operación para llegar a su construcción final.

Acá se especifica la cantidad y tipo de material utilizado, llegándose al final del capitulo a un costo monetario aproximado del horno construido.

El Quinto Capítulo es exclusivamente de datos experimentales del horno, guías de laboratorio y costo económico de ensayos de tratamientos térmicos y pruebas metalográficas.

Al final del texto se ubican los anexos y un glosario de los términos técnicos empleados.

OBJETIVOS.

OBJETIVO GENERAL.

Aplicar los conocimientos adquiridos a lo largo de la carrera en el Diseño y Construcción de un Horno Eléctrico para Efectuar Laboratorios de Tratamientos térmicos.

OBJETIVOS ESPECIFICOS.

- 1.- Efectuar el análisis y diseño con base a los requerimient s de laboratorio.
- 2.- Construir un modelo que sea funcional y económico.
- 3.- Efectuar pruebas para determinación de parámetros de funcionamiento del horno de resistencia eléctrica.
- 4.- Evaluar el comportamiento del horno a fin de sugerir recomendaciones para mejorar su funcionamiento.

CAPITULO I

MARCO TEORICO

1.1 TRATAMIENTOS TERMICOS. GENERALIDADES.

Se define al tratamiento térmico del acero como: "Una combinación de operaciones de calentamiento y enfriamiento de tiempos determinados y aplicados a un metal o aleación en el estado sólido en una forma tal que producirá las propiedades deseadas".

De lo anterior se deduce que el tiempo y la temperatura son los factores principales que hay que fijar siempre de antemano, de acuerdo con la composición, el tamaño de las piezas y las características que se desean obtener.

1.1.1 PRINCIPALES TRATAMIENTOS TERMICOS

Los tratamientos térmicos más utilizados son: el recocido, normalizado, temple, revenido y los tratamientos térmicos superficiales tales como: La cementación, nitruración, etc.

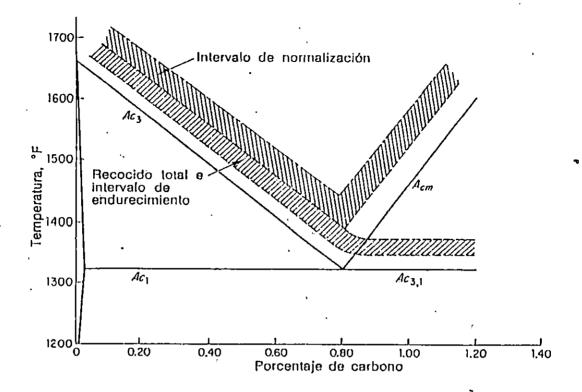
1.1.1.1 Recocido o Recocido Total

El recocido es un proceso en el cual hay un calentamiento de un acero hasta una temperatura adecuada, ya establecida durante un tiempo determinado, prosiguiendo después a un enfriamiento lento, de preferencia en el horno.

para los aceros la temperatura de recocido total es aproximadamente 27°C por encima de la linea $A_{\oplus 3}$ y $A_{\oplus 3,1}$, como se muestra en la fig.1.1

Entre los propósitos del recocido total están: Refinar, el grano, proporcionar suavidad en el maquinado y eliminar tensiones residuales. Existen otros tipos de recocido tales como: recocido de esferoidización, recocido para eliminación de esfuerzos y recocidos de proceso.

El recocido por esferoidización es un tratamiento térmico que mejora la maquinabilidad, especialmente para los aceros hipereutectoides (aceros con contenido de carbono mayores a 0.8%). Este proceso se puede lograr por los métodos siguientes:


- 1- Mantener por un tiempo prolongado a una temperatura justamente por debajo de la linea critica inferior.
- 2- Calentar y enfriar alternadamente entre las temperaturas que están justamente por encima o por debajo de la línea crítica inferior.
- 3- Calentar a una temperatura por encima de la linea critica inferior y luego enfriar muy lentamente en el horno.

Mantener el acero durante un tiempo prolongado a elevada temperatura despedazará completamente la estructura perlitica y la red de cementita. La cementita se convierte en esferas.

La estructura esferoidizada resultante es deseable cuando es importante una dureza mínima y una máxima maquinabilidad en aceros al alto carbono.

El recocido para eliminación de esfuerzos en los aceros es un proceso útil para eliminar esfuerzos residuales debido a un fuerte maquinado u otros procesos de trabajo en frío. Generalmente se lleva a cabo a temperaturas por debajo de la línea crítica inferior (540 °C a 650°C).

El recocido de proceso es un tratamiento térmico que se utiliza en las industrias de la lámina y alambre, llevándose a cabo al calentar el acero a una temperatura por debajo de la línea crítica inferior (540 - 675°C). Se aplica después del trabajo en frío y suaviza el acero; es muy parecido al recocido por eliminación de esfuerzos.

Ann:
Linea critica superior del lado hipoeutectoide de los aceros
Linea critica inferior del lado hipoeutectoide de los aceros
Linea critica superior del lado hipereutectoide de los aceros
Linea critica inferior del lado hipereutectoide de los aceros
Linea critica inferior del lado hipereutectoide de los aceros del diagrama hierro-carburo de hierro

Fig. 1.1 Intervalo de austenización para el recocido, normalizado y temple de los aceros al carbono (ref.1, cap.8).

1-1.1.2 Normalizado

El normalizado consiste en calentar el acero a una temperatura aproximadamente 56°C por encima de la línea crítica superior Aca, Acm (ver fig. 1.1), luego se enfría en

aire quieto hasta la temperatura ambiente.

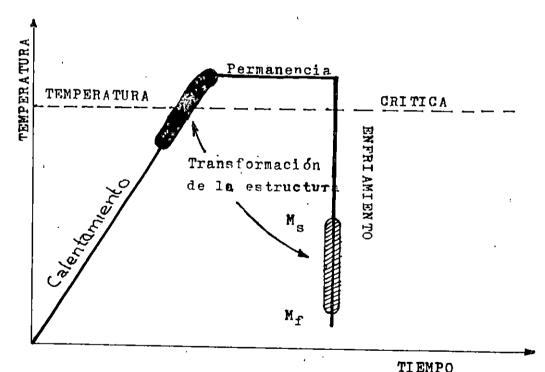

El propósito del normalizado es producir un acero más duro y más fuerte que el obtenido por recocido. En la tabla 1.1 se puede observar las características de los aceros, recocidos y normalizados.

Tabla 1.1 Propiedades mecánicas de aceros normalizados y recocidos. (ref. 1, cap. 8)

CARBONO, PORCENTAJE	PUNTO DE CEDENCIA 1000 LB/PULG ²	RESISTENCIA TENSIL, 1000 LB/PULG ²	ELONGACION, PORCENTAJE EN 2 PULG	REDUCCION EN AREA \$	BHI
Normalizado					
(acero laminado					
en callente}					•
0.01	26	45	45	71	90
0.20	45	64	35	60	120
0.40	51	87	27	43	165
0.60	60	109	19	28	220
0.80	70	134	13	18	260
1.00	100	152	7	11	295
1.20	100	153	3 1	6	315
1.40	96	148	1	3	300
Recocido					
0.01	18	41	47	71	90
0.20	36	59	37	64	115
0.40	44	75	30	48	145
0.60	49	96	23	33	190
0.80	52	115	15	22	220
1.00	52	108	22	26	195
1.20	51	102	24	39	200
1.40	50	99	19	25	215

1.1.1.3 Temple

Templar significa austenizar por encima de determinada temperatura crítica -para los aceros hipoeutectoides 27°C por encima de la linea $A_{\odot 3}$ (ver fig. 1.1) y para los aceros hipereutectoides la región entre la línea crítica inferior $A_{\odot 3,1}$ y la línea crítica superior $A_{\odot m}$ - luego se mantiene un tlempo determinado y se enfría rápidamente, (ver fig. 1.2)

M.: Temperatura de inicio de formación de martensita M.: Temperatura del final de formación de martensita

Fig. 1.2 Ciclo Térmico del Temple. (Ref. 3, cap. 1)

Con el temple, los aceros adquieren mayor dureza y resistencia pero se hacen más frágiles.

El aumento de la dureza es dèbido a la formación de una solución sólida sobresaturada llamada martensita; donde el porcentaje de martensita está determinado por el diagrama T.I. (Transformación Isotérmica) y de la rapidez de enfriamiento.

La fig. 1.3 muestra un diagrama T.E. (Transformación-Enfriamiento) para un acero de aleación triple. Este es un acero hipoeutectoide, en el que la zona de perlita está relativamente lejos hacia la derecha y no abarca la región de bainita. De este modo con rapideces de enfriamiento entre 1,150 a 30,000°C/hr (2,100 a 54,000 °F), es posible obtener grandes cantidades de bainita en la microestructura, se puede notar que la rapidez de enfriamiento tangente a la nariz superior que es de 1,150°C/hr (2,100 °F/hr) no es la crítica de enfriamiento. La rapidez de enfriamiento tangente a la "nariz inferior" o "rodilla" del diagrama, 30000°C/hr (54,000 °F), tendría que excederse para formar martensita.

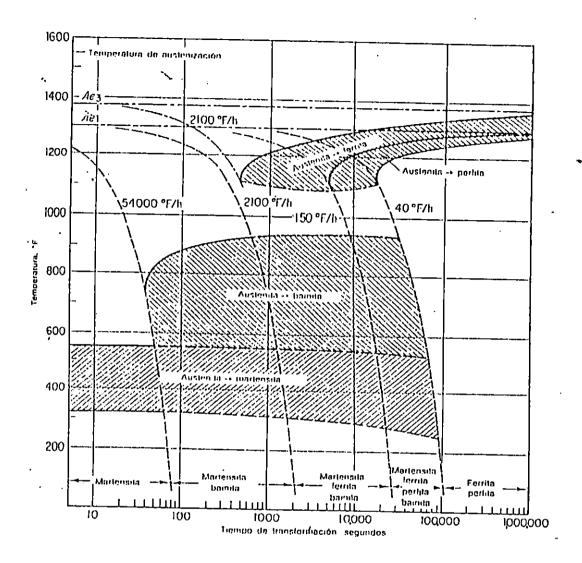


Fig. 1.3 Diagrama T.E. de un acero de triple aleación (4340): 0.42% de carbono, 0.78% de manganeso, 1.79% de níquel, 0.80% de cromo, 0.33% de molibdeno. (Ref. 1, cap. 8)

1.1.1.4 Revenido

. 1

El revenido consiste en calentar el acero -previamente templado- a temperaturas inferiores a la critica $A_{\odot 1}$ (723°C),

mantenerlo un tiempo adecuado y luego enfriarlo a temperatura ambiente.

El propósito del revenido es liberar los esfuerzos residuales y mejorar la ductilidad y tenacidad del acero, Este aumento de ductilidad generalmente se obtiene a costa de la dureza o de la resistencia.

En el revenido se transforma parte de la estructura martensitica en otras que involucran un cambio importante de las propiedades mecánicas; comprende dos etapas bien definidas:

- La primera, abajo de los 204°C, si el principal requisito es la dureza o resistencia al desgaste.
- La segunda arriba de los 204°C, si lo que se quiere es un aumento en la tenacidad y poca dureza.

En la fig. 1.4, se muestran los diferentes productos de transformación de la austenita y de la martensita para un acero eutectoide, así como su temperatura critica de enfriamiento.

En general, para los tratamientos de recocido, temple, revenido y normalizado, el tiempo de permanencia a la respectiva temperatura de tratamiento térmico oscila entre media hora y una hora por pulgada de espesor.

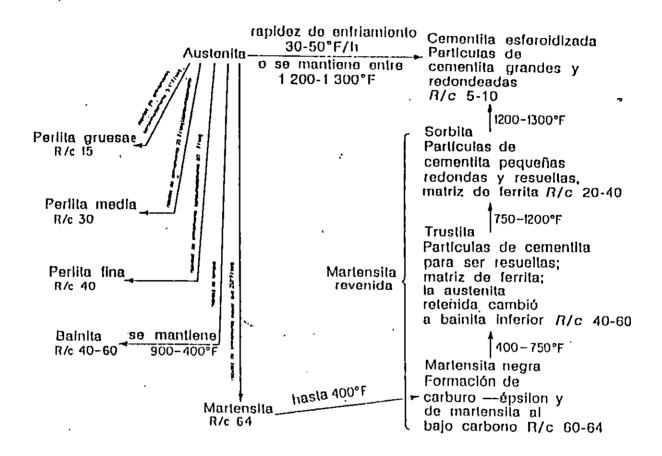


Fig. 1.4. Productos de transformación de austenita y martensita para un acero eutectoide.

1.1.1.5 Tratamientos Térmicos Superficiales o Endurecido Superficial.

Numerosas aplicaciones industriales requieren una superficie dura resistente al desgaste, llamada capa o región superficial, y un núcleo relativamente suave y tenaz en su interior, llamado parte interna. Hay cinco métodos principales de tratamientos térmicos superficiales (ref. 1 cap. 8):

- 1. Carburización
- 2. Nitruración
- 3. Cianuración o Carbonitruración
- 4. Endurecimiento por flama
- 5. Endurecimiento por inducción.

Los tres primeros métodos cambian la composición química por lo que se usan usualmente aceros de bajo contenido de carbono (de 0.20% de C o menos).

Los dos últimos métodos no cambian la composición química y son esencialmente métodos de endurecimiento poco profundo. El carbono debe ser capaz de endurecerse; por lo tanto, el contenido de carbono debe ser de 0.30% en peso o mayor.

Los métodos de endurecimiento superficial que tienen mayor aplicación industrial son los que cambian la composición química, por lo que se definirán brevemente.

La carburización o cementación consiste en el calentamiento del acero hasta que alcance el color rojo

(600°C: rojo oscuro, 870°C: rojo ligero o claro), estando en contacto con sustancias con algún contenido de carbono que puede ser sólido, líquido o gaseoso.

Al dar a la pieza el temple, esta adquiere dureza, superficial por el alto contenido de carbono del medio, permaneciendo las porciones interiores maleables y blandas.

El nitrurado, es un proceso en el que se usan aceros especiales, que pueden formar nitruros. Las piezas se calientan hasta una temperatura alrededor de 500 a 600°C, esto es realizado en un recipiente cerrado dentro del cual se introduce gas amoníaco. El gas se disocia en nitrógeno e hidrógeno. El nitrógeno se combina con el hierro y los otros elementos para formar compuestos nitrurados en el acero. La vaina resultante es extremadamente dura, pero muy delgada, usualmente menor que 0.64 mm.

Una ventaja es que el proceso requiere temperaturas de solamente 482°C a 538°C, experimentando poca dificultad con la distorsión del material. La nitruración se acompaña siempre con un incremento en el tamaño de la pieza, la cual debe preverse.

El cianurado es un proceso que combina la absorción de carbono y nitrógeno, para obtener dureza en la superficie en

los aceros de bajo carbono que no responden al tratamiento térmico ordinario. Al realizar el proceso, las partes se sumergen en un baño de cianuro de sodio a una temperatura entre 704 y 871°C, de 30 minutos ó 4 a 5 horas, luego se enfría en agua o en aceite para obtener una superficie dura. Este proceso es usado para espesores de la capa de 0.13 a 0.50 mm.

En el anexo 1 se muestra el diagrama práctico hierrocarburo de hierro, donde aparecen los principales tratamientos térmicos.

En el anexo 2 aparecen las especificaciones del acero AISI 1045, así como instrucciones para el tratamiento térmico de interés. Todos estos datos los proporciona el fabricante en los certificados de calidad de cada acero.

1.2 GENERALIDADES SOBRE HORNOS PARA TRATAMIENTOS TERMICOS.

Los criterios para clasificar los hornos para tratamientos térmicos pueden variar de acuerdo a los siguientes aspectos:

- a) Debido a la finalidad del horno (fundición, calentamiento.)
- b) Por el combustible usado (electricidad, gas, coque.)
- c) Por la forma del horno (crisol, túnel.)
- d) Por la forma de cargar el horno (continuo, discontinuo.)

Ninguno de éstos se puede considerar como un sistema de clasificación definitivo, ya que existen modelos que no se pueden incluir en ninguno de ellos.

Los hornos para tratamientos térmicos se pueden clasificar de acuerdo a criterios tales como: Tipo de operación, atmósfera, fuente de generación de calor, etc. Con base a estos criterios se han agrupado algunos de ellos según la siguiente clasificación:

- 1- Hornos de control manual
- 2- Hornos de atmósfera controlada

- 3- Hornos de baño liquido
- 4- Calentadores de flama
- 5- Hornos de tratamiento térmico al vacio.

A continuación, se describen los tipos de hornos que pertenecen a la última de las clasificaciones mencionadas.

1.2.1 Hornos de Control Manual

Estos hornos son capaces de producir ya sea atmósfera oxidante o reductora por medio del control de la relación aire-combustible en los hornos que emplean combustible, o por cortinas de gas en los hornos eléctricos. Las atmósferas son controladas manualmente por el operador. El contenido de humedad en estos hornos de atmósferas reductoras no puede ser controlado. Entre estos hornos se tienen los siguientes:

1.2.1.1 Fraguas

La cámara se caracteriza por ser un lugar abierto que puede usar carbón vegetal, mineral o coque para lograr el calentamiento, necesitando aire para la combustión el cual es suministrado por un elemento mecánico.

1.2.1.2 Horno de Cámara

Consiste esencialmente en un horno cubierto con material refractario que contiene un solo compartimiento donde operan los guemadores (Fig. 1.6).

Obviamente, tanto la temperatura como la atmósfera, pueden tener grandes variaciones dentro del horno, dependiendo de si la pieza de acero está en el paso de la llama o a un lado de ella.

1.2.1.3 Horno de Mufla

En este horno hay una cámara interior cerrada llamada mufla donde va la carga y una cámara de combustión, separadas entre sí como se ve en la fig. 1.7. Los gases de combustión no deben entrar en la cámara, por lo que la pieza de acero está rodeada de aire ambiente a menos que se modifique la atmósfera. En esta forma de construcción hay una máxima economia de combustible en la cámara de combustión.

1.2.1.4 Horno de Semimufla

En este tipo de horno hay una solera o teja refractaria soportada por pilares algunas pulgadas por encima del fondo sólido del horno. Esta solera une las paredes delantera y

trasera pero no toca las paredes laterales (fig. 1.8).

El combustible (usualmente gas) se quema bajo la solera, saliendo los productos de la combustión por el espacio entre la solera y las paredes laterales y ventilándose por medio de agujeros en el techo. En este horno, la atmósfera que rodea la pieza de acero consiste en productos de la combustión, pero las piezas de acero no están en el camino de la llama.

1.2.2 Hornos de Atmósfera Controlada

En estos hornos se genera una atmósfera reductora protectora fuera del horno, y se introduce en la mufla. La composición de la atmósfera, incluyendo el contenido de humedad se controla por instrumentos, algunos de los cuales son automáticos. Todos estos hornos son de mufla y pueden ser calentados por gas, resistencia eléctrica o con tubo radiante.

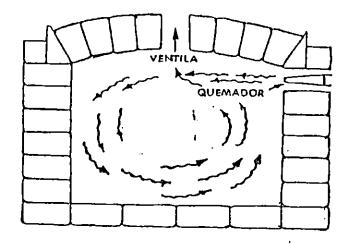


FIG. 1-6 HORNO DE CAMARA ('Ref. 7)

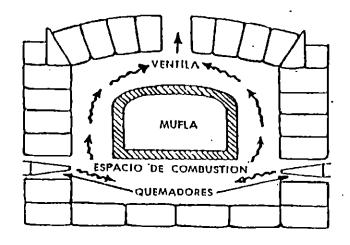


FIG. 1-7 HORNO DE MUFLA (Ref. 7)

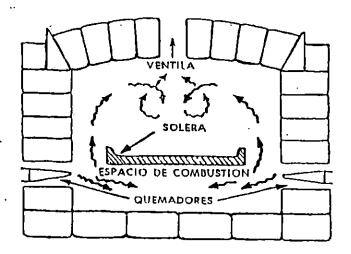


FIG. 1-8 HORNO DE SEMIMUFLA (Ref. 7)

Ĺ

}

-

1.2.3 Hornos de Baño Liquido

Los hornos de baño líquido consisten de un horno de forma cilindrica y de un crisol. El horno está forrado con material refractario en el que se suspende un crisol de metal o de cerámica que contiene la sal o el metal fundido. Se puede calentar con petróleo, gas o electricidad. En este último caso, se puede hacer por medio de resistores o electrodos. A continuación se describen los diferentes tipos de baño líquido.

1.2.3.1 Baño de Plomo

Este baño se coloca usualmente en un recipiente de fundición o un crisol de metal estampado. Posee un intervalo de temperatura de 400°C a 871°C. Debe disponerse de cierto margen para evitar que se solidifique sobre las herramientas. La máxima temperatura está limitada por la volatilización (evaporación) del baño y la vida del crisol, ya que éstos se rompen o queman por la acción del tiempo. Los vapores de plomo son venenosos y los crisoles deberán estar provistos de una chimenea de ventilación. Los baños de plomo están siendo desplazados por los baños de sal en la mayoría de los casos.

1.2.3.2 Baños de Sales

Los baños de sal pueden dividirse en dos clases, dependiendo del tipo de sal utilizada.

- sin carburar o descarburar la superficie. El propósito del baño neutro es calentar la pieza de trabajo de la misma manera que el plomo fundido sin provocar efectos químicos. Se puede usar una mezcla de cloruro de calcio y cloruro de sodio, dentro de un intervalo de temperatura de 538 a 871°C.
- b) <u>SALES ACTIVAS</u>: Estas son de poca importancia en el tratamiento de la pieza de trabajo, generalmente contienen una sal con las propiedades del cianuro y se emplean para dar una capa delgada de carbono y nitrógeno de la superficie del acero. Se utiliza para revenir piezas de acero de alta velocidad a una temperatura alrededor de 566°C.

1.2.4 Calentador de Flama

El proceso de endurecimiento por llama, está basado en el rápido calentamiento y enfriamiento de las superficies que trabajan sometidas al desgaste.

El calentamiento se realiza por medio de una llama de

oxiacetileno, la cual se aplica durante bastante tiempo para calentar la superficie por arriba de la temperatura critica del acero.

La profundidad de la cubierta es una función del tiempo.

de calentamiento y de la temperatura de la llama.

1.2.5 Hornos de Tratamiento Térmico al Vacio

Para evitar cambios en la composición química de la superficie del acero, la mejor atmósfera para tratamiento térmico es aquella que no existe, en otras palabras, el vacío. Es decir, ausencia total de cualquier sustancia de forma que no pueda haber interacción química con las superficies de la pieza.

Los hornos de vacío son costosos, debido al sistema de bombeo que se requiere para alcanzar el nivel apropiado de vacío y las materias primas que se necesitan.

1.3 HORNOS ELECTRICOS. CLASIFICACION.

Este tipo de hornos se caracterizan por la transformación de la energía eléctrica en energía calorifica, calor generado por el efecto Joule, al pasar la corriente eléctrica por un alambre en virtud de la resistencia al paso de la corriente eléctrica, ésta se calienta llegando a ponerse incandescente, ya sea por una diferencia de voltaje en los extremos del alambre (hornos de resistencia), o desarrollando una corriente inducida por un campo magnético en un cuerpo conductor (hornos de inducción).

De lo anterior, los hornos eléctricos se clasifican según el siguiente esquema:

hornos de inducción

HORNOS
ELECTRICOS PARA <
TRATAMIENTOS
TERMICOS

hornos de resistencia

Es importante, antes de describir cada horno, mencionar cuáles son las características que presenta el horno al usar la electricidad como fuente de calor:

- Precisión en el control de la generación del calor y de su distribución.
- El calor generado es independiente de la naturaleza de los gases que rodean la carga.
- 3. La temperatura máxima sólo es limitada por la naturaleza de la pieza, del material a ser tratado y del material de la resistencia eléctrica.

Una de las desventajas es que la electricidad es la forma más costosa de energía entre las disponibles, sin embargo, se utiliza ampliamente debido a su facilidad de control y su limpieza. La electricidad posee ventajas así como limitaciones, las cuales se enumeran a continuación:

Ventajas:

- El control de temperatura, tanto en forma manual como automática es más preciso de lo que resulta con el petróleo o el gas.
- 2. Se presta más fácilmente al control automático.
- 3. No hay productos de la combustión que resulte necesario eliminar, y tampoco se produce contaminación del ambiente de trabajo.
- 4. El mantenimiento es insignificante comparado con el mantenimiento de los controles de los hornos que utilizan el gas y el petróleo como elemento calefactor.
- 5. Aun cuando es más costoso que el petróleo y el gas, puede utilizarse en forma más eficiente especialmente

donde se requiere control atmosférico.

 Se presta a las aplicaciones que requieren baja temperatura, tales como el revenido.

Limitaciones:

- Costo elevado -aun cuando este inconveniente se compensa en cierta medida por el empleo más eficiente y la reducción en costos de mantenimiento en relación con el gas y el petróleo-.
- Disponibilidad limitada por la capacidad de la red de suministro local.
- 3. Las temperaturas del horno deberán ser limitadas hasta aproximadamente 1000°C, para obtener una vida razonable de los elementos calefactores.

Después de presentar lo ventajoso que resulta usar la electricidad para producir calor, se describen los hornos eléctricos dados en la clasificación anterior.

1.3.1 Hornos de Inducción

Los hornos eléctricos de inducción utilizados en gran escala en la metalurgia, son en realidad verdaderos transformadores. El circuito de alto voltaje se acopla con el de bajo voltaje, sin conectar directamente ambos circuitos. El elemento responsable de este efecto de acoplamiento es el

campo magnético, que permite que el calor sea transferido sin contacto directo. Mediante la correcta disposición del arrollamiento de alto voltaje, que en el caso del horno de inducción seria una bobina de inducción o un inductor, el campo magnético se dirige al metal que va a ser calentado o fundido para que absorba energía. Estos hornos generalmente son utilizados para fundir aleaciones refractarias (de alta temperatura) y para el endurecimiento superficial de algunos aceros.

Al utilizar este tipo de horno para el endurecimiento de piezas, se aprovecha el calentamiento localizado (fenómeno piel en alta frecuencia) producto de las corrientes inducidas en el metal bajo la acción de un campo magnético cambiante.

Este sistema de calentamiento, se asemeja a un transformador formado por la bobina de trabajo o primario constituido por varias vueltas de tubería de cobre, enfriadas por agua; y el secundario constituido por la pieza de trabajo. En las figuras 1.8a a 1.8e se muestran los diseños básicos de las bobinas de trabajo para emplearlas con unidades de alta frecuencia, según los efectos producidos en la pieza tratada. Estas formas básicas son:

a) un solenoide simple para calentamiento externo,

- b) una bobina para utilizarla internamente en el calentamiento de diámetros interiores,
- c) una bobina del tipo "plato para pastel"; diseñada con el fin de proporcionar altas densidades de corriente en una banda angosta, para aplicaciones en las que es necesario recorrer la superficie a lo largo de una linea.
- d) una bobina de una sola vuelta para recorrer a lo largo una superficie giratoria, con un aditamento que ayudará a calentar el chaflán, y
- e) una bobina tipo "torta" para calentamiento localizado en . un punto específico.

En todos estos tipos de arrollamientos existe una corriente alterna de alta frecuencia que pasa a través de la bobina de trabajo o primario, formando un campo magnético de alta frecuencia, el cual induce corrientes parásitas de alta frecuencia y corrientes de histérisis en el metal, fenómeno que se conoce como efecto piel; por lo tanto, es posible calentar una capa poco profunda del acero sin calentar el interior.

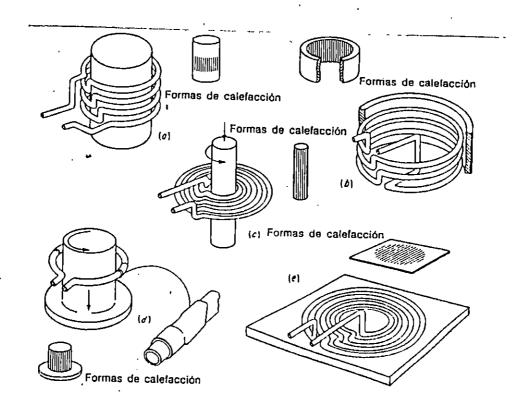


Fig. 1.8a - 1.8e. Arrollamiento para unidades de alta frecuencia y los modelos calóricos obtenidos por cada una. Ref.1.

1.3.1.1 Hornos de Inducción sin Núcleo

Un horno de inducción sin núcleo, consta de las siguientes partes: un crisol, una bobina de cobre y un bastidor apoyado sobre soportes.

El principio de funcionamiento de este tipo de hornos es el siguiente:

La superficie lateral de la carga es expuesta a un flujo magnético alterno. Las corrientes así inducidas en la carga circulan completamente dentro de la masa. El calentamiento por inducción también es llamado "calentamiento por corrientes parásitas".

Una característica que presenta dicho calentamiento es la ausencia de aislamiento térmico; esto implica que la carga es calentada al aire libre o con una atmósfera artificial si el recinto es cerrado.

1.3.1.2 Hornos de Inducción con Núcleo

Se excita el transformador para conformar el diseño típico de un transformados con núcleo de hierro y capas de alambre que actúan como un circuito primario. El canal de metal fundido actúa como anillo de cortocircuito alrededor del transformador en la cámara de fusión.

De acuerdo con la capacidad de fusión deseada, uno, dos o tres transformadores pueden incluirse en el envolvente del horno. En todo tiempo, el canal debe contener suficiente metal, para mantener el cortocircuito alrededor del núcleo del transformador.

La salida de metal fundido se controla variando el voltaje suministrado a los inductores mediante un

transformador de voltaje variable conectado al cortocircuito primario de suministro.

1.3.2 Hornos de Resistencia

La construcción de esta clase de hornos es relativamente simple. Por lo general, se trata de hornos de resistencia a base de grafito o de aleaciones especiales, comúnmente 2nicromo (Niquel y Cromo). Consta esencialmente de una armazón de acero o de hierro colado convenientemente reforzada, provista de un revestimiento refractario.

Al hablar de estos hornos, es necesario conocer algunas partes básicas de los mismos tales como: La cámara de calentamiento y resistencias; así como definir el concepto de atmósferas.

LA CAMARA DE CALENTAMIENTO:

Es un recinto cerrado con revestimiento refractario, una capa circundante de aislamiento térmico y una envolvente exterior de plancha de acero. Ordinariamente se emplea ladrillo refractario aislante o un material semirefractario para el revestimiento interior de la cámara de calentamiento. La temperatura máxima de la carga interna de la capa de aislamiento térmico determina el carácter del material requerido para el aislamiento.

ATMOSFERAS:

Una mezcla de aire y los gases desprendidos de la carga constituyen una atmósfera natural en la cámara de un horno de resistencia.

La composición de tal atmósfera es variable durante un ciclo de calentamiento en un horno intermitente. Las atmósferas naturales se emplean cuando sea conveniente la prolongada acción sobre la carga durante el ciclo de calentamiento. Si esto no es posible, se usará una atmósfera artificial la cual, es constituida eliminando el oxígeno de la cámara de calentamiento.

RESISTENCIAS:

La resistencia de un horno estándar está constituido por un devanado sinuoso (que tiene ondulaciones o recodos) montado sobre las superficies interiores de la cámara de calentamiento. En la práctica, las resistencias son aplicadas sobre la base de 20 a 30 Kw/m² de superficie de pared. La base para situar la resistencia es la radiación a todas las superficies de la carga.

Las resistencias de la mayoría de los hornos estándares se hacen de una aleación compuesta de 80% Ni (Níquel) y 20% de Cr (Cromo), dicha aleación es autoprotectora contra la oxidación, pero esta protección disminuye con la elevación de

la temperatura.

La temperatura de trabajo de una resistencia no debe ser más alta que la necesaria y debe quedar un margen de seguridad por debajo de la temperatura de ablandamiento.

Los hornos pequeños se proyectan ordinariamente para 110V; los medios para 220V y los mayores para 440V. En la práctica general, se usan hornos monofásicos hasta 25 ó 30 Kw y trifásicos para potencias mayores.

CAPITULO II

SELECCION, DIMENSIONAMIENTO
Y ANALISIS

2.1. MATERIALES REFRACTARIOS.

Están definidos de una manera muy general, son aquellos materiales no metálicos, que soportan temperaturas muy elevadas sin fundirse, sin sufrir una deformación excesiva o sin experimentar cambios de composición.

Existen una gran cantidad de requisitos que debe llenar un material refractario para considerarse como tal; pero los más importantes son:

- a Capacidad para procurar un buen aislamiento térmico.
- b Trabajar el refractario como un material estructural de alta temperatura.
- c Servir como soporte del enrrollamiento metálico en hornos de resistencia metálica.
- d Que pueda utilizarse como recipiente para metales líquidos.

Para clasificar los refractarios, conforme a los requisitos antes mencionados, es necesario conocer las siguientes propiedades:

- 1 Punto de fusión.
- 2 Conductividad térmica.
- 3 Resistencia a la fusión a temperaturas elevadas.
- 4 Coeficiente de expansión térmica.

- 5 Resistencia al choque térmico.
- 6 Capacidad de ser quimicamente inerte a los metales líquidos y sus entornos.
- 7 Conductividad electrica a temperaturas altas.

Los materiales refractarios son generalmente óxidos de silicio, cromo, aluminio, magnesio, calcio, etc. Además, para clasificarse como tal, deben poseer un punto de fusión arriba de 1500°C.

2.1.1 CLASIFICACION DE LOS REFRACTARIOS DE ACUERDO A SU USO EN LOS LABORATORIOS DE TRATAMIENTOS TERMICOS.

Los materiales refractarios que son usados en los laboratorios de metales, se clasifican de acuerdo a su uso en el mismo:

a) RECIPIENTES:

Fabricación de crisoles inertes al metal que es fundido en él.

b) MATERIALES DE CONSTRUCCION:

Es utilizado como material de construcción para temperaturas elevadas como en hornos de tubo y muflas, en que ellos forman la cámara de calentamiento, soporte de enrollado metálico, soportes de crisol, etc.

c) AISLAMIENTO TERMICO:

Los materiales aislantes tienen mucha importancia en la construcción de hornos, pues evitan pérdidas de calor excesivo y por consiguiente, un consumo de potencia desmedida, siendo posible de esta manera alcanzar temperaturas altas con una geometria dada.

d) CEMENTOS REFRACTARIOS:

Los cementos se utilizan para fijar el enrollamiento metálico sobre los tubos refractarios (núcleos de hornos), para unir ladrillos y otras partes, para formar camisas de hornos monolíticos, para encamisar el interior de hornos de crisol. La mayoría de cementos refractarios se trabajan con poca agua, formando un material pastoso que se apisona en el lugar deseado. Después de secar al aire, endurecen más o menos pero en general quedan fijos o endurecen completamente cuando se exponen a altas temperaturas.

2.1.2 TIPOS Y PROPIEDADES DE ALGUNOS REFRACTARIOS.

a) ALUMINA:

Es el refractario más usado en el laboratorio metalúrgico, ya que se obtiene con una pureza muy alta, punto de fusión elevado y conductividad eléctrica muy baja a temperatura muy elevada, es esta propiedad que unida con alguna de las otras, la que hace que la alúmina sea el

material más empleado en la construcción de tubos de horno y muflas sobre las cuales va el devanado de las resistencias eléctricas metálicas.

Los ladrillos de alto contenido de alúmina se usan generalmente para condiciones severas de temperatura y de carga.

b) SILICE:

Se usa en el laboratorio como una sustancia casi pura en forma de cuarzo fundido o bien como sílice fundida. La sílice fundida no se debe usar a temperaturas superiores a 1100°C y si se utiliza debe hacerse sólo por períodos cortos.

Entre las principales ventajas de la silice fundida encontramos algunas como: la impermeabilidad a los gases, buena resistencia mecánica, coeficiente de expansión extraordinariamente bajo, aislamiento eléctrico. La sílice fundida no presenta el problema del choque térmico debido a su coeficiente de expansión bajo; puede ser calentada o enfriada a cualquier velocidad sin rotura.

c) EL GRAFITO:

Es un material de laboratorio extraordinariamente útil, debido a su inactividad química (excepto con oxígeno a altas temperaturas), alto punto de fusión, buena conductividad

eléctrica, conductividad térmica elevada, buena resistencia mecánica, corrosión regular, la cual no es afectada por las temperaturas elevadas y por su buena maquinabilidad.

Su conductividad eléctrica hace posible utilizarlo como elemento calefactor en hornos de temperaturas altas o como electrodo en procesos de depositación.

d) EL CARBURO DE SILICIO (SIC):

Es un material refractario conocido comercialmente como Carbotax, se le añade arcilla como aglutinante; la que mantiene unidas las particulas de carburo de silicio. Este refractario tiene una conductividad térmica más elevada que la mayoria de refractarios.

Sus usos principales se dan en las muflas de hornos eléctricos o de gas en los cuales es importante tener una gran transferencia de calor al interior de la cámara de trabajo o mufla.

También se encuentra en forma de ladrillo, los cuales unidos con un cemento especial, permiten construir grandes paredes en hornos.

e) LADRILLOS REFRACTARIOS AISLANTES:

Son de una clase que contienen arcilla refractaria o

caolín altamente poroso, son ligeros (aproximadamente pesan de 1/2 a 1/6 del peso de los de arcilla refractaria), de baja conductividad térmica, y no obstante, suficiente resistencia a la temperatura para poder ser usados en las caras internas de la pared de un horno, permitiendo así muros delgados de baja conductividad térmica y bajo calor específico, por lo que proporcionan ahorro de combustible y tiempo, al elevarse rápidamente la temperatura del horno. Son particularmente adecuados en la fabricación de hornos experimentales o de laboratorio, ya que pueden ser cortados o maquinados en cualquier forma.

f) OTROS AISLANTES:

Son materiales que poseen una conductibidad térmica más baja que los ladrillos compactos. Los aislantes no están expuestos en el interior de los hornos por que se aplastan, se funden o sufren otros defectos a altas temperaturas. Los buenos aislantes contienen gran número de burbujas de aire muy pequeños, entre éstos cabe mencionar el silicio celular (tierra de diatomeas), magnesia, materiales fibrosos como: el amianto, lana mineral, lana de escorias, etc.

Se prefiere el aislamiento a base de fibras al aislamiento granular, las fibras son a base de amianto o materiales similares.

2.1.3 FORMAS DE REFRACTARIOS DISPONIBLES.

Los refractarios pueden encontrarse en 3 formas principales, éstas son:

1- POLVO

: 1

Existen dos usos principales para el polvo suelto en el laboratorio metalúrgico:

- a) Para fabricar crisoles u otras formas.
- b) Para operaciones de aislamiento.

2- FORMAS TERMINADAS

Además de los ladrillos refractarios de varios tipos, existen otras formas terminadas como tubos, rodillos, placas y crisoles.

Los ladrillos refractarios se dividen en 2 tipos:

- a) DENSO: Se usa principalmente a gran escala en hornos industriales y se puede adquirir en una variedad amplia de composiciones.
- b) LIGERO: Posee una gran facilidad de corte en la forma deseada con herramientas simples, posee buenas propiedades de aislamiento, están formados de arcilla quemada o carbón, su temperatura de trabajo está limitada a 1600°C.

En la fabricación de tubos refractarios existen 2 clases principales:

- a) Para núcleos de hornos en hornos de resistencia eléctrica.
- b) Tubos impermeables a los gases del tipo de porcelana.

3- CEMENTOS REFRACTARIOS:

Son aquellos como la alúmina, la magnesia, carburo de silicio y mulita, con adición de agentes ligantes, tales como: el vidrio soluble o la arcilla, permiten al cemento endurecer al secarse al aire o al permanecer a temperaturas moderadas.

2.1.4 SELECCION DE MATERIAL REFRACTARIO.

Para la selección del material refractario más adecuado para un fin dado, es necesario cierta experiencia en la construcción de hornos. Una calidad de ladrillo que cueste el doble que otro tipo de ladrillo, es preferible a éste si tiene duración doble.

Además, un ladrillo que de un servicio más largo reduce los paros de funcionamiento del horno.

En los casos donde hay escoria o existe abrasión, es conveniente un ladrillo de estructura densa. Si las condiciones que producen calentamiento por cambio de

temperatura son importantes, entonces es mejor un ladrillo de estructura más flexible.

para la escoria de alto contenido de cal, hay que usar un ladrillo de magnesita, cromo o alto contenido de alúmina. Para escoria de ceniza de hulla, los ladrillos densos de arcilla dan buen resultado si la temperatura no es elevada. A temperaturas bien altas con frecuencia se obtienen buenos resultados con un refractario plástico de cromo o de carburo de silicio. Para condiciones severas, se debe recurrir a paredes enfriadas por aire o agua.

Cuando no hay peligro por la acción de la escoria, con frecuencia es más económico usar un refractario aislante, aunque este ladrillo puede costar más por unidad, permite paredes más delgadas, de manera que el costo total de construcción puede no ser mayor que el que se tendría con ladrillo ordinario. En base a todo lo anterior se trabajará con un ladrillo refractario de calidad intermedia, por su contenido de alumina, las características de este ladrillo aparecen en el anexo 3.

2.1.5 ESPESOR DE PARED.

La tendencia moderna en la construcción de hornos es hacer una pared relativamente delgada, anclada y soportada a intervalos frecuentes por piezas de fundición o de aleaciones resistentes al calor, la cual a su vez es sostenida por una armazón estructural.

La pared puede hacerse de refractarios fuertes respaldados con material aislante o de un refractario aislante.

Las juntas de expansión deben ser instaladas por lo general a 3.28 metros, aunque para estructuras de haja temperatura la separación puede ser mayor. Los techos de los hornos pueden ser de arco o planos.

Debido al tipo de horno que se construirá en el presente trabajo, sabiendo que las dimensiones de éste no son mayores de 0.30 m. por lado, o sea que este horno está diseñado para ser usado en pruebas de laboratorio. La construcción de las paredes se simplifica, ya que no necesita anclajes de ningún tipo. Tampoco necesita juntas de expansión debido a la corta longitud de las paredes del horno.

De acuerdo a los diseños de hornos de resistencia eléctrica y al tamaño de éste, el techo tendrá una forma plana, teniendo un volúmen cúbico en el interior del horno.

El espesor de las paredes del horno se construirá utilizando el ancho del ladrillo refractario (114 mm.), este espesor se toma considerando los espesores de las paredes de hornos existentes en la Escuela de Ingeniería Mecánica de la Universidad de El Salvador, de acuerdo a esto, la configuración de las paredes que tendrá el horno que se construirá se pueden observar en las figuras 2.1 y 2.2

2.2 DIMENSIONAMIENTO DEL HORNO.

Para poder dimensionar todo el horno, es necesario conocer primero las dimensiones más interiores de éste, es decir, la cámara de trabajo de las muestras que vayan a ser tratadas térmicamente.

Partiendo de estas dimensiones, podemos dimensionar progresivamente desde el interior hasta el exterior del horno, o sea, desde la cámara de trabajo, hasta el blindaje metálico que protegerá toda la estructura interior del horno.

2.2.1 DIMENSIONAMIENTO DE LA CAMARA.

Para las dimensiones de la cámara de trabajo, se han tomado las siguientes consideraciones:

- a) La parte frontal (ancho x altura) del volúmen ocupado por la cámara será un cuadrado de 150 mm x 150 mm.
- b) La parte lateral (profundidad) de la cámara será igual a 300 mm.

Estas consideraciones sobre las dimensiones de la cámara, han sido tomadas de acuerdo a las cámaras de trabajo de hornos para tratamientos térmicos de características similares al de este diseño (por ejemplo: potencias próximas a 5 Kw).

De acuerdo a ésto, las dimensiones que tendrá la cámara de trabajo serán:

ANCHO = 150 mm.

ALTURA = 150 mm.

PROFUNDIDAD = 300 mm.

Estas dimensiones se pueden ver en las figuras 2.1 y 2.2, donde dichas longitudes serán definidas por los puntos A y B.

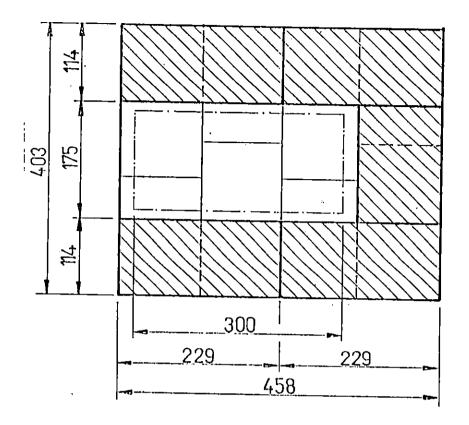


Fig. 2.1. Sección en planta de paredes de la cámara de trabajo del horno.

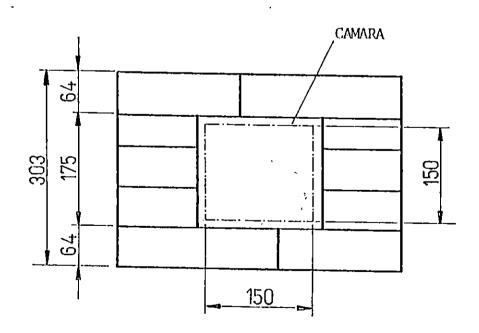


Fig. 2.2. Vista frontal de estructura de ladrillo refractario

-

2.2.2 DIMENSIONES EXTERIORES DEL HORNO

Para las dimensiones exteriores del horno, se parte de las dimensiones de la cámara, el espesor de pared ya está definido en el punto 2.1.5.

Se considera una separación de 33mm para colocar el aislante entre la pared de ladrillo refractario y la lámina de protección, el aislante que lleva es una colcha de fibra cerámica. Además el espesor de la lámina de protección se considera de 3 mm para efectos de dimensionamiento.

Para las dimensiones del horno se toman los valores siguientes:

- a) Ancho del conjunto de ladrillos = 405 mm.
- b) Altura del conjunto de ladrillos = 301 mm.
- c) Largo del conjunto de ladrillos = 458 mm.
- d) Ladrillo refractario = $64 \times 114 \times 229 \text{ mm}$.
- e) Fibra cerámica = 33 mm
- f) Lámina de hierro = 3 mm.

De acuerdo al tamaño de los ladrillos es apropiado un arreglo en el cual no sea necesario cortar ningún ladrillo. En las fig. 2.1 y fig. 2.2 se observan los cortes practicados en los ladrillos para obtener las dimensiones esperadas de la cámara de trabajo y el espacio correspondiente a las tabletas de calentamiento por resistencia eléctricas las cuales

poseen un espesor aproximado de 12.5 mm

Las dimensiones exteriores del horno quedan definidas como sigue:

i) Ancho exterior del horno (suma de espesores):

Ancho = 2(Lámina + fibra) + Ancho de ladrillos

Ancho = 2(3 + 33) + 405

Ancho = 477 mm.

ii) Altura del horno (suma de espesores):

Altura = 2 x Lámina + fibra superior + fibra inferior + altura de ladrillos

Altura = $2 \times 3 + 14 + 13 + 301$

Altura = 336 mm.

iii) Largo del horno (suma de espesores):

Largo = 2(Lámina + fibra) + profundidad de ladrillos

Largo = 2(3 + 33) + 458

Largo = 530 mm.

Las dimensiones exteriores del horno serán:

ANCHO = 477 mm.

ALTURA = 336 mm.

PROFUNDIDAD = 530 mm.

2.3. SELECCION DE LA TEMPERATURA DE DISENO.

En el país existen empresas tales como ACAVISA, ABASTEINSA, ACEROSAL, REDI, etc. que distribuyen aceros en diversas formas, sean éstas cilidricas, hexagonal, cuadrada, etc.

Normalmente para cada acero, el fabricante proporciona las temperaturas de los respectivos tratamientos térmicos.

En la tabla 2.1 se muestran los tratamientos térmicos más comunes y sus respectivas temperaturas para los diferentes aceros distribuidos por las empresas antes mencionadas.

TABLA 2.1 TEMPERATURAS DE LOS PRINCIPALES TRATAMIENTOS TERMICOS DE ACEROS COMERCIALIZADOS EN EL PAIS.

ACERO (AISI)	TEMPERATURA DEL TRATAMIENTO TERMICO (°C).				
	NORMALIZADO	RECOCIDO	TEMPLE .	BANO DE SALES	
1045	820 - 870	660 - 700	820 - 850		
3115			780 - 830	850 - 900	
4140			830 - 850		
4340			830 - 850		
0-1			790 - 850		
, D-2			990 - 1050		

La mayor temperatura indicada en la tabla es 1050°C, por lo que se tomará una temperatura máxima de diseño del horno de 1100°C.

2.4 ANALISIS DE TRANSFERENCIA DE CALOR EN ESTADO ESTACIONARIO.

En un horno se dan los tres mecanismos de transferencia de calor que son: Conducción, convección y radiación. El análisis se hará en estado estacionario, es decir, cuando el horno ha alcanzado la temperatura máxima de diseño (1100°C), determinándose las pérdidas de calor a través de una pared compuesta.

2.4.1 TRANSFERENCIA DE CALOR POR CONDUCCION A TRAVES DE UNA PARED PLANA.

La conducción de calor es la transferencia de energía calorífica desde la región de alta temperatura a la de baja temperatura cuando existe un gradiente de temperatura.

Para una pared plana, la transferencia de energia calorifica viene expresada por la ecuación de Fourier:

$$q = - KA - \frac{\Lambda T}{\Lambda X}$$
 (2.1)

donde:

q : Rapidez de transferencia de calor (kw)

: Indica que el calor deberá de fluir hacia regiones de menor temperatura.

k : Conductividad térmica (kw/m°C)

A : Area de la pared en la dirección del flujo de calor (m²)

ΔX : Espesor del material en la dirección de q

AT/AX : Gradiente de temperatura

La conductividad térmica de muchos materiales, se encuentran tabulados o en gráficos para diversas temperaturas.

En la tabla 2.2 se muestran conductividades térmicas para diferentes materiales.

En el Anexo Nº 4 y Anexo Nº 5 se incluyen especificaciones de aislantes que resisten altas temperaturas llamadas fibras cerámicas, con sus conductividades térmicas para diferentes temperaturas.

TABLA 2.2 CONDUCTIVIDADES TERMICAS DE ALGUNOS MATERIALES. (Ref.8)

MATERIAL TEMP. °C		* CONDUCTIVIDAD TERMICA (k)			
		BTU/pie ² hr.ºF/ple	Cal/cm² seg.ºC/cm	Kw/M-°C	
ALUMINIO	0 200 400 500	117 124 144 155	0.484 0.513 0.596 0.641	0.2025 0.2146 0.2492 0.2682	
COBRE	100 - 200 100 - 370 100 - 541 100 - 837 500	a) 225 a) a) 218 a)	0.930 a 0.902 a	a) 0.4206 a) 0.3894 a) 0.3773 a) 0.3599 0.3582	
HIERRO FORJADO	18 100 400 500	35 35 - 32 26 23	0.145 0.139 0.108 0.095	0.0606 00606-0.00554 0.04499 0.0398	
HIERRO COLADO	100	26	0.108	0.04499	
acero suave	100 400 600 800 1200	26 23 21 17 14	0.108 0.095 0.087 0.070 0.058	0.04499 0.0398 0.0363 0.0294 0.0242	
METAL MONEL	100 400	17 20	0.0703 0.0083	0.0294 0.0346	
LADRILLO REFRACTARIO	300 700 1700	0.61 0.68 0.70	0.00252 0.0028 0.0029	1.0557 x 10 ⁻³ 1.1769 x 10 ⁻³ 1.19038x 10 ⁻³	

continuación....

MATER I AL	TEMP.	* CONDUCTIVIDAD TERMICA (k)			
	°C	BTU/pie ² Cal/cm ² Kw/M-°C hr.°F/pie seg.°C/cm			
CARTON DE ASBESTO CEMENTO	20°	0.43 0.001777 0.000794			
HOJAS DE ASBESTO	51°	0.096 0.0003967 0.000166			
ASBESTO DE POCA COHESION	-45° 0	0.086 0.0003553 0.000149 0.089 0.0003678 0.000154			
LANA DE BALSAMO 35.24 Kg/m3	32°	0.023 0.000095 0.0000398			
CARTON CORRUGADO	-	0.037 0.000153 0.000064			
CARTON DE CORCHO 160.18 Kg/m3	30	0.025 0.0001033 0.000043			
CORCHO, TIERRA	32	0.025 0.0001033 0.000043			
FIELTRO, PELO	30	0.021 0.00008677 0.0000163			
FIELTRO, LANA	30	0.03 0.0001239 0.000052			
CARTON AISLAN- TE DE LANA	21	0.028 0.0001157 0.0000484			
LANA DE VIDRIO 24 Kg/M3	24	0.022 0.0000909 0.0000381 8			
LANA DE ROCA DE POCA COHESION	149 260	0.039 0.0001611 0.0000675 0.050 0.0002066 0.0000865			
ASERRIN	24	0.034 0.0000588			
MADERA	24	0.034 0.0001404 0.0000588			

Si en la pared de un horno se encuentran varias capas o está compuesta de diferentes materiales como se muestra en la fig. 2.3a, se procede de la siguiente manera: se encuentran los gradientes de temperaturas en los tres materiales, ; el flujo de calor puede escribirse como:

$$q = \frac{-K_{A}A(T_{2} - T_{1})}{AX_{A}} = \frac{-K_{B}A(T_{3} - T_{2})}{AX_{B}} = \frac{-K_{C}A(T_{4} - T_{3})}{AX_{C}}$$
(2.2)

El flujo de calor debe ser el mismo para las tres . secciones.

Resolviendo simultáneamente las tres ecuaciones se llega a:

$$q = \frac{(T_1 - T_4)}{\frac{\Lambda X_B}{K_B A} + \frac{\Lambda X_C}{K_C A}}$$
 (2.3)

Recordenando la ecuación 2.3 tenemos:

$$q = \frac{A (T_1 - T_4)}{A X_B} + \frac{A X_C}{K_C}$$
 (2.4)

donde:
$$K_{\text{ag}} = \frac{\Delta X_{\text{A}} + \Delta X_{\text{B}} + \Delta X_{\text{C}} + \Delta X_{\text{D}} + \dots \Delta X_{\text{N}}}{\Delta X_{\text{A}} + \Delta X_{\text{B}} + \Delta X_{\text{C}} + \Delta X_{\text{D}} + \dots \Delta X_{\text{N}}}$$
 (2.5)

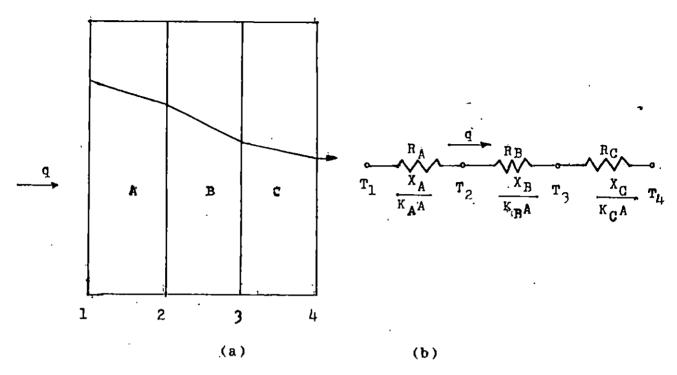


Fig. 2.3 Transferencia de calor unidimensional a traves de una pared compuesta.

Con la ecuación 2.4 y 2.5 se puede hacer referencia al simil eléctrico (fig. 2.3b), para este tipo de problema puede escribirse:

Donde:

$$\Sigma R_{t} = \frac{\Delta X_{A}}{----} + \frac{\Delta X_{B}}{----} + \frac{\Delta X_{C}}{----} [\circ C/Kw]$$

$$K_{A}A K_{B}A K_{C}A$$

Con las relaciones dadas se puede encontrar la temperatura en cualquier frontera de cada material, así de la ecuación 2.2 se despeja para cada temperaturas:

$$T_{2} = T_{1} - \frac{q \Lambda X_{A}}{A K_{A}}$$

$$T_{3} = T_{2} - \frac{q \Lambda X_{B}}{A K_{B}}$$

$$T_{4} = T_{3} - \frac{q \Lambda X_{C}}{A K_{C}}$$

$$(2.6)$$

2.4.2 CONVECCION.

La transferencia de calor por convección se debe al movimiento de un fluido. El fluido frío adyacente a superficies calientes recibe calor que luego transfiere al resto del fluido frío mezclándose con él.

Hay dos tipos de convecciones: La convección natural y la convección forzada.

La convección natural es aquella en la cual el movimiento del fluido es debido a la diferencia de densidades que resulta de la transferencia de calor que modifica la densidad relativa a cualquier fluido circundante.

La convección forzada es cuando el movimiento del fluido por el que se transfiere calor se hace mecánicamente, por ejemplo, por una bomba o ventilador. Para un horno eléctrico en un ambiente cerrado, las condiciones del fluido se consideran estables, por lo que únicamente se describe y analiza la convección natural.

La transferencia de calor por convección natural está gobernada por el área de la superficie, la forma y la posición de la superficie y la diferencia de temperatura entre la superficie y el aire.

De lo anterior la rapidez de calor transferido por convección entre una superficie y un fluido viene dada por:

$$q_{c} = h_{c}A.\Delta T \qquad (2.7)$$

donde:

qc = Razón de transferencia de calor.

 $h_a = Coeficiente de convección (kw/m²°C)$

A = Area de transferencia de calor (m²)

AT = Diferencia entre la temperatura de la superficie y la temperatura del fluido (°C).

El coeficiente de convección se puede determinar en forma analítica. Para la mayoría de los casos "h" tiene que determinarse experimentalmente. En la tabla 2.3 se dan valores aproximados de "h" para varias configuraciones.

Existe una ecuación analítica para h que es muy utilizada para convección natural, ésta es:

$$h = \frac{C (T_1 - T_2)^{0.25}}{152} [Kw/m^{20}C] (2.8)$$

donde:

T1 : Es la temperatura de la superficie

T₂: Es la temperatura del gas o aire.

El valor de C determinado experimentalmente según referencia 10 es como sigue:

Para superficies planas horizontales y con la cara hacia arriba y más caliente que el gas C = 0.39; Para superficies planas verticales C = 0.30; y para superficies horizontales con la cara hacia abajo y más caliente que el gas C = 0.20.

TABLA 2.3 Valores aproximados de los coeficientes de transferencia de calor por convección.

МОДО	h BTU/(hr-pie ² -°F)	h w/m²-°C
Aire, convección libre	1 - 5	5 - 25
Aire, convección forzada	2 - 100	10 - 500
Agua	20 - 300	100 - 15000
Agua hirviendo	500 - 5000	2500 - 25000
Condensación del vapor	1000 - 20000	5000 - 100.000

2.4.3 RADIACION.

La radiación es la emisión de energía en la forma de ondas electromagnéticas. La radiación incidente sobre un cuerpo puede ser absorbida, reflejada y transmitida.

Si se designa a: ρ , α , τ como las porciones de energía radiante, incidentes que se reflejan, absorben y transmiten respectivamente, entonces podemos escribir:

$$\rho + \alpha + \tau = 1 \qquad (2.9)$$

En donde se llama reflectividad a ρ , absorbidad a α y transmisibilidad a τ . Para un cuerpo completamente absorbente (negro) α = 1, y para un cuerpo opaco τ = 0.

El intercambio de energía radiante entre dos superficies viene dada por la ecuación de Stefan-Boltzman:

$$q = \sigma A(T_1^4 - T_2^4) \qquad (2.10)$$

donde:

q : Transferencia de calor (kw)

A : Area del cuerpo (m2)

σ : Constante de Stefan-Boltzman

$$\sigma = 5.66 \times 10^{-11} \frac{kw}{[m^2 - oK]}$$

$$T_1 = t_1 \circ C + 273$$

 $T_2 = t_2 °C + 273$

Para aplicar correctamente la ecuación (2.10), es necesario hacer una correlación que tenga en cuenta que los cuerpos no son negros y otra que considere las condiciones geométricas del sistema.

La ecuación (2.10) solamente es válida para un cuerpo negro, el cual está rodeado completamente y toda la energía que incide en él sea absorbida.

Para un cuerpo no negro a una temperatura T_1 y con los alrededores a T_2 , el flujo calorifico neto es:

$$q = AE \sigma(T_1^4 - T_2^4)$$
 (2.11)

donde E es la emisividad definida por:

La ecuación 2.11 expresa un valor máximo para q que solamente se obtendrá cuando sea despreciable la parte de la energía emitida que se recibe por reflexión desde los alrededores.

La emisividad E se muestra en la tabla 2.4 para distintos materiales.

Si además del factor geométrico se considera que los cuerpos no son completamente negros, debe hacerse una corrección debido a la emisividad.

Por lo anterior la ecuación puede expresarse:

$$q = A F_A Fe \sigma (T_2^4 - T_2^4)$$
 (2.12)

Donde Fe es el factor de corrección de la emisividad y F $_{\mathbf{A}}$ el factor geométrico.

En la tabla 2.5 se dan valores para Fe y $F_{\mathbf{A}}$ para cierto número de casos comúnes.

TABLA 2.4 Emisividad normal total de las superficies sólidas.

SUPERFICIE	TEMPERATURA °C	EMISIVIDAD (CUERPO NEGRO =1)
Aluminio: Lámina Comercial Oxidada a 599°C	100 199 - 593	0.09 0.11 - 0.19
Bronce: Pulimentado Placa empañada	100 48.9 - 348.9	0.06 0.22
Hierro: Pulimentado Oxidado a 599°C Lingote Aspero	426.7 - 1026.7 198.9 - 599 926.7 - 1115.56	0.14 - 0.38 0.64 - 0.78 0.87 - 0.95
Cobre: Pulimentado Placa calentada a 599°C	100 198.9 - 43.3	0.052 0.57
Acero: Laminado Capa de óxido brillante	24	0.82
calorizada a 599°C Placa áspera Superficie oxidada	198.9 - 599 37.7 - 371.1	0.52 - 0.57 0.94 - 0.97
ligeramente fun- dida.	1560 ~ 1710	0.27 - 0.39

continuación

<u> </u>		
SUPERFICIE .	TEMPERATURA °C	EMISIVIDAD (CUERPO NEGRO=1)
Acero Inoxidable: Pulimentado 18.8 después de 42 hrs. a 526.7	100 215.6 - 526.7	0.074 0.62 - 6.73
Ladrillo de Alúmina-Silicio 80-58 Al ₂ 0 ₃ , 16-38 Si0 ₂ , 0.4 Fe ₂ ° ₃ .	1010 - 1565.6	0.61 - 0.43
36-26 A ₂ 0 ₃ , 50 Si0 ₂ , 1.7Fe0 ₃ .	-	0.73 - 0.63
61 Al ₂ 0, 35 Si0 ₂ , 2.9 Fe ₂ 0 ₃ .	_	0.78 - 0.68
Ladrillo: de construcción Barro cocido	1000 1000	0.45 0.75
Ladrillo Refractario de Magnesita	1000	0.38
Revoque: Mortero áspero	10 - 87.7	0.91

TABLA 2.5 Valores de $F_{\mathbf{A}}$ y Fe.

		<u> </u>	
		FA	Fe ⁻
a)	La superficie A_1 es peque- ña comparada con la su- perficie envolvente A_2	1	€ı
b)	superficies A ₁ y A ₂ de discos paralelos, cuadra-dos, rectángulos 2:1, rectángulos largos	Fig.2.4	. E1 E2
c)	Superficie dA ₁ y superficie cie rectangular paralela A ₂ con una esguina del rectángulo sobre dA ₁	Fig.2.5	€1 €2
đ)	Superficies A ₁ o A ₂ de rectángulos perpendicula- res teniendo un lado común	Fig.2.6	€1 €2
e)	Superficies A ₁ y A ₂ de planos paralelos infinitos o superficie A ₁ de un cuerpo completamente encerrado que es pequeño comparado con A ₂	1 .	1 1 1 (+) -1 E ₁ E ₂
£)	Esferas concéntricas o cilindros concéntricos infinitos con superfi- cies A ₁ y A ₂	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

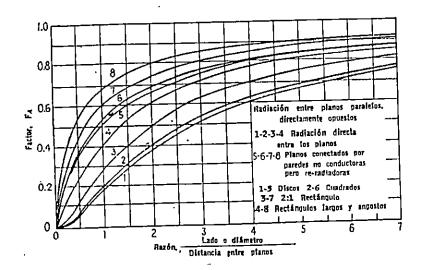


Fig. 2.4 Radiación entre planos paralelos. (Hottel) (Ref. 4)

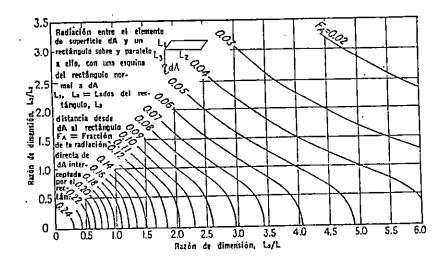


Fig. 2.5 Radiación entre un elemento y un plano paralelo.
(Hottel) (Ref. 4)

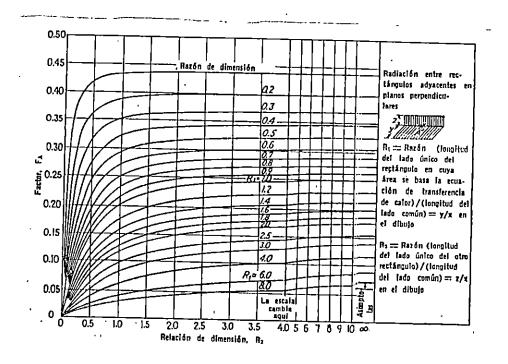


Fig. 2.6. Radiación entre planos perpendiculares. (Hottel)
(Ref. 4)

2.5 CALCULO DEL CALOR EN ESTADO ESTACIONARIO.

El método más común de estimar las pérdidas caloríficas a través de las paredes implica la consideración de toda la trayectoria desde el interior del horno a los alrededores (Fig. 2.7).

La temperatura de la superficie interior puede estimarse usualmente como igual a la temperatura de la cámara del horno $(T_1 = T_{horno})$.

La temperatura de los alrededores del horno se supone que es la atmosférica con un valor de 27°C.

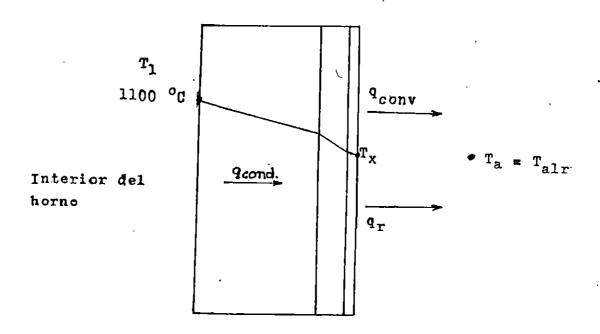


Fig. 2.7. Temperaturas y Flujo de calor desde el interior del horno a los alrededores.

La temperatura desconocida de la superficie exterior de la pared del horno se designa por Tx. Para esta trayectoria suponiendo un estado estacionario sin acumulación de calor en la pared, la pérdida de calor puede escribirse como:

$$q = q_{cone} = q_{conv} + q_{r} \qquad (2.13)$$

En donde que es el flujo térmico por conducción desde la superficie interior del horno a la exterior.

que es la convección térmica desde la superficie exterior a los alrededores.

 $q_{\mathbf{x}}$ es la radiación térmica de una superficie exterior a

los alrededores.

Los flujos térmicos por conducción, convección y radiación han sido tratados en las secciones 2.4.1, 2.4.2 y 2.4.3, respectivamente.

2.5.1 ANALISIS DE TRANSFERENCIA DE CALOR EN PAREDES VERTICALES.

El análisis requiere del uso de la ec. 2.13 para determinar la temperatura de cara fria $(T_{\mathbf{x}})$ del horno y las pérdidas de calor en las paredes.

En la sección 2.2.1 se han fijado las dimensiones de la cámara y exterior (cubierta de lámina) del horno esquematizándose en la fig. 2.8.

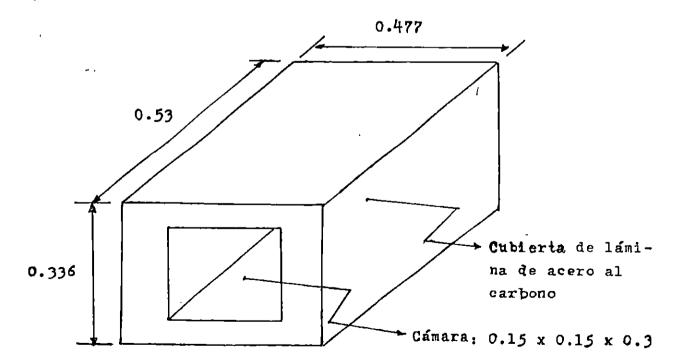
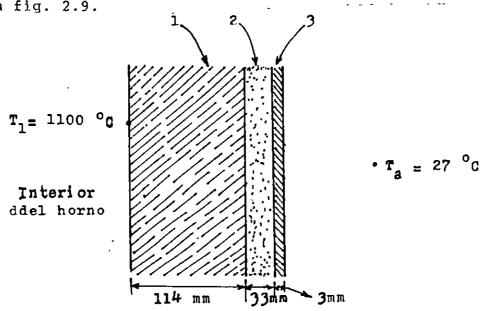



Fig. 2.8. Dimensiones de la cámara y exterior del horno (cotas en m).

También es necesario hacer una configuración de la pared compuesta vertical del horno. En la sección 2.2.2 se han definido los materiales y dimensiones, lo cual se esquematiza en la fig. 2.9.

- 1: Ladrillo refractario $K = 0.0011907 \text{ Kw/m-}^{\circ}\text{C}$ (Tabla 2.2)
- 2: Fibra cerámica (ver tabla 2.6)
- 3: Lámina de acero al carbono K = 0.0024 Kw/m-°C (Tabla 2.2)
 Fig. 2.9. Pared vertical compuesta del horno.

Tabla 2.6. Conductividad térmica de la fibra cerámica para diferentes temperaturas con densidad: 96 Kg/m³ (Ver anexo Nº 5) Ref. 15

T (°C)	K (Kcal-m)/m²h.ºC	K * (Kw/m-°C)
315	0.06	0.00006976
540	0.11	0.0001279
760	0.17	0.0001977
870	0.21	0.0002442

[&]quot;/ Se ha hecho la conversión tomando un factor de $1 \text{Kcal/h} = 1.163 \times 10^{-3} \text{ Kw}$.

La conductividad térmica equivalente de la fig. 2.9 viene dada por:

$$Keq = \frac{L_1 + L_2 + L_3}{L_1/K_1 + L_2/K_2 + L_3/K_3}$$

Donde: $L_1 = 0.114 \text{ m}$

1

. 1

 $L_2 = 0.033 \text{ m}$

 $L_{2} = 0.003 \text{ m}$

 $K_1 = 0.0011907 \text{ KW/m-°C}$

 $K_2 = 0.0002442 \text{ KW/m-°C}$

 $K_{3} = 0.0024 \text{ KW/m-°C}$

$$\text{Keq} = \frac{0.114 + 0.033 + 0.003}{\frac{0.114}{0.0011907} + \frac{0.033}{0.000242} + \frac{0.003}{0.0024} }$$

 $Keq = 6.46 \times 10^{-4} \text{ Kw/m-°C}$

El área promedio del horno viene dada por:

$$A_P = \sqrt{AexA_{in}}$$
 Si $Aex/A_{in} > 2$ (Ref. 11)

Donde Aex = Area externa del horno (m²)

Ain = Area interna (camara) del horno (m²)

De la fig. 2.8.

 $Aex = (0,477 \times 0.336)2 + (0.53)(0.336)2$

Aex = 0.68 m²

^{*} La conductividad térmica del ladrillo refractario se ha tomado a una temperatura media de 1100 °C y de 870 °C para la fibra cerámica. La temperatura de la lámina se asume la ambiente.

 $A_{in} = (0.15 \times 0.15)2 + (0.15 \times 0.3)2$

 $\mathbf{A_{in}} = 0.135$

 $Aex/A_{in} = 0.68/0.135 = 5 > 2$

Entonces:

1

 $A_P = \sqrt{(0.68) \times (0.135)}$

 $A_P = 0.135 \text{ m}^2$

El calor por conducción viene dado por:

 $q_{cond} = \text{Keq } A_P (T_1 - T_x)/\Lambda x$

 $q_{\text{cond}} = 6.46 \times 10^{-4} (0.3) (T_1 - T_{\times})/0.15$

 $q_{cond} = 1.29 \times 10^{-3} (T_1 - T_{x})$

El calor por convección viene dado por:

 $q = CAex (T_{*} - Ta)^{1.25}/152$

Donde C = 0.3 (Ver sección 2.4.2)

 $q_{\text{conv}} = (0.3)(0.68) (T_{\text{sc}} - Ta)^{2.25}/152$

 $q_{conv} = 1.34 \times 10^{-3} (T_{x} - Ta)^{1.25}$

El calor por radiación es:

 $q_{x} = \sigma AexE(T_{x}^{4} - Ta^{4})$

Donde:

E = 0.82 acero al carbono (tabla 2.4)

 $q_x = 5.66 \times 10^{-11} (0.68)(0.8) (T_x^4 - Ta^4)$

 $q_{\pi} = 3.08 \times 10^{-11} (T_{\kappa}^4 - Ta^4)$

Sustituyendo los resultados anteriores en la ecuación 2.13

$$1.29 \times 10^{-3} (T_1 - T_{\infty}) = 1.34 \times 10^{-3} (T_{\infty} - T_a)^{1.25} + 3.08 \times 10^{-11} (T_{\infty}^4 - T_a^4)$$

Para resolver la ecuación anterior se asume una temperatura $T_{\mathbf{x}}$, por ejemplo si $t_{\mathbf{x}} = 200$ °C, este valor se sustituye en la igualdad. Si la igualdad no se cumple se siguen asumiendo valores para $T_{\mathbf{x}}$ hasta que la igualdad se satisfaga. De esta manera se elaboró la tabla 2.7A. Hasta llegar a la última fila en la que se satisface la relación antes mencionada.

TABLA 2.7A

T _* (°C)	Qaona (Kw)	q _{eenv} (Kw)	q= (Kw)	(KM) deeuntdz
200	1.16	0.84	1.29	2.13
100	1.29	0.29	0.35	0.64
155	1.22	0.58	0.78	1.36
150	1.23	0.55	0.74	1.29
145	1.23	0.52	0.69	1.21
146	1.23	0.53	0.70	1.23

Las temperaturas en la interfase son:

$$T_2 = 1100 - 1.23 (0.114)$$

$$T_2 = 707 \, ^{\circ}C$$

$$T_3 = 707 - \underbrace{1.23}_{0.3} \left(\underbrace{0.033}_{0.0002442} \right)$$

$$T_3 = 153 \, ^{\circ}C$$

La temperatura promedio de la fibra cerámica es:

$$\frac{T_2 + T_3}{2} = \frac{707 + 153}{2} = 430 \text{ °C}$$

Inicialmente se supuso que la fibra cerámica estaba a una temperatura promedio de 870 °C. A fin de ser más precisos en el análisis se repiten los cálculos con el nuevo valor de temperatura encontrado. Interpolando de la tabla 2.6 para T = 430 °C, se obtiene:

$$K_2 = 0.0000994 \text{ KW/m-°C}$$

La conductividad térmica del ladrillo se considera que no varía significativamente, entonces:

$$K_{\text{eng}} = \frac{0.114 + 0.033 + 0.003}{\frac{0.114}{0.0011907} + \frac{0.0033}{0.000994} + \frac{0.003}{0.0024}}$$

$$K_{mq} = 3.5 \times 10^{-4} \text{ KW/m-°C}$$

El calor por conducción es:

$$q_{\text{mond}} = 3.5 \times 10^{-4} (0.3) (T_1 - T_{\infty})/0.15$$

 $q_{cond} = 7x10^{-4} (T_1 - T_x)$

El calor por radiación y convección no cambia, entonces:

$$7x10^{-4}(T_1-T_{\infty}) = 1.34x10^{-3}(T_{\infty} - Ta)^{1.25} + 3.08x10^{-11}(T_{\infty}^{4}-Ta^{4})$$

TABLA 2.7B

T _* (°C)	Geona (Kw)	geonv (Kw)	q≈ (Kw)	qeenv+qr (Kw)
150	0.66	0.55	0.74	1.29
100	0.70	0.29	0.35	0.64
110	0.69	0.34	0.41	0.75
106	0.70	0.31	0.39	0.70

Las temperaturas en la interfase son:

$$T_2 = 1100 - (\frac{0.7}{0.3}) (\frac{0.114}{0.0011907})$$

$$T_2 = 876 \, ^{\circ}C$$

$$T_3 = 876 - (\frac{0.7}{0.3}) (\frac{0.033}{0.0000994})$$

La temperatura promedio de la fibra cerámica es: (876 + 101)/2 = 489 °C

La conductividad térmica a esta temperatura para la fibra cerámica es 0.0001147 Kw/m-°C.

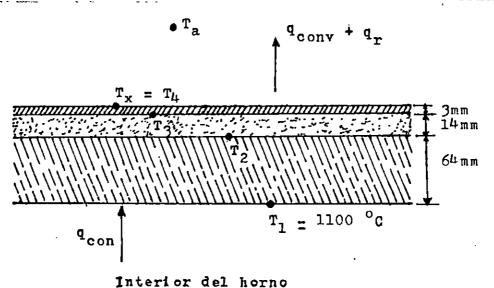
El procedimiento se repite hasta que la conductividad térmica de la fibra cerámica no varie significativamente, el resultado es:

7.73 x
$$10^{-4}$$
 (T_n - T_x) = 1.34 x 10^{-3} (T_x - T_a)^{1.25} + 3.08 x 10^{-11} (T_x⁴ - T_a⁴)

Con la ecuación anterior, se itera nuevamente,

completando la tabla 2.7c

TABLA 2.7C


T (°C)	q _{cond}	Qconv	đ=	q _{aonv} +q _z
100	0.77	0.29	0.35	0.64
110	0.76	0.34	0.41	0.75
111	0.76	0.34	0.42	0.76

 $T_2 = 857 \, ^{\circ}C$

 $T_{3} = 120 \, ^{\circ}C$

La temperatura promedio de la fibra ceràmica es (857 + 120)/2 = 488 °C y $K_{\text{fibra}} = 0.0001144 \text{ KW/(m-°C)}$

2.5.2 TRANSFERENCIA DE CALOR EN EL TECHO O PARED SUPERIOR.

Intellor del molno

Fig. 2.10. Configuración de la pared compuesta del techo del horno.

La conductividad térmica equivalente es:

$$\text{Keq} = \frac{0.064 + 0.014 + 0.003}{0.0011907 + 0.014 + 0.003}$$

$$\frac{0.064}{0.0002442} + \frac{0.003}{0.00024}$$

 $Keq = 7.21 \times 10^{-4} \text{ KW/(m-°C)}$

El área exterior es:

Aex = (0.53)(0.477)

Aex = 0.253

El área interior es:

 $A_{in} = 0.3 \times 0.15$

 $A_{in} = 0.045$

Como:

٠, ,

 $Aex/A_{in} = (0.253)/(0.045) = 5.6 > 2$

El área viene dada por:

 $A_{P} = \sqrt{0.253 \times 0.045}$

 $A_{P} = 0.107 \text{ m}^2$

El calor por conducción es:

 $q_{cond} = 7.21 \times 10^{-4} (0.107) (T_1 - t_{*})/0.081$

 $q_{cond} = 9.52 \times 10^{-4} (T_1 - T_2)$

El calor por convección es:

 $q_{conv} = (0.39)(0.253) (T_x - Ta)^{1.25}/152$

Donde C = 0.39 (Ver sección 2.4.2)

 $q_{conv} = 6.49 \times 10^{-4} (T_x - Ta)^{1.25}$

El calor por radiación es:

$$q_{x} = 5.66 \times 10^{-11}(0.253)(0.8)(T_{x}^{4} - Ta^{4})$$

$$q_x = 1.15 \times 10^{-11} (T_x^4 - Ta^4)$$

De los resultados anteriores, se tiene:

$$9.52 \times 10^{-4} (T_1 - T_x) = 6.49 \times 10^{-4} (T_x - T_a)^{1.25} +$$

$$1.15 \times 10^{-12} (T_{x4} - Ta^{4})$$

Asumiendo valores de Tx se completa la tabla 2.8A.

TABLA 2.8A

نير

T (°C)	Geona (Kw)	gcon√ (Kw)	.q= (Kw)	qcon√+qz (Kw)
200	0.86	0.41	0.48	0.89
197	0.86	0.40	0.47	0.87
196	0.86	0.40	0.46	0.86

Las temperaturas en la interfase es (Ver Fig. 2.10)

$$\Gamma_2 = 1100 - \underbrace{0.86}_{0.107} \left(\underbrace{0.064}_{0.0011907} \right)$$

$$T_2 = 668 \, ^{\circ}C$$

$$T_{2} = 668 - \underbrace{0.86}_{0.107} (\underbrace{0.014}_{0.107})$$

$$T_3 = 207 \, ^{\circ}C$$

La temperatura promedio de la fibra cerámica es:

$$668 + 207 = 438 \, ^{\circ}\text{C}$$

La conductividad térmica a esta températura es:

 $K_{\text{fibra}} = 0.0001015 \text{ KW/(m-°C)}$

Con este valor se encuentra la conductividad térmica equivalente, repitiendo el procedimiento hasta que este valor no varia considerablemente. Los resultados son.

TABLA 2.8B

T (°C)	Geona (KW)	geenv (Kw)	d≈ (KM)	qeenv+q= (WX)
150	0.58	0.27	0.28	0.55
155	0.57	0.28	0.29	0.57

Las temperaturas en là interfase son:

$$T_2 = 1100 - \underbrace{0.57}_{0.107} (\underbrace{0.064}_{0.0011907}) = 814 °C$$

$$T_3 = 814 - 0.57 (0.014)$$

0.107 0.0001155

$$T_3 = 168 \, ^{\circ}C$$

La temperatura promedio de la fibra ceràmica es (814 + 168)/2 = 491 °C con una constante de conductividad térmica de 0.0001155 Kw/(m-°C).

2.5.3 TRANSFERENCIA DE CALOR EN LA BASE DEL HORNO.

Fig. 2.11. Configuración de la pared compuesta de la base del horno.

Para la fig. 2.11 la Kag es:

$$K_{\bullet\bullet} = \frac{0.064 + 0.014 + 0.005}{\frac{0.064}{0.0011907} + \frac{0.014}{0.0002442} + \frac{0.005}{0.0024}}$$

$$K_{\bullet\bullet} = 7.3 \times 10^{-4} \text{ Kw/(m-°C)}$$

El área promedio es la misma que se encontró para la pared superior.

El calor por conducción es:

$$q_{cond} = 7.3 \times 10^{-4}(0.107) (T_1 - T_x)/(0.083)$$

$$q_{oond} = 9.41 \times 10^{-4} (T_1 - T_{\kappa})$$

El calor por convección es:

$$q_{monv} = (0.20)(0.253)(T_{sc} - Ta)^{1.25}/152$$

Donde; C = 0.20

$$q_{cond} = 3.33 \times 10^{-4} (T_{x} - T_{a})^{1.25}$$

El calor por radiación es el mismo que el caso anterior, por lo tanto:

$$9.41 \times 10^{-4} (T_1 - T_{\infty}) = 3.33 \times 10^{-4} (T_{\infty} - T_a)^{1.25} + 1.15 \times 10^{-11} (T_{\infty}^4 - T_a^4)$$

TABLA 2.9A

T (.°C)	q _{eona} (Kw)	geen√ (Kw)	q≖ (Kw)	Geory+dz (KM)
200	0.85	0.21	0.48	0.69
225	0.82	0.25	0.61	0.86
223	0.83	0.24	0.60	0.84
220	0.83	0.24	0.59	0.83

Las temperaturas en la interfase son:

$$T_2 = 683 \, ^{\circ}C$$

$$T_3 = 238 \, ^{\circ}C$$

La temperatura promedio de la fibra cerámica es (683 + 238)/2 = 460 y la K_{Fibra} = 0.0001072

Con este valor se encuentra la conductividad térmica equivalente y se plantea la ecuación 2.13. Esto se repite hasta que $K_{\texttt{Fibra}}$ no varia significativamente, los resultados son:

TABLA 2.9B

T (°C)	geona (Kw)	g _{∈en√} (Kw)	q= (Kw)	q=en√+q;; (Kw)
175	0.57	0.17	0.37	0.54
177	0.56	0.17	0.38	0.55
178	0.56	0.18 ′	0.38	0.56

Las temperaturas de interfase son:

 $T_2 = 813 \, ^{\circ}C$

 $T_3 = 180 \, ^{\circ}C$

< 3

2.5.4 PERDIDAS TOTALES (q.).

Las pérdidas totales son todas aquellas que se pierden a través de las paredes. De los resultados anteriores se tiene: $q_r = 0.76 + 0.57 + 0.56$

 $q_L = 1.89 \text{ Kw}$

2.6 REQUERIMIENTOS DE CALOR PARA EL HORNO Y LA CARGA.

La carga comenzará a absorber calor siempre que la temperatura del horno sea mayor que la temperatura de la carga.

2.6.1 CALOR ALMACENADO POR LOS LADRILLOS.

El calor almacenado por los ladrillos se puede calcular por la ecuación:

$$Q = WC_{P}\Lambda T$$

(2.14)

Donde:

Q = Calor en Kw-h

W = Peso(Kg)

 $C_P = Calor específico (Kw-h)/(Kg-°C)$

AT = Cambio de temperatura (°C)

El peso puede determinarse por la ecuación:

W = YV

Donde y : Es el peso específico en Kg/mª

V : Es el volumen

Según Anexo A₃ el peso específico del ladrillo empire M es 2000 Kg/m^3 , y sus dimensiones son 229x114 x 64 mm.

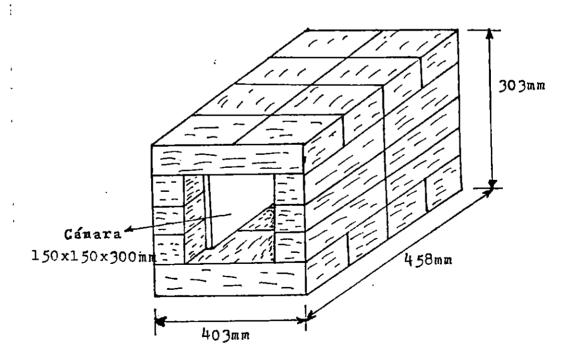


Fig. 2.12. Estructura de ladrillo del horno

El volumen de la estructura de ladrillo se puede determinar por:

V = Vex - Vcamera

Donde:

Vex: Es el volumen del paralelepipedo de la estructura exterior de ladrillo.

Valmera: Es el volumen de la cámara

De la figura 2.12:

Vex = (0.403)(0.458)(0.303) = 0.056 m³

 $V_{\text{GAMAXA}} = 0.15 \times 0.15 \times 0.3 = 6.75 \times 10^{-3} \text{ m}^3$

 $V = 0.056 - 6.75 \times 10^{-3}$

 $V = 0.04925 \text{ m}^3$

Luego:

El peso de la estructura de ladrillo es:

W = 2000 (0.04925)

W = 98.5 Kg

El AT de la ecuación 2.14 se tomará como la temperatura promedio de las súperficies verticales y horizontales indicadas en la tabla 2.10 menos la temperatura ambiente

TABLA 2.10

TEMPER.	T ₁ (°C)	T ₂ (°C)	T _P
Vertical	1100	857	978
Superior	1100	814	957
Inferior	1100	813.	956
			PT = 964 .

PT = Promedio Total .

Sustituyendo datos en la Ec. 2.14

$$Q = 58.5(0.000279)(964 - 27)$$

$$Q = 26 \text{ Kw-h}$$

Donde
$$C_P = 0.000279 \text{ (Kw-h)/(Kg-°C). (Ref. 8)}$$

Considerando una potencia de diseño de 5.5 Kw se estima el tiempo de encendidos hasta la temperatura máxima de operación.

La potencia de encendido viene dada por:

$$Q = \left[\frac{Q_{A} + Q_{C}}{t_{e}} + (2/3)q_{L} \right] (1 + S_{F}) \quad \text{Ec} \quad 2.15 \quad (\text{Ref. 16})$$

Donde:

P : Potencia de encendido (Kw)

Qx : Calor almacenado por la estructura (Kw~h)

Qc: Calor latente de vaporización (Kw)

q_L : Pérdidas de calor en las paredes (Kw)

ts: Tiempo necesario para alcanzar la temperatura máxima de operación

 $S_{\mathcal{F}}$: Factor de seguridad.

De la ecuación 2.15 se determina el tiempo requerido para alcanzar la temperatura máxima de operación:

$$P = 5.5 \text{ KW}$$

 $Q_{A} = 24 \text{ KW}$

 $Q_{c} = 0$

Donde:

 $q_{L} = 1.89 \text{ KW}$

 $t_s = ?$

 $S_F = 10% \text{ (Ref. 16)}$

Sustituyendo:

$$5.5 = \left[\frac{26+0}{t_s} + \frac{2}{3}(1.89) \right] (1+0.1)$$

 $t_s = 6.95 \text{ horas}$

2.7 SELECCION DE LA RESISTENCIA ELECTRICA.

Cuando se selecciona una aleación metálica para actuar como resistencia eléctrica, debe tenerse en cuenta que la temperatura del elemento será superior a la temperatura del horno, y deberá escoger la aleación metálica más duradera y más barata.

Si un horno posee una atmósfera reductora, se puede usar como elemento calefactor acero ordinario al carbono, el cual es recomendable para temperaturas del horno superiores a los

427°C e inferiores a los 500°C. Para mejorar las propiedades del material de la resistencia eléctrica, al hierro se le puede alear con niquel y cromo, lo cual incrementa la resistencia a la fluencia y a la corrosión. Las aleaciores bajas de este tipo se utilizan en atmósferas oxidantes entre los 538°C y los 816°C. Cuanto mayor sea la temperatura, menor deberá ser el contenido de hierro, excepto en atmósferas que no son oxidantes. En tales atmósferas (neutros y reductoras) una aleación del 25% de niquel, 20% de cromo y 45% de hierro es duradera y recomendable para temperaturas de resistencia eléctrica hasta de 1066°C. Para temperaturas hasta de 1100°C, el material de resistencia eléctrica más corrientemente empleado no contiene hierro, suele consistir en un 80% de niquel y un 20% de cromo. Este tipo de resistencia eléctrica es utilizada en hornos de laboratorio (tubo, crisol y muflas) y se emplea porque es barata y puede obtenerse en varios tamaños, bien como alambre 0 como cinta, posee una resistencia eléctrica elevada casi independiente de la temperatura; tiene además una gran duración, si no se le sobrecalienta. Existen nuevas aleaciones resistentes calor, diseñadas con el fin de obtener una resistencia física elevada, las que se obtieen al combinar los elementos de Ni y Cr, obteniendose así aleaciones comparativamente nuevas como el chromel AA, el cual contiene aproximadamente 80%Ni-20%Cr, con adiciones Fe, Se, Co, y Mn.

Estas aleaciones según los fabricantes pueden emplearse con seguridad en atmósferas carburantes hasta temperaturas de 1066°C, sin sufrir la corrosión intergranular característica de este grupo de aleaciones, y resiste bien al oxígeno y al azufre.

51 necesario obtener temperaturas de 1094 hasta 1233°C, se han desarrollado aleaciones cuya protección depende de la estanqueidad de la película de óxido formada en la superficie. Dichos elementos tienen el nombre comercial de Kanthal. El elemento quimico que produce la envolvente protectora đе la resistencia es A1 (aluminio). resistencias que contienen más de un 20% de aluminio forman una densa capa en atmósferas oxidantes, pero pierden su protección en atmósferas que contienen hidrógeno húmedo. Estas aleaciones contienen un 22% de cromo y de un 60 a 70% de hierro son quebradizas a la temperatura ambiente y debe dárseles su forma mientras están calientes. Se vuelven blandas y plásticas a elevadas temperaturas para las que van a emplearse, lo que influye en el método de montaje.

La finalidad de crear una aleación que sea eficaz a elevadas temperturas en las que se utilice el carburo de silicio, sin que se aprecie un envejecimiento, condujo al descubrimiento del siliciuro de molibdeno, que se conoce en el mercado con el nombre de Kanthal Super. Al igual que el carburo de silicio, emplea el elemento químico silicio, que

produce por oxidación una capa protectora de silice. Al calentarse y enfriarse, la corteza se agrieta pero no se descostra. Dos acontecimientos ayudan a preservar la capa de silice. Primero, el diámetro del alambre de la resistencia es muy pequeño en comparación con el de las barras de carburo de silicio y la temperatura es uniforme en todo el alambre. Segundo, la resistencia se reblandece debido a las elevadas temperaturas y la sílice suelta se adhiere. Por encima de los 983°C, la capa se recompone de nuevo. Es aconsejable oxidar las resistencias antes de exponerlas a atmósferas que contengan hidrógeno.

En el anexo A_s , se presenta la composición y propiedades de un cierto número de aleaciones.

En toda resistencia, se pretende obtener ciertas características, las cuales son las siguientes:

- 1) Resistividad relativamente elevada, para limitar la intensidad de corriente a un valor conveniente y reducir las dimensiones del elemento de calefacción.
- 2) Coeficiente de temperatura de la resistividad eléctrica pequeño, y a ser posible positivo y sensiblemente constante en un gran intervalo de temperatura, dentro de los limites de utilización.
- 3) Punto de fusión muy superior a la temperatura máxima de calentamiento, para evitar la destrucción por fusión o por corto-circuito del elemento de resistencia.

- 4) Resistencia mecánica suficiente, no solo 1a temperatura normal ambiente, sino también la temperatura de funcionamiento prevista. El material no debe presentar deformación apreciable, ni aunque se produzcan variaciones bruscas de temperatura; también debe resistir los choques térmicos y vibraciones mecánicas.
- 5) Conductividad calorífica reducida; para evitar pérdida de calor en sus extremos y facilitar la colocación de tomas y terminales.
- 6) El material empleado ha de ser magnético y homogéneo, sin que su estructura sufra modificación a la temperatura de funcionamiento.
- 7) Coeficiente de dilatación muy pequeño.
- 8) Gran resistencia química a los agentes exteriores y a las temperaturas de funcionamiento previstas, sobre todo en lo que se refiere a la oxidación, a los gases desprendidos por los cuerpos caldeados, al ataque químico de los materiales en contacto, etc.
- 9) Gran duración de servicio.

Dados los distintos tipos de aleaciones para resistencia, y las características que debe poseer toda resistencia, se procederá a seleccionar una aleación adecuada.

Considerando que las resistencias utilizadas con mayor frecuencia en hornos industriales son las de aleación Kanthal, el cual es el material más indicado por su efectividad de calentamiento y resistencia a la oxidación a la temperatura de 1250°C, la cual es superior a la temperatura de diseño de la resistencia. Por este motivo y por las demás características, se utilizará como resistencia la aleación Kanthal. En la tabla 2.11, se dan las características del alambre Kanthal.

2.11 CARACTERISTICAS DEL ALAMBRE KANTHAL

GAUGE	Ио	DI AM mm	Ω / m 20/68°T	cm ₂ /w	m/kg	cm² / Ω 20/69°T
AWG	8	3.26				
SWG	10	3.25				
		3.25	0.175	102.1	17	584.2
ł		3.00	0.205	94.2	19.9	459.2
AWG	9	2.91	ļ			
		2.8	0.235	88	22.9	373.5
SWG	12	2.64				İ
		2.6	0.273	81.7	26.5	299 2
AWG	10	2.59	1	,		
		2.50	0.295	78.5	28.4	266
1		2.4	0.320	75.4	31.1	235.2
SWG	13 -	2.34				
AWG	11	2.3				
ì		2.3	0.349	72.3	33.9	207.1
1		2.2	0.381	69.2	37.	181.2
1	12	2.05				
AWG	14	2.03	ļ	<u> </u>		
SWG		2.0	0.462	62.8	44.8	136.1

continuación....

GAUGE	N.o.	DI AM mm	Ω / m 20/68°T	cm²/m	m/kg	cm²/Ω 20/69°T
SWG AWG	15 13	1.9 1.83 1.83	0.511	59.7	49.7	117.3
		1.8 1.7	0.57 0.64	56.5 53.4	55.3 62	99.2 83.6
AWG	14		3102	55.1	32	03.0
SWG AWG	16 15	1.63 1.6 1.5 1.45	0.721 0.82	50.3 47.1	70.0 79.7	69.7 57.4
SWG	17	1.42 1.4 1.3	0.942 1.092	44.0 40.8	91.5 106.1	46.7 37.3
AWG SWG	16 18	1.22	1.282	37.7	124.5	29.4

AWG: Sistema Americano de Calibres

SWG: Sistema Estándar de Calibres

Ref. 8

2.8 POTENCIA REQUERIDA.

Con el valor de potencia obtenido en la transferencia de calor, que es la potencia requerida, se pretende obtener el valor de resistencia y la longitud de la misma. Pero antes, es necesario dar una pequeña introducción sobre potencia.

Potencia Eléctrica, es la razón en la cual la energia

eléctrica es transformada. Matemáticamente se puede expresar por la expresión siguiente, para circuitos de corriente alterna con cualquier tipo de onda de voltaje y de corriente.

$$p = \int_{t_1}^{t_2} vi dt Ec. 216$$

Donde:

v : valor instantáneo de la tensión en volts.

i : valor instantáneo de la corriente en amp.

 $t_2 - t_1 = t$: Intervalo en segundos, durante el cual se determina la energia.

P: Potencia suministrada en watt-seg.

Ahora el valor promedio de la potencia instantánea se obtiene dividiendo la expresión anterior entre el mismo intervalo (t_2-t_1).

$$p = \frac{1}{t_2 - t_1} \int_{t_2}^{t_2} vi \ dt \ Ec. \ 2.17$$

Si la corriente y el voltaje cambian en forma sinusoidal, la potencia es:

$$P = VI \cos \alpha$$
 Ec. 2.18

donde:

P : Potencia en watt

V : Valor eficaz de la tensión en volt.

I : Corriente eficaz en amperios

 α : Angulo de fase entre el voltaje y la corriente

cos α : factor de potencia.

Existen varias formas de potencia, pero la que se utilizará para los cálculos en el presente trabajo es la potencia real, que viene dada por el producto del voltaje (V) por la corriente (I) y por el factor de potencia (Ec. 2.13)

De lo anterior se tiene:

$$P = VI \cdot cos \alpha$$

Tomando la potencia de diseño de 5.5 Kw, y sustituyendo en la ecuación 2.18

$$5.5 \times 10^3 = VI \cos \alpha$$

 $\cos \alpha = 1$ (por ser un circuito totalmente resistivo)

V = 110 volt.

Despejando la corriente

$$P = 5.5 \times 10^{3}$$
 $V = ---- = ---- Volt*Amp$
 $V = 110 Volt.$

I = 50 Amp.

El valor de corriente obtenido, es la corriente de alimentación del circuito.

Se sabe también que:

 $P = R I^2$ (para un circuito resistivo) Ec. 2.19

De donde:

Sustituyendo:

$$R_{\text{T}} = \frac{5.5 \times 10^3}{(50)^2} \text{ watt}$$
 $(50)^2 \text{ Amp}^2$

$$R_T = 2.2 \text{ ohmios } (\Omega)$$

Este valor representa la resistentecia equivalente.

Considerando un arrego de tres resistencias en paralelo (Fig. 2.13) para obtener un valor individual de resistencia se tiene que:

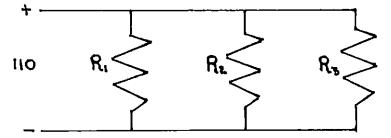


Fig. 2.13. Circuito resistivo del horno

$$\frac{1}{R_{1}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$
 Pero: $R_{1} = R_{2} = R_{3} = R_{3}$

Se tiene que:
$$\frac{1}{R_m} = \frac{3}{R_m}$$

Despejando:

$$R = 3 R_T = 3(2.2 \Omega)$$

 $R = 6.6 \Omega$ Este es el valor individual de cada resistencia

Teniendo el valor de la resistencia es necesario determinar, la longitud aproximada de dicho elemento. Esto se realizará tomando un diámetro mínimo de resistencia de 1.5 mm y material Kanthal. Ahora de la tabla 2.11 se tomarán las siguientes propiedades:

Para $\phi = 1.5 \text{ mm}$.

SWG Nº 16

 $R / L = 0.82 \Omega/m$

 $A / L = 47.1 \text{ cm}^2/\text{m}$

 $A / R = 57.4 \text{ cm}^2/\Omega$

Encontrando la longitud para cada resistencia.

$$L = \frac{6.6 \Omega}{0.82 \Omega/m}$$

L = 8.05 m

 $L \approx 8 \text{ m}$

2.9 CONTROL DE TEMPERATURA

A medida que la energía suministrada al horno aumenta crece también la temperatura y, en consecuencia, hay mayores pérdidas de calor tanto por convección, por radiación y

conducción. Existe una temperatura de equilibrio por cada valor de potencia alimentada en condiciones estacionarias. Siempre que se trate térmicamente una muestra, deberá controlarse la temperatura del horno, gobernando la entrada de potencia al horno, ya sea automática o manualmente.

La potencia se puede controlar suministrándola uniformemente a un nivel adecuado o interrumpiendo este suministro periódicamente de modo que durante cierto lapso sea adecuado el suministro de potencia. Un equipo completo para el control de temperatura requiere también de un termopar u otro aparato que mida la temperatura de la muestra.

Describiremos a continuación algunos métodos para el control de la potencia alimentada al horno.

Un aparato simple para controlar 1a potencia suministrada al horno es el Reostato en serie que se muestra en la fig. 2.14. Este es barato y, en general, se adquiere junto con los hornos pequeños. Mediante una calibración no muy precisa, como es la de establecer una serie de posiciones y observar la temperatura alcanzable en esa posición en condiciones estacionarias, es posible lograr una reproducción bastante aceptable de temperatura. Las desventajas de este aparato son que consume mucha potencia sin que el horno la aproveche, que varía la temperatura de equilibrio con las fluctuaciones del voltaje de la linea y de las condiciones ambientales. Finalmente se necesitan tiempos muy largos para alcanzar la temperatura de equilibrio característica de cada posición dada.

Esta última dificultad se evita acomodando el reostato para una temperatura elevada, hasta que se alcanza la deseada y regresando a una posición tal que proporcione la temperatura buscada.

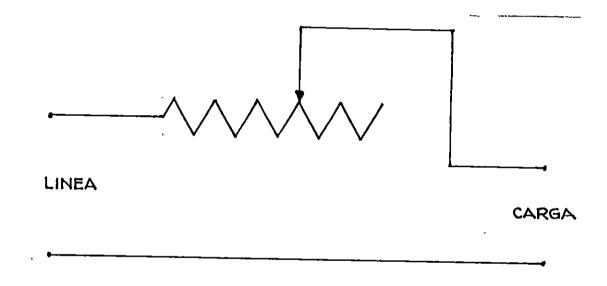


Fig. 2.14 Reóstato en serie

otro método para regular el voltaje suministrado al horno se logra con el empleo de un autotransformador (fig. 2.15). Este aparato es eficiente y de uso común en pequeños hornos de laboratorio, pero cuando son grandes, el costo del autotranformador los hace prohibitivos. Los autotransformadores se utilizan raramente para controlar la potencia de hornos en tamaño mucho mayores que un Kilowatt, y estos operan mejor si se cambian frecuentemente la posición

de voltaje. Cuando se usan para tiempos largos en una posición fija, puede presentarse algún deterioro de los contactos, y entonces se prefiere un transformador de relación fija.

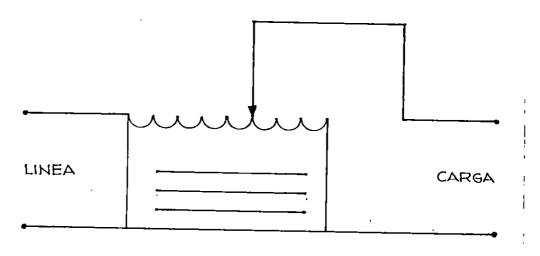


fig. 2.15 Autotransformador.

Los hornos grandes, y algunos de laboratorio muy pequeños, especialmente aquellos que trabajan con una diferencia de potencial mucho menor de 110 voltios, utilizan frecuentemente un transformador en derivación. fig. 2.16

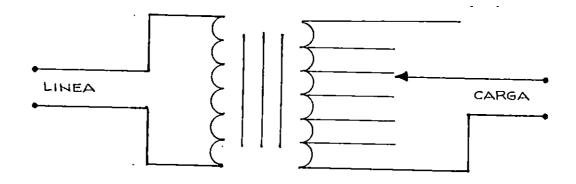


Fig. 2.16 Transformador en derivación.

Una forma muy conveniente de gobernar cargas más bien con un autotransformador pequeño, es usar un Reactor de Núcleo Saturable (fig. 2.17). Este se forma de una bobina enrollada alrededor de un núcleo de hierro y conectado en serie con el circuito principal de potencia.

Existe además una bobina auxiliar devanada sobre el núcleo de hierro del reactor la cual se alimenta con una corriente directa que proviene de un autotranformador y un rectificador. Cuando la bobina auxiliar no está energizada (no hay flujo de corriente directa), el núcleo de hierro provoca que la bobina principal tenga una impedancia alta y evita el paso de corriente de calentamiento a través del horno.

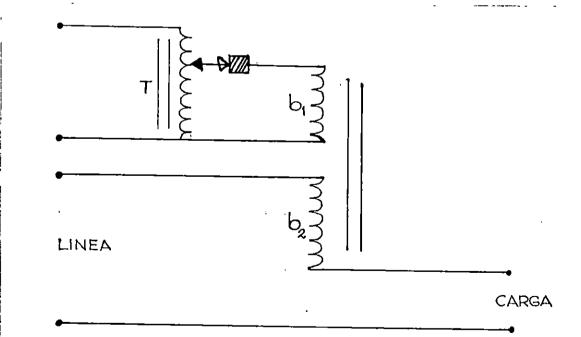


Fig. 2.17. Reactor de núcleo saturable. Se aplica sobre la bobina b_1 un voltaje variable de corriente directa mediante el autotransformador T y el rectificador R. Esto hace variar la impedancia de la bobina b_2

Si se mueve hacia arriba el mando del transformador, se satura magnéticamente el núcleo de hierro y de hecho lo elimina del circuito, luego la impedancia del reactor disminuye, y aumenta la corriente hacia el horno.

Estos son los métodos más comunes para tener un control de temperatura en un horno, al mismo tiempo que un suministro continuo de potencia. cuando se alcanza el equilibrio, la temperatura cambia solamente si varía el voltaje de la linea, si hay cambios de temperatura ambiente o si se modifican las pérdidas de calor por otras razones. Los cambios de voltaje en la linea son generalmente series, de tal manera una temperatura constante se puede obtener solamente por periodos de tiempo relativamente cortos. Sin embargo, para hornos pequeños es posible utilizar un transformador de voltaje constante para alimentar a un autotransformador (fig. 2.18). Este método da como resultado una temperatura muy constante en hornos muy pequeños y es particularmente útil para hornos de capacidad calorífica pequeña o para hornos de crecimiento de monocristales.

Los métodos anteriores son convenientes para el control automático de temperatura no muy refinado, durante tiempos largos, o por su control manual de precisión por tiempos cortos. Sin embargo, en la mayoría de los casos, se realiza el control de temperatura midiendo la temperatura del horno

con un termopar o con pirómetro de radiación, y controlándola al valor deseado con aparatos adecuados, a menudo unidos al equipo de control de potencia descritos anteriormente.

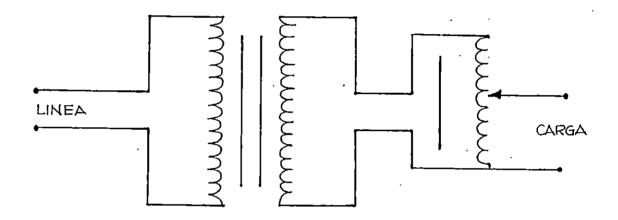


Fig. 2.18 Autotransformador alimentado con un transformador de voltaje constante.

Los instrumentos necesarios para el control automático de temperatura, son casi independientes del método de medición de temperatura. Un termopar, un pirómetro de radiación o un termómetro de resistencia, darán una señal eléctrica que se pueda interpretar en términos de temperatura por los aparatos descritos anteriormente. Esto puede permitir también una comparación entre la temperatura actual y la deseada, y de acuerdo con ésto, abrir o cerrar un circuito eléctrico.

El método más simple para controlar automáticamente la temperatura de un horno es cortar el suministro de energía cuando se alcanza la temperatura requerida y reestablecer el suministro de nuevo cuando la temperatura cae abajo del valor deseado. Esto es un control de encendido-apagado que se ilustra esquemáticamente en la fig. 2.19. La temperatura se puede medir con un termopar y el instrumento de control actúa sobre un circuito simple disyuntor que abre cuando la temperatura indicada por el termopar está arriba de la temperatura de control y que cierra cuando la temperatura es menor a la temperatura de control.

La potencia suministrada al horno, puede estar pasando completamente al circuito o estar fuera de él completamente. Si el instrumento es suficientemente sensible y el termopar está correctamente localizado, este método proporciona un control satisfactorio. En la mayoría de los casos, debido al tiempo requerido para que el flujo de calor llegue a todos los puntos de la cámara del horno, el control de encendido o apagado conduce a fluctuaciones de temperatura muy marcadas a esto se le llama inercia térmica. El enrrollamiento del horno llega a calentarse mucho antes de que el termopar en el interior del horno alcance la temperatura de control. Incluso, si se suspende el suministro de corriente al enrrollamiento, el interior del horno continuará calentándose

durante un corto tiempo.

De manera similar, cuando el termopar se enfría de nuevo al punto de control dentro del horno y el regulador suministra de nuevo energía, transcurrirá algún tiempo antes de que el calor del enrollamiento alcance otra vez el centro del horno y se enfriará considerablemente debajo del punto de control.

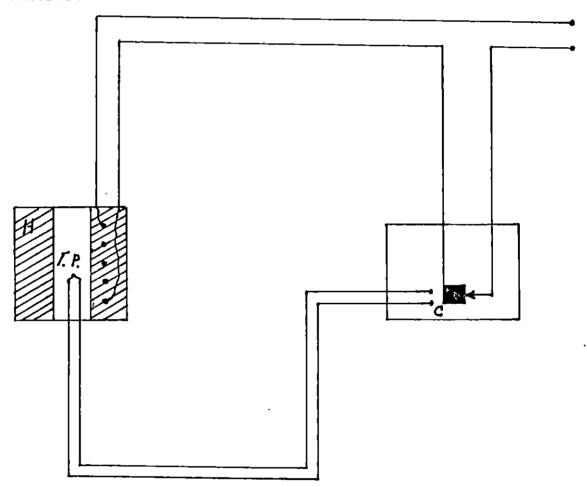


Fig. 2.19 Control Simple de Encendido-Apagado. El controlador es alimentado con la salida de fuerza electromotriz del termopar; el control abre el circuito de potencia, cuando el horno está por encima de la temperatura de control y apaga cuando el horno está por debajo de la temperatura de control.

CONTROL DE DOS POSICIONES.

El control de dos posiciones consiste en la modificación del encendido-apagado que reduce mucho la oscilación de temperatura. Aquí en lugar de suministrar o cortar completamente la potencia, ésta cambia desde un nivel elevado, que calentará justamente al horno por encima de la temperatura deseada, a un nivel bajo que no calentará al horno hasta el valor deseado.

En la fig. 2.20, se muestra un método simple para realizar ésto. La resistencia ajustable, en serie con el horno, mantiene alguna corriente fluyendo a través de él durante todo el tiempo y esta corriente se regula de tal manera que es insuficiente para calentar al horno a la temperatura de control.

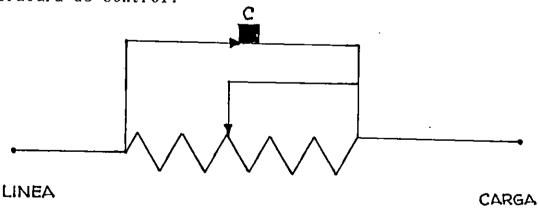


Fig. 2.20 Control de dos posiciones. La potencia suministrada cambia desde un valor alto hasta uno bajo. En este diagrama solamente el nivel de baja potencia puede ser controlado.

Cuando la temperatura del horno queda debajo de la temperatura de control, el cierre de contactos cortocircuitan al reostato y permite que pase una corriente grande a través del horno y lo calienta arriba de la temperatura de control. La diferencia de valores de ambos potenciales debe ser siempre lo suficientemente grande para que, a pesar de las fluctuaciones de voltaje en la línea caigan sobre ambos lados del punto de control, éstos serán los límites de temperatura alcanzables.

Ambas corrientes - la alta y la baja - pueden comprobarse con el circuito de la fig. 2.21.

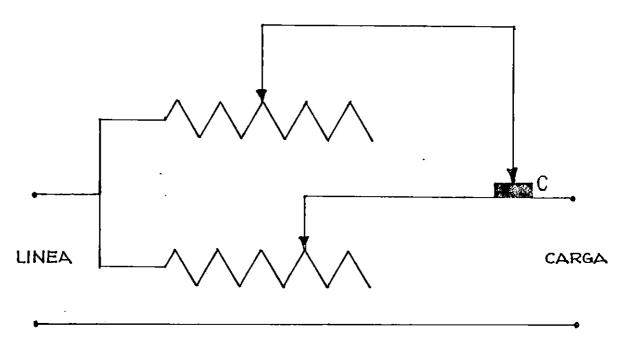


Fig. 2.21 Control de dos posiciones. En este diagrama puede regularse tanto el valor alto como el bajo. C es el contacto en el controlador de temperatura.

2.9.1 SELECCION DEL CONTROL DE TEMPERATURA.

Tomando en cuenta que los métodos para controlar la temperatura descritos anteriormente, se basan en el control de la potencia alimentada al horno, y analizando las características para cada uno de los métodos descritos, se ha tomado la desición de seleccionar el método de Control de dos posiciones, el cual es una modificación del Método de control de Encendido-Apagado. Este reduce en gran medida las fluctuaciones de temperatura, a pesar de las fluctuaciones de voltaje que puedan ocurrir en la linea de suministro.

2.10 TERMOCUPLAS.

El termopar es un aparato termométrico casi ideal. La fem originada bajo cierto grupo de condiciones dadas es altamente reproducible. La unión medidora de temperatura puede hacerse sumamente pequeña, de tal manera que se puedan medir temperaturas en volúmenes pequeños que finalmente, se indican en función de un voltaje eléctrico. Por lo tanto, la indicación y el control de la temperatura a distancia es fácil de efectuar.

El termopar se basa en el efecto descubierto en 1821 por Seebeck "la circulación de una corriente en un circuito formado por dos metales diferentes, cuyas uniones (unión de medida o caliente y la unión de referencia o fría), se mantienen a distinta temperatura". Esta circulación de corriente obedece a dos efectos termoeléctricos combinados, el efecto peltier que provoca la liberación o absorción de calor en la unión de dos metales distintos cuando una corriente circula a través de la unión, y el efecto thompson que consiste en la liberación o absorción de calor cuando una corriente circula a través de un metal homogéneo en el que existe un gradiente de temperaturas.

La combinación de los efectos, de Peltier y de Thompson, es la causa de la circulación de corrientes al cerrar el circuito en el termopar.

Estudios realizados sobre el comportamiento de termopares, han permitido establecer tres leyes fundamentales:

- 1) Ley del Circuito Homogéneo. En un conductor metálico homogéneo; no puede sostenerse la circulación de una corriente eléctrica por la aplicación exclusiva del calor.
- 2) Ley de los metales intermedios. Si en un circuito de varios conductores la temperatura es uniforme desde un punto de soldadura A a otro punto B, la suma algebráica

de todas las fuerzas electromagnéticas es totalmente independiente de los conductores metálicos intermedios, y es la misma que si se pusieran en contacto directo A y B.

Ley de las temperaturas intermedias. La f.e.m. generada por un termopar con sus uniones a las temperaturas T₁ y T₃, es la suma algebráica de la f.e.m. del termopar con sus uniones a T₁ y T₂ y de la f.e.m. del mismo termopar con sus uniones a las temperaturas T₂ y T₃.

Por estas leyes se hace evidente que en el circuito se desarrolla una pequeña tensión continua, proporcional a la temperatura de unión de medida, siempre que haya una diferencia de temperaturas con la unión de referencia.

La selección de los materiales para los termopares, se hace de forma que tengan una resistencia adecuada a la corrosión, a la oxidación y a la cristalización, que desarrollen una f.e.m. relativamente alta, que sean estables, de bajo costo y de baja resistencia eléctrica y que la relación entre la temperatura y la f.e.m. sea tal que el aumento de ésta sea (aproximadamente) paralela al aumento de la temperatura.

En la fig. 2.22, se presentan las curvas características de los termopares.

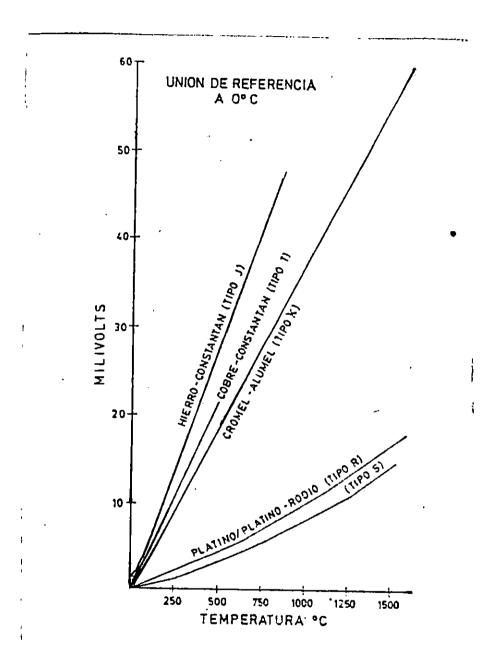


Fig. 2.22 Curvas características f.e.m.-temperatura de los termopares.

En el anexo NQ 7 se muestran tablas de valores de f.e.m. en función de la temperatura.

En las tablas 2.12 y 2.13, se muestran los termopares más comunes, la f.e.m. que pueden desarrollar, la temperatura más alta a que pueden trabajar satisfactoriamente y su composición química. En la medición de las temperaturas elevadas que se encuentran en la fabricación del acero en fusión, se emplean cartuchos con termopares R o S, que se enchufan en una lanza, y ésta se sumerge en el acero y aunque el cartucho se funde, da tiempo a que un circuito especial fije la máxima temperatura.

El termopar tipo T, de cobre - constatán, tiene una elevada resistencia a la corrosión por humedad atmosférica o condensación y puede utilizarse en atmósferas oxidantes o reductoras. Se prefiere generalmente para las medidas de temperaturas entre -200 a + 260°C.

TABLA 2.12 CARACTERISTICAS DE TERMOPARES

TIPO	INTERVALO DE MEDIDA	f.e.m. mV/°C	limites de error del termopar		Limites del cable de Extensión		
			Regular	Premiun	Temp,	Error	
						Regular	Premiun
Cobre constatán tipo 7	-185°C a - 60°C - 60°C a + 95°C 95°C a 370°C	0.0052	£2 % £0.8 % £0.75%	±1 1 ±0.4 1 ±0.371	-60 a +95°C	-0.8°C	
Mierro constatán tipo J	0°C a 425°C 425°C a 759°C 0°C a 300°C 300°C a 550°C	0.055	±2.2°C ±0.5°C	±1.1°C ±0.3°C	0~200°C	±2.2°C	±1.1°C
Cromel-Alumel tipo K	0°C a 400°C 400°C y superior	0.04	±3°C ±0.75°C		0-200°C		₹3 . €
Cobre constatán (hilo de extensión)					0-200°C	£5°C	
Pt-Pt/Rh 13% _tipo R	0°C a 1,100°C 1,100°C a 1,400°C 1,400°C a 1,600°C	0.012	±1°C ±2°C ±3°C		25 a 200°C	± 6% 6 ±5°C	
Pt-Pt/Rh 10% tipo S	0°C a 1,100°C 1,100°C a 1,400°C 1,400°C a 1,600°C	0.010	£1°C £3°C		25 a 200°¢	± 6% 6 ±5°C	

Ref. 13

TABLA 2.13 DESIGNACION DE LOS TERMOELEMENTOS Y SU COMPOSICION QUIMICA

	COMPOSICION QUINICA (EN %)								
TERMOBLEMENTO	Cr	Fe	Hn	Si	Ni	Cu	Al	Pt	Rh
JP Hierro (1)		99.5	Ind.	Ind.	Ind.	Ind.	Ind.	-	-
JN o TN Constatán		_	-	-	45	55	-	-	-
TP Cobre		_	-	-	-	100	_		-
KP Cromel (2)	10	-	-		90	-	-	-	-
KN Alumel (2)		-	2	1	95	-	2	-	-
RP Platino con 13% de rodio		-	-			-	-	87	13
SP Platino con 10% de rodio		-	•	-	-	-	-	90	10
RN o SN		-	-	- ;	-	-	-	100	-
Platino							1		

NOTAS:

P = positivo

N = negativo

- (1) El hierro, además de los elementos indicados, contiene en pequeña porción azufre y fósforo
- (2) Marca Koskins Manufacturing Co.

Ref. 13

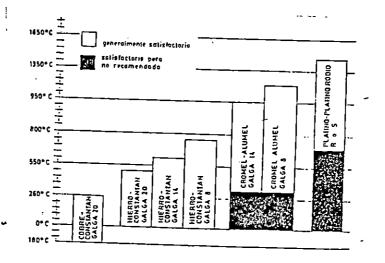


Fig. 2.23 Selección de termopares. Ref. 13

El termopar tipo J, de hierro-constatán, es adecuado en atmósferas con escaso oxígeno libre. La oxidación del hilo de hierro aumenta rápidamente por encima de los 550°C, siendo necesario un diámetro mayor del hilo hasta una temperatura límite de 750°C. El termopar tipo K de cromel - alumel, se recomienda en atmósferas oxidantes y a temperaturas de trabajo entre 500 y 1000°C. No debe ser utilizado en atmósferas reductoras ni sulfurosas, a menos que esté protegido con un tubo de protección.

Los termopares tipo R y S de Pt-Pt/Rh, se emplean en atmósferas oxidantes y temperaturas de trabajo hasta 1500°C. Si la atmósfera no es oxidante, el termopar debe protegerse con un tubo de cerámico estanco.

El material del tubo de protección o vaina, debe ser el adecuado para el proceso donde se aplica y suele ser de hierro, acero sin soldadura, acero inoxidable, inconel,

cerámico, carburo de silicio, etc.

En la tabla 2.14, se indica una guia de selección de tubos según la aplicación.

Para medir la f.e.m. del termopar pueden emplearse ya sea un circuito galvanométrico o un circuito potenciométrico. El circuito galvanométrico se basa en la desviación de una bobina móvil situada entre dos polos de un imán permanente al pasar a través de la corriente del elemento primario. El paso de esta corriente, produce un campo magnético que se opone al del imán permanente, y la bobina móvil gira hasta que el par magnético correspondiente es equilibrado por el par de tensión del muelle.

Una aguja indicadora, que está unida rigidamente a la bobina móvil, se desplaza a lo largo de una escala graduada, calibrada en las unidades de medida.

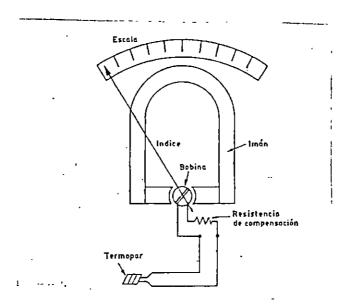


Fig. 2.24 Circuito Galvanométrico.

Circuito Potenciómetrico.

1 1

Este circuito está representado en la fig. 2.19 y consta de una fuente de tensión constante y que alimenta los dos brazos del circuito con corrientes I_1 y I_2 . En la fig. 2.19, el termopar T está conectado al brazo inferior E y, a través de un miliamperímetro al reostato R. La posición R del cursor del reostato R, indica la temperatura del proceso cuando no pasa corriente por el miliamperímetro, es decir, cuando el punto C del cursor del reostato R y el punto E están a la misma tensión.

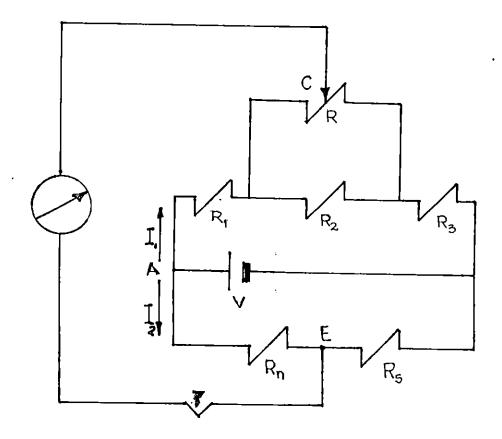


Fig. 2.25 Circuito Potenciométrico

TABLA 2.14 GUIA PARA LA SELECCION DE TUBOS O VAINAS DE PROTECCION. Ref. 13

INDUSTRIA	APLICACION	ANIAV O OBUT		
Tratemientos térmicos	Recocido Carburación Templado < 700°C 700 a 1100°C > 1100 °C Mitrutación Baños de sales	Incorel o hierro Inconel Hierro forjado Inconel o hierro Cerámico o pirómetro radiación Hierro Inconel, hierro o pirómetro radiación		
Hlerro u acero	Hornos de soplado Rogar Techo Calderas de recuperación Posos de recalentamiento (1100°C > 1100°C Palanquilla, calentamiento de planchas y soldadura a tope (1100°C > 1100°C C Soldadura fuerte Recocido brillante Porjado Galvanización Baños de decapado Estañado	Inconel o hierro o carburo de silicio Inconel o pirómetro de radiación Pirómetro de radiación Inconel o hierro Inconel o hierro Cerámico o carburo de silicio o pirómetro de radiación Inconel o hierro Cerámico y carburo de silicio o pirómetro de radiación Pirómetro de radiación Termopar tipo J sin tubo de protección o pirómetro de radiación Cerámico y carburo de silicio o pirómetro de radiación Cerámico y carburo de silicio o pirómetro de radiación Acero o carburo de silicio		

continuación...

INDUSTRIA	APLICACION	TUBO O VAIHA		
Hetales no férricos	Pundición aluminio Tratamiento térmico del aluminio Pundición latón o bronce	Carburo de silicio o hierro Rierro o sin tubo de protección Netal fundido especial		
	Recocido Palanquilla Moldeo Plomo	Hierro o sin tubo de protección Inconel o hierro Hierro o carburo de silicio Hierro		
	Magnesio Estaño Cinc Pundición y calcinación de mineral	Acero sin soldadura Acero dulce Carburo de silicio o hierro Inconel, hierro, cerámico o carburo de silicio		
Cemento	Conductos de salida Hornos	Inconel o hierro Pirómetro de radiación		
Cerámica	Hornos Soldadores Esmalto vítreo	Cerámico o pirómetro de radiación Hierro Inconel, hierro o pirómetro de radiación		
Quinica		Acero inoxidable en general. Debido a la gran variedad de aplicaciones gulmicas es dificil establecer recomendaciones		
Alimentación		Acero inoxidable		
Gas	Productor de gas Gas de agua sobrecalentado	Incomel o hierro Incomel o hierro		
Yidro	Alimentador Lehr (tónel de recocido) Tangues Conductos de tanques	Platino o pirómetro de radiación Hierro Cerámico o pirómetro de radiación Inconel o hierro		

En la tabla 2.15, se muestra una comparación entre los circuitos galvanométricos y potenciométricos.

 $\leftarrow f$

TABLA 2.15 COMPARACION ENTRE CIRCUITOS GALVANOMETRICOS Y
POTENCIOMETRICOS. Ref. 13

·	GALVANOHETRICO	POTENCIONETRICO
Precisión	t 1 %	± 0,25 a ± 0,5 %
Influencia de las variaciones de resistencia con la tempe- ratura de los cables de com- pensación	Influye	No influye por no pasar corriente en el monento de la lectura
Compensación temperatura ambiente	Espiral bimetálica Termistor	Resistencia de niquel
Vibraciones	Desgastan los apoyos de la bobina móvil	Resistente
Piezas móviles	Bobina espiral metálica, espiral bimetálica	Hotor de equilibrio robusto
Posición	Debe ser horizontal	No influye
Control .	Ampolla de mercurio Microrruptores Potoeléctrico Oscilador	Idem con la posibilidad de ser más robustos
Calibráción	Local-influida por las variaciones de temperatura del cable de compensación Temperatura ambiente en en la caja no compensada perfectamente	Independientemente del cable de compensación. Buena compensación de la temperatura ambiente
Intercambiabilidad de campos de medida	Necesario ajustar la resis- tencia de línea y la re- sistencia interna	Independientemente de la resis- tencia de línea Se cambia sólo el circuito impreso de medida
Facilidad lectura a distancia	Normal	Pacilitada por gran escala
Precio	 Barato	 Kediano o caro

2.10.1 SELECCION DE LA TERMOCUPLA.

Para seleccionar la termocupla, se tomaron en cuenta ciertos factores que inciden en el funcionamiento de dicho elemento. Estos factores son:

- 1-) La temperatura máxima de operación 1100°C.
- 2-) Se presume que existirá una atmósfera normal a la hora de operación.
- 3-) Tipo de aplicación para el cual será diseñado el horno: Tratamientos Térmicos.

También se tomaron en consideración, los comentarios descritos anteriormente para cada uno de los tipos, y las características de dichos elementos detallados en las tablas 2.12, 2.13, y la fig. 2.23.

El tipo de termocupla seleccionado es el tipo K, cromel - alumel. El material del tubo de protección se seleccionó de acuerdo al proceso de aplicación, y tomando en cuenta lo detallado en la tabla 2.14, se seleccionó un tubo de Iconel o hierro.

CAPITULO III

DISEÑO DEL HORNO

3.1 ESTRUCTURA METALICA DE UN HORNO

La estructura metálica del horno para tratamientos térmicos, se divide en dos partes, estas son; primero la estructura rigida y estática del horno y segundo la parte articulada de este como es la puerta y sus componentes.

3.1.1 ARMAZON METALICA DEL HORNO.

La estructura metálica del horno se divide en dos partes:

- a) Armazón estructural del soporte: es la estructura que soporta todo el peso del horno, además de absorber todos los esfuerzos internos generados por los cambios de temperatura. Dicha estructura esta fabricada con hierro angular de 38.1 mm x 6.35mm (1 1/2 pulgada x 1/4 pulgada) como se ve en la figura 3.1.
- b) Cubierta metálica: Es la protección metálica que envuelve todo el horno, la función de dicha cubierta es la de protejer y reforzar la estructura principal, para la cubierta se utiliza lámina de hierro de espesor de 3.17 mm (1/8 pulgada).

3.1.1.1 CALCULO DE LA RESISTENCIA DE LAS SOLDADURAS.

En la figura 4.4 se muestra la unión intermedia, compuesta por dos ángulos horizontales con un ángulo de soporte vertical. En dicha unión hay cinco cordones de soldadura : 3 cordones a

tope en cortadura y 2 cordones de ángulo sometidos a compresión.

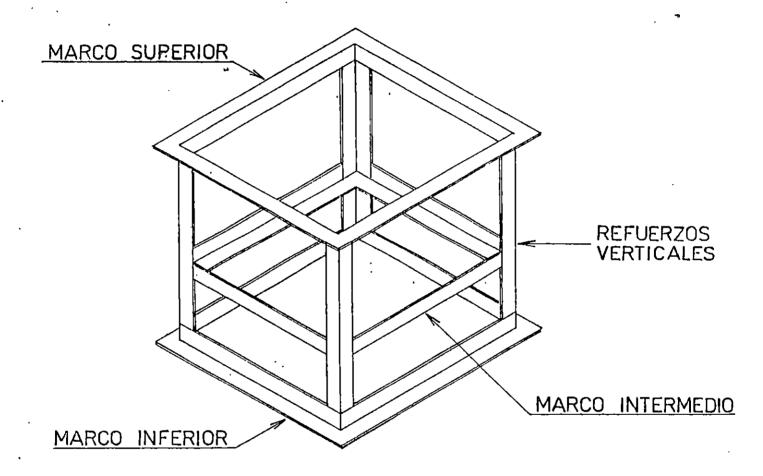


Fig. 3:1. Estructura Metálica del horno

Se utiliza en la soldadura un electrodo para acero dulce E6013 con un valor de fluencia de $3860~{\rm Kg/cm^2}$ (Ref. 18).

Para el cálculo de esfuerzos en la soldadura se utilizan las siguientes fórmulas. (Ref. 19)

$$Ss = 1.414 P/hL$$
 (3.1)

Donde:

 $\{j\}$

Ss : Esfuerzo cortante en la sección de la garganta

P : Carga aplicable (Peso de la estructura de ladrillo 90.1 Kg)

h : Altura del cordón de soldadura (garganta)

L : Longitud del cordón de soldadura

$$Ss = P/hL (3.2)$$

$$F.S. = 0.5(S_{yp})/Ss$$
 (3.3)

Donde:

F.S.: Factor de seguridad

Syp: Esfuerzo de limite de fluencia

Datos:

$$P = \frac{P_{\text{total}}}{4} = \frac{90.1 \text{ Kg}}{4} = 22.52 \text{ Kg}$$

 $h_{\text{Tope}} = 0.15 \text{ cm}$

 $h_{\text{Angule}} = 0.20 \text{ cm}$

Lrope horizontal = 4.0 cm

LTope vertical = 7.6 cm

Languio horizontal = 5.0 cm

Cálculos:

a) Soldadura horizontal

Cordón de soldadura en ángulo sometido a compresión perpendicular a su longitud (Ref. 19, Fig. 7.3d), de la ecuación 3.1.

$$Ss = \frac{1.414 \times 22.52 \text{ Kg}}{0.2 \text{ cm} \times 5 \text{ cm}} = 31.84 \text{ Kg/cm}^2$$

Cordón de soldadura a tope en cortadura (Ref. 19, Fig. 7.3b), de la ecuación 3.2.

$$Ss = \frac{22.52 \text{ Kg}}{0.15 \text{ cm x 4 cm}} = 37.53 \text{ Kg/cm}^2$$

b) Soldadura Vertical.

Cordón de soldadura a tope en cortadura (Ref. 19, Fig. 7.3b), de la ecuación 3.2.

$$Ss = \frac{22.52 \text{ Kg}}{0.15 \text{ cm x } 7.6 \text{ cm}} = 19.75 \text{ Kg/cm}^2$$

Esfuerzo total en la soldadura:

Ss
$$= (31.84 + 37.53 + 19.75) \text{ Kg/cm}^2 = 89.12 \text{ Kg/cm}^2$$
De la ecuación 3.3

F.S. =
$$\frac{0.5 \times 3860 \text{ Kg/cm}^2}{89.12 \text{ Kg/cm}^2} = 21.65$$

3.1.1.2 DESCRIPCION DE LA ESTRUCTURA

La estructura metálica del horno forma 2 recamaras, la función de cada una es la siguiente:

a) Recámara superior: es la recámara donde se encuentran el conjunto de ladrillos y el aislante.

Posee las dimensiones siguientes (medidas internas).

ancho = 178 mm

altura = 301 mm

1

largo = 478 mm.

Esta cubierta con lámina de hierro de 3.17 mm de espesor en las 4 paredes, soldadas a solapa contra el ángulo de la estructura. En el fondo hay una lámina de hierro de 4.76 mm (3/16 de pulgada) y por la parte superior una lámina de 3.17 mm sujetada a la estructura por pernos de 9.52 mm. (3/8 de pulgada).

En la cara frontal hay una ventana con las siguientes dimensiones:

ancho = 200 mm

altura = 190 mm

En todo el perimetro de la ventana se coloca un contramarco con lámina de 3.17 mm. y un ancho de 25 mm.

b) Recámara inferior esta recámara conserva la misma área, pero una menor altura que la superior. En sus paredes laterales se coloca lámina perforada de 1.58 mm (1/16 de pulgada) de espesor y agujeros con diámetro 6.35 mm (1/4 de pulgada). En la cara frontal una lámina de 3.17 mm donde se colocan los aparatos de control y en la parte posterior una lámina de 1.58 mm perforada con diámetros de 6.35 mm y sujetada con pernos de 6.35 mm de diámetro.

3.1.2 DESCRIPCION DE PUERTA Y MIRILLA.

,

La puerta del horno es una caja metálica construida con lámina de 1.58 mm (1/16 de pulgada de espesor, la cual tiene las medidas siguientes: 250 mm x 240 mm x 75 mm (largo x alto x espesor). La cara posterior de la puerta no posee forro metálico, solamente un contramarco con lámina del mismo espesor y un ancho de 25 mm, formando una pestaña interna que detiene las fibras cerámicas que se colocan en su interior.

La puerta es accionada por medio de 2 bisagras colocadas en la parte lateral izquierda, y asegurada por un pasador de leva accionado por una manecilla.

Para la operación de abrir y cerrar la puerta se coloca una manecilla en la parte lateral derecha de la puerta.

La mirilla o agujero de observación, es un agujero colocado en el centro de la cara frontal de la puerta, dicho agujero posee un diámetro de 8 mm. Para evitar que dicho agujero pueda ser una salida de calor de la cámara de calentamiento se coloca una tapadera con lámina de 1.58 mm sujetada a la puerta con un tornillo de diámetro 4 mm.

3.2 PANEL DE CONTROL ELECTRICO.

1

El panel de control, es una caja metálica en la cual están ubicados los componentes eléctricos como el control de temperatura, la luz piloto, el interruptor principal y el contactor, tales elementos están conectados correctamente por medio de cables, acomodados convenientemente en el interior.

Todo panel de control debe estar diseñado de tal forma que pueda facilitar el mantenimiento eléctrico. Existe una serie de hornos industriales que llevan ubicado el panel de control en la parte inferior y algunos separados de la unidad.

Tomando en cuenta estas posiciones y optando en buscar la forma más conveniente, el pánel de control está unido a la cámara del horno y dispuesto en la parte inferior. Esto se decidió por ser más fácil construir una sola carcaza, y la mayoría de hornos de laboratorio llevan dicho panel en esa posición.

De acuerdo a lo anterior el pánel de control posee el mismo ancho y profundidad del horno (carcaza), la única dimensión que hay que establecer es la altura, la cual en base al tamaño de los componentes es de 183 mm.

Por lo tanto las dimensiones del panel son:

Altura = 183 mm

Ancho = 490 mm

Profundidad = 539 mm.

El material de construcción de panel de control es el

sigulente:

- Lámina de hierro dulce de 3 mm (1/8") de espesor.
- Lámina galvanizada de 1.5 mm (1/16") de espesor con agujeros de 6 mm (%").
- Angulo de 38 mm x 5 mm $(1 \%" \times 3/16")$.

La lámina de hierro dulce y el ángulo son los mismos que se utilizan en la carcaza del horno, esto por que anteriormente se dijo que tanto el horno como el pánel de control forman una sola unidad. La lámina perforada se ha seleccionada para facilitar la visibilidad y evacuación de calor en la base de la cámara.

La lámina de 3 mm (1/8") se usa en la parte frontal, sujetada al ángulo con tornillos de ф 6 mm (%") por 13 mm (%"). La lámina de 1.5 mm (1/16") se utiliza en: Las paredes laterales unidas con puntos de soldaduras a la parte interior del ángulo, y en la parte trasera unidas con tornillos de ф 6 mm por 13 mm a la parte exterior del ángulo.

3.3 RESISTENCIA ELECTRICA.

El circuito que calienta el volumen de trabajo está formado por tres resistencias, conectadas en paralelo a la red de 110 voltios.

Las resistencias son diseñadas de acuerdo a criterios y formulas para lograr una buena distribución de calor:

- Cálculo de longitud de las espiras.

Para esto se toman en cuenta dos criterios:

- El diámetro de las espiras debe estar comprendido entre 5
 y 8 veces el diámetro del alambre, se toma el valor de 5
 veces el diámetro del alambre por la limitante de espacio.
- El espacio entre una espira y la siguiente debe calcularse
 a 2.25 veces el diámetro del alambre (ver fig. 3.2)

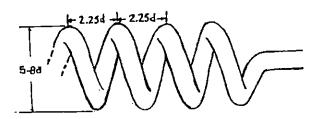


Fig. 3.2. Dimensionamiento de las espiras. (Ref. 9, Cap. 6, pág. 66)

$$D = 5d$$
 (3.1)

s = 2.25d (3.2)

 $d_{\lambda} = 6d - 2(d) (3.3)$

 $d_1 = 4d$

Donde:

D: Diámetro de una Espira en mm.

S: Espacio entre Espira y Espira (paso) mm.

d: Diametro del Alambre en mm.

d:Diámetro del Mandril en mm.

El análisis se hace para una sola tableta, ya que las 3 son iguales para obtener la misma potencia y un calentamiento uniforme.

De la tabla 2.11 para el Alambre Kantal SWG #16 y un Diámetro de 1.5 mm:

$$R/L = 0.82 \text{ } \Omega/m$$
 $A/R = 57.4 \text{ } cm^2/\Omega$ $A/L = 47.1 \text{ } cm^2/m$

Cálculo De La longitud total de alambre.

De las propiedades del alambre se tiene que:

$$L_{T} = \frac{6.6\Omega}{0.82\Omega/m} \rightarrow L_{T} = 8.05 \text{ m}$$

$$L_{\text{T}} \approx 8.0 \text{ m}$$

De la E.C.3.1: De E.C.3.2

$$D = 5d$$
 $S = 2.25(1.5 mm)$
 $= 5(1.5 mm)$ $= 3.375 mm$
 $D = 7.5 mm$ $S = 3.4 mm$

De E.C. 3.3

De E.C. 3.4:
$$L = (d_1 + d)\pi$$
 $d_1 = 4d$

Donde : $L \rightarrow Longitud$ de una

 $= 4(1.5 \text{ mm})$
 $d_2 = 6 \text{ mm}$
 $L = (6) + 1.5)\pi$
 $= (7.5 \text{mm})\pi$

L = 23.56 mm

Numero de espiras : N

$$N = \underline{L}\underline{T}$$

Sust. N =
$$\frac{8000 \text{ mm}}{23.56 \text{mm}}$$

N = 339.56 Espiras

 $N \approx 340$ Espiras.

DISENO DE LA TABLETA PORTA RESISTENCIA.

El número de espiras calculado anteriormente es distribuido en una tableta, la que posee 6 hileras, por la limitante de espacio, con respecto al ancho de la cámara, por tanto:

$$N_p = N/6$$

Donde Np: Número de Espiras/ Hilera

Sust.
$$N_p = \frac{340}{6} \rightarrow N_p = 56.66$$

 $N_p = 57$ Espiras/hilera.

Para encontrar la longitud de la tableta se multiplicara el número de espiras/hilera por el paso de las espiras:

$$L_{Tb} = N_{p} * S$$

Donde: LTD: Longitud De las Espiras/hilera

N_P : Número de Espiras/hilera

S : Paso de las Espiras

 $L_{TB} = 57 * 3.4$

, ;

= 193.4 mm

L_{TB} ≈ 194 mm

Para especificar la longitud final de la tableta se tomará un margen de 16 mm/lado, por tanto:

 $L_{F} = 194 \text{ mm} = 2 (16 \cdot \text{mm})$

= 194 mm = 32 mm

 $L_{F} = 226 \text{ mm}$

DIMENSIONANDO EL ANCHO DE LA TABLETA.

Se sabe que:

El diámetro de la Espira es de 7.5 mm y tomando 1.5 mm de holgura para efectos de dilatación de la resistencia. Entonces el diámetro donde se alojara la Espira tendrá 9 mm., Multiplicando los 9 mm por el número de hileras: 6*9 = 54 mm, dejando un espacio de 11 mm entre hilera e hilera tenemos: 54 mm + 11*5 = 54 mm + 55 mm = 109 mm, y dejando en ambos extremos 5.5 mm, se obtiene un ancho de: 5.5*2 + 109

11 mm + 109 mm \rightarrow ancies = 120 mm.

Para definir el espesor de la tableta se tomará en cuenta el diámetro de la espira que es igual 27.15 mm y los 1,5 mm de holgura que le dará el diámetro donde se alojara la espira este

es igual a 9 mm dejando 5 mm entre de recubrimiento para la resistencia. Para definir el espesor de la tableta se toma en cuenta el diámetro de la espira que es igual; a 7.5 mm y los 1.5 mm de holgura que tiene el diámetro donde se aloja la espira, esto da un valor de 9 mm y 5 mm de recubrimiento para el alambre de la resistencia, finalmente, el espesor es de 14 mm.

Dimensiones finales de la tableta :

120 mm de ancho

ċ

226 mm de largo

14 mm de espesor.

NOTA: Todos los cálculos anteriores referentes a la resistencia eléctrica se hicieron para elaborar dichos elementos. Pero debido a que se nos facilitó la obtención de estos ya elaborados, siendo el consto económico aproximadamente igual se optó por comprarlos.

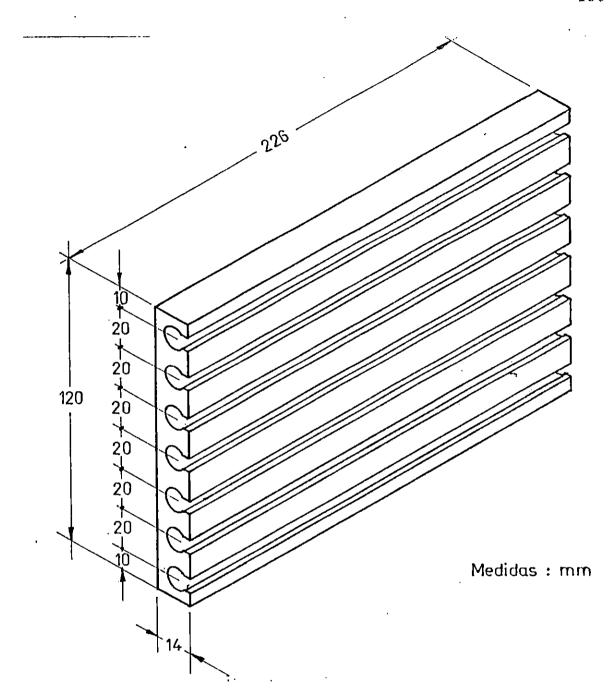


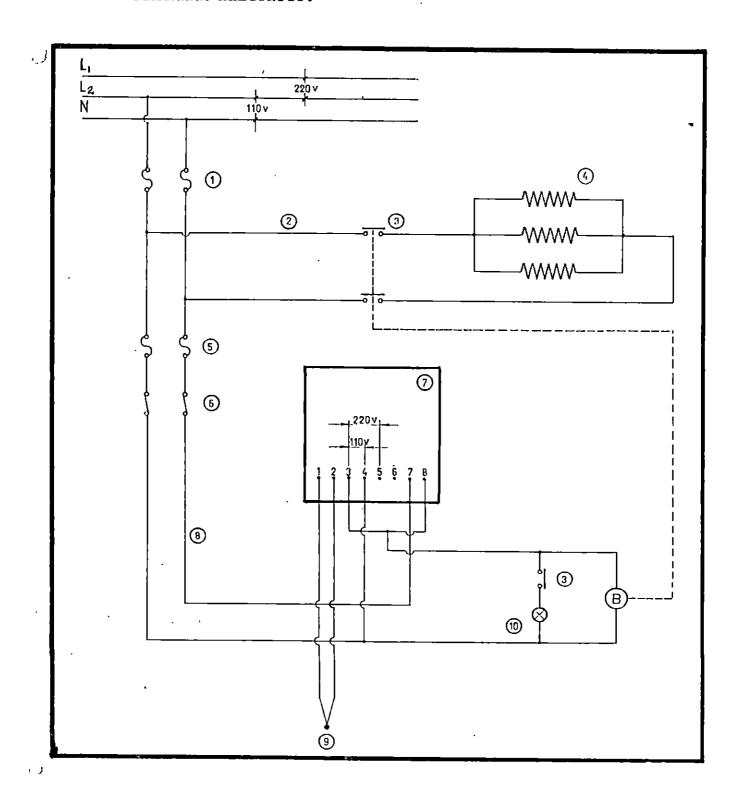
Fig. 3.3. Dimensiones Tableta Porta Resistencias.

3.4 DISPOSICION DE LOS ELEMENTOS DE CONTROL.

j

1.

Un gran número de hornos industriales llevan el control de temperatura al lado derecho del operador, facilitando así la manipulación del equipo. El interruptor generalmente esta al lado izquierdo o al centro del panel, lo mismo que la luz piloto. A veces la ubicación de dichos componentes es indiferente. En el presente trabajo de graduación se utiliza la forma antes descritas por lo tanto el control de temperatura se encuentra al lado derecho de la lámina frontal, el interruptor de apagado-encendido al extremo izquierdo, y la luz piloto al centro de dicha lámina, ubicando cada elemento en form simétrica, esto es dividiendo la lámina en cuatro áreas, en donde en cada línea divisora entre área se tomará el centro de cada componente.


El contactor se ubica en una porción de lámina de hierro de 3 mm de espesor (1/8"), que se sujeta al ángulo de la base del pánel con pernos hexagonales de 9 mm (3/8"), facilitando así su montaje y desmontaje cuando se realice mantenimiento eléctrico.

En la lámina trasera se realiza un corte de 26 mm por 62 mm, para colocar la coraza que conduce las líneas conectoras de las resistencias, también se perfora un agujero de 27 mm para hacer pasar el cable que va a la fuente de voltaje. Al tener esto se procede a perforar el ángulo y realizar roscas para

poder sujetar la lámina con tornillos de 6 mm (1/4").

El contactor se coloca en una lámina dentro del panel de control y se ubica dicho contactor a 265 mm del extremo derecho de la lámina. También en dicha lámina se colocan tres porta fusibles, ubicados convenientemente, también se perforan cuatro agujeros para entrada y salida de cables y se suelda una porción de ángulo, que sostendrá un acople para coraza, facilitando así el manipuleo dе los cables eléctricos al realizar instalación. Para sujetar la lámina se doblan dos pestañas de la lámina en donde se perforan los agujeros que la sostienen al ángulo con pernos de 6.35 mm (3/8").

3.5 DIAGRAMA ELECTRICO.

10	1	Luz Piloto 110/6 v	•			•
9	1	Termocupla				
8		Alambre de Cu-Asbes	to		···	Calibre 6
7	1	Control de Temperatur	ά			0°-1200° C
6	1	Interruptor ON/OFF				• •
5		Fusible 5 Amp				
4	3	Resitencia 7KW/ 220	Al. Kanthal	-,		
3	¨1	Contactor con Bobina	110 v			
2		Alambre de Cu-Asbes	sto			Calibre 10
1	2	Fusible 60 Amp.			·	
Pos	Can	Denominacion		Material	Norma	Medidas
		SIDAD DE EL SALVADOR DE INGENIERIA Y ARQUITECTURA		CUITO ELECTR CONSTRUCCION	HOJA No	
		E INGENIERIA MECANICA		O PARA EFECTU DE TRATAMIENTO		

;

CAPITULO IV

PROCESO DE FABRICACION DEL HORNO

4.1 MATERIA PRIMA.

NΩ	DESCRIPCION	CANTIDAD
1	Lámina de hierro 3mm de espesor	1.20 m²
2	Lámina de hierro 1.5mm de espesor	0.20 m²
3	Lámina de hierro 5mm de espesor	0.25 m²
4	Lámina galvanizada perforada 1.5mm esp	0.28 m²
5	Hierro angular de 0.5x3.8 cms	9 m
6	Electrodo E6013 de 2.4 cms	3 Lbs
7	Electrodo E7018 de 3 mm	5 Lbs
8	Disco de corte para concreto de	,
	3x80x25 mm	4 unidades
9	Disco de corte para hierro 3x80x25mm	2 unidades
10	Hoja de corte sierra de 30x1.3 cms	4 unidades
11	Lija para hierro Nº 2	4 unidades
12	Pintura aluminio para alta temperatura	% galón
13	pernos de 3/8" - Nc de 50 mm de largo	10 unidades
14	Ladrillo refractario de 64x114x229 mm	34 unidades
15	Mortero refractario	1 galón
16	Fibra cerámica de 50mm de espesor	3 m²
17	Tubos cerámicos de 🍎 10 mm	7 unidades
18	Resistencia eléctrica de 7 Kw	3 unidades
19	Termocupla	1 unidades
20	Alambre asbestado calibre Nº 10	4 m
21	Contactor con bobina a 110 V	1 unidades
22	Cordón TSJ de 2 hilos calibre Nº 6	2 m
23	Fusibles de 60A	2 unidades
24	Fusibles de 5A	2 unidades
25	Piloto rojo de 110/6 Voltios	1 unidades
26	Toma macho trifásico	l unidades
27	Toma hembra trifásico	1 unidades
28	Bisagras	2 unidades
	<u> </u>	I

4.2 ESTRUCTURA METALICA.

Para la construcción de la estructura metálica se utiliza hierro angular de 38 mm x 4.7 mm (1 1/2 pulgada x 3/16 pulgada).

Para la fabricación de dicha estructura se deben seguir los pasos siguientes:

- 1- Se divide la estructura en 4 partes:
 - a- Marco Superior
 - b- Marco Inferior o base
 - c- Soportes verticales
 - d- Marco Intermedio.
- 2- Para el marco superior se cortan 4 piezas de hierro angular según las medidas siguientes:
 - i- 2 piezas de L=607 mm (laterales)
 - ii- 2 piezas de L=556 mm (frontal y posterior)
- 3- Cada una de estas piezas se cortan en sus extremos a 45°, como se detalla en la figura 4.1.

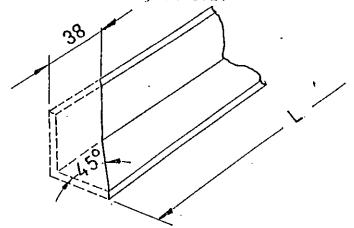


Fig. 4:1. Corte a 45° en hierro ángulo para marco superior.

Conservando todas las secciones el valor de longitud de acuerdo al numeral 2.

4- Se forma un marco con lados opuestos iguales y la parte inferior de angulo hacia afuera, dicho marco debe poseer sus ángulos internos iguales a 90°, después de puntear todas las uniones se debe proceder a resoldar todos los puntos de unión, el marco terminado se ve en la figura 4.2.

 \bigcup

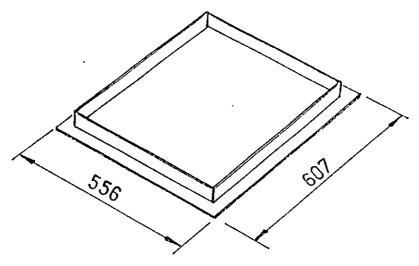


Fig. 4.2 Marco Superior Terminado.

- 5- Para el marco inferior se fabrica repitiendo los pasos indicados en los numerales 2,3 y 4.
- 6- Para la fabricación de los soportes verticales, se cortan 4 piezas de hierro angular de 444 mm de longitud con los extremos perfectamente cortados a 90°.
- 7- Para la fabricación del marco intermedio se cortan 4 piezas

de hierro angular con las medidas siguientes:

- i- 2 piezas de L = 490 mm
- ii- 2 piezas de L = 539 mm.
- 8- A cada una de estas piezas se les practica el corte que se muestra en la figura 4.3 en ambos extremos de la pieza.

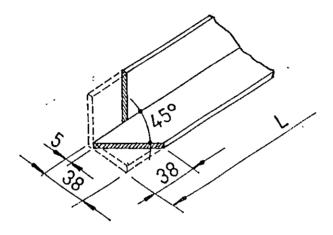


Fig. 4.3. Corte a 45° en extremos piezas para marco intermedio.

9- Se toman los marcos superior e inferior, y en las esquinas de cada uno se colocan los 4 soportes verticales, verificando que estén perpendiculares colocándole puntos de soldadura.

En la parte superior de los soportes se coloca el marco superior siguiendo el mismo procedimiento, después de esto se soldan completamente todos los puntos de unión.

10- Por ultimo se coloca el marco intermedio, este tendrá una altura de 180 mm desde la base hasta el borde inferior de

este marco, el detalle de como se coloca se ve en la Figura 4.4

11- Se procede a resoldar todos los puntos de unión, esmerilando por último todos los cordones que dan vista hacia afuera.

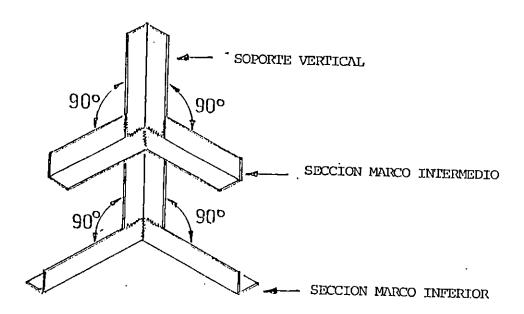


Fig. 4.4. Detalle de colocación de marco intermedio en soporte vertical.

4.3 CUBIERTA PROTECTORA.

Para el proceso de fabricación de la cubierta protectora se hace un análisis para cada recamara en que se divide la estructura del horno. Este se desarrolla en los siguientes pasos:

- Para la recamara superior se corta una sección de lámina de
 4.76 mm (3/16 pulgada) de 510 mm x 460 mm, esta lámina esta apoyada en el marco intermedio y no lleva soldadura.
- 2- Se cortan 2 secciones de lámina de 3,17 mm (1/8 pulgada de 510 mm x 310 mm, estas van soldadas a solapa por la parte interior de la estructura.
- 3- Se cortan 2 secciones de lámina de 3.17 mm (1/8 de pulgada) de 460 mm x 310 mm, estas van soldadas a solapa por la parte interior de la estructura.
- 4- A la lámina que se coloca en la parte frontal del horno se le perfora un agujero cuadrado de 200 mm x 190 mm que se utilizara para la puerta del horno.
- 5- La cubierta superior del horno será una lámina de 3.17 mm (1/8 de pulgada) con medidas de-607 mm x 9.5 mm (3/8 de pulgada).

Para la recámara inferior, se coloca protección lateral con una lámina de 1.58 mm (1/16") la cual posee agujeros de diámetro igual a 8 mm.

En la partes posterior se coloca una lámina de 1.58 mm lita donde se perforan agujeros para la entrada y salida de alambres,

y en la parte frontal una lámina de igual espesor donde se colocan los instrumentos de control.

4.4 PAREDES DE LADRILLO REFRACTARIO Y AISLANTE.

En la fabricación de la estructura de ladrillo se utilizan ladrillos de las siguientes dimensiones:

229 mm de largo

114 mm de ancho

64 mm de espesor.

Las dimensiones exteriores de la estructura son de:

456 mm de largo

405 mm de ancho

301 mm de profundidad.

A continuación se presenta el proceso seguido en la obtención de dicha estructura. Toda la estructura fue fraguada con Mortero al Aire.

BASE:

ŗ

Esta se formó tomando una configuración de 8 ladrillos. 4 con las dimensiones originales y 4 seccionados a 176 mm. de largo. Este corte se realiza con un disco para cortar

concreto montado en una sierra eléctrica. La colocación de dichos ladrillos se muestra en la fig. 4.5a.

HILADA No 1.

Esta estará formada por 4 ladrillos completos los cuales estarán dispuestos: 2 y 2 a lo largo de la estructura y 1 cuyo largo será de 177 mm. el cual nos dará el ancho de la cámara.

Esta disposición se muestra en la fig. 4.5b

HILADA No 2.

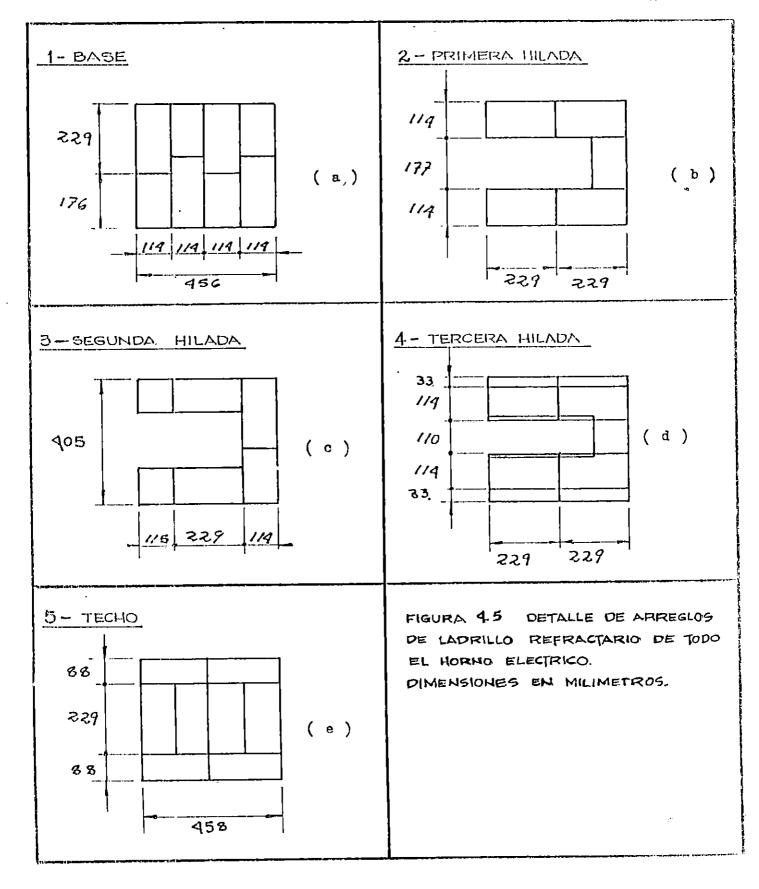
Para formar esta hilada se utilizaron 3 ladrillos completos, 2 fracciones de 115 mm y una de 176 mm. Las 2 fracciones de 115 mm y 2 ladrillos completos se utilizaron para formar, las 2 paredes laterales que en su longitud son el largo de la cámara. El otro ladrillo completo y la fracción de 176 mm se unen para formar el fondo de la estructura. Esto se muestra en la figura No 4.5c.

HILADA No 3:

Toda la hilada tiene un espesor de 45 mm a diferencia de todas las anteriores que tienen 64 mm. Esta está formada por 4 ladrillos de: 229 x 114. A dos de estos se les hizo un corte en forma de "L" de 25 mm x 33 mm a todo su largo, y a los otros dos a 115 mm de su largo. El motivo de este corte es para poder ubicar la tableta porta resistencia en la parte superior.

También se utilizaron 4 secciones de 33 \times 229 mm y finalmente se colocó un tramo de 110 mm \times 114 mm, para completar la parte trasera de la estructura.

Esta disposición se puede visualizar en la fig. 4.5d.


TECHO:

El techo está formado por cuatro ladrillos completos los cuales están dispuestos a su ancho para formar el largo de la cámara de la estructura. Para formar el ancho, se colocan 4 tiras de 88 x 229 mm, esta configuración se puede apreciar en la fig. 4.5e.

AISLANTE.

La estructura de ladrillo refractario está recubierta por un material aislante denominado fibra cerámica, la cual posee diferentes espesores, para nuestro trabajo se utiliza una fibra de 2" de espesor, para alojarlo en un espacio de:

- 33.5 mm en los costados
- 33 mm en la parte frontal y trasera
- 12 mm en la base y
- 15 mm en la parte superior.

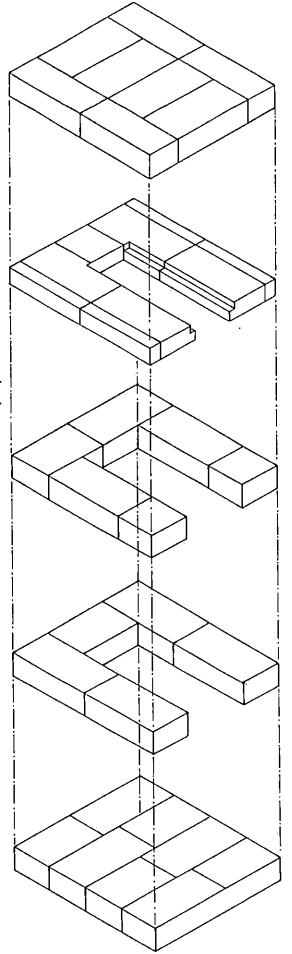


Fig. 4.6 Vista isométrica de la figura 4.5

4.5 PANEL DE CONTROL ELECTRICO

. 1

La construcción del panel de control, se realiza conjuntamente con la armazón metálica del horno, por estar integrada a la mismo. Por tanto, primero se realiza la estructura de ángulo de la manera descrita en el numeral 4.2 prosiguiendo con cubrir la estructura del panel de control con porciones de lámina, de las dimensiones siguientes;

Lámina (mm espesor)	Lado	Dimensiones (mm * mm)
Hierro dulce (3)	Frente y adentro	190 * 456
Galvanizada perforada	Lateral y	183 * 539
(1.5)	trasero	170 * 470

Nota: Todos los cortes se realizaran con disco para metal.

Las láminas laterales se sujetaran al ángulo con puntos de soldadura eléctrica distribuidos simétricamente. Luego se procederá a realizar los respectivos cortes en la lámina frontal, para ubicar, el control de temperatura, la luz piloto el interruptor de encendido-apagado y un porta fusible, teniendo esto se sujeta cada elemento en su lugar, luego se marcaran y perforaran los agujeros en la lámina, y el ángulo, haciendo rosca a los agujeros del ángulo, finalizando con fijar dicha lámina con tornillos, al ángulo.

En la parte trasera se coloca una porción de lámina galvanizada- perforada, a la cual se le realiza un corte de 25.6 mm x 62 mm, para colocar la coraza que conducen las líneas conectoras de las resistencias, también se perfora un agujero de 27 mm. para hacer pasar el cable que va a la fuente de voltaje. Al tener esto se procede a perforar el ángulo y realizar rosca para poder sujetar la lámina con tornillos, al ángulo.

El contactor se coloca en una lámina que va adentro del panel de control y se ubica dicho contactor a 265 mm del extremo derecho de la lámina, también en dicha lámina se colocan tres porta fusibles, ubicados convenientemente, también se perforan cuatro agujeros para entrada y salida de cables y se soldará una porción de ángulo que contendrá un acople para coraza, facilitando así el manipuleo de los cables eléctricos a realizar la instalación. Para sujetar la lámina se doblaran dos pestañas de la misma en donde se perforan los agujeros que la sostendrán.

a) ángulo con pernos de 9,5 mm (3/8")

También para proteger la conexión de las resistencias, se elaborará una cubierta con la lámina galvanizada que tendrá 200 mm x 207 mm x 37 mm con pestañas de 25 mm a cada lado las cuales se sujetarán al ángulo con tornillos de 6 mm (%")

4.6 MATRIZ DE COSTOS.

CANT	DESCRIPCION	COSTO UNIT.	COSTO TOTAL ¢
•		·	<u> </u>
1	Pliego de lámina hierro de 0.3x99x198 cms	400	400
1	Pliego de lámina hierro de	400	400
*	0.15x99x198 cms	200	200
1	Pliego de lámina hierro de		
	0.5x99x198 cms	550	550
1	Lámina galvanizada perforada		
	de 0.15x99x198 cms	250	250
2	Angulo de 0.5x3.8x600 cms	200	200
2	Bisagras	25	50
3	Lbs de electrodos E6013 de å 2.4 mm	7	21
5	φ 2.4 mm Lbs de electrodo E7018 de	,	21
, 5	d 3 mm	10	50
4	Disco de corte concreto de	10	30
	3x80x25 mm	30	120
2	Disco de corte para hierro de	-	
	3x80x25 mm	25	50
4	Sierras para hierro de 30x1.3cm	7	28
4	Pliegos de lija NO2 para hierro	2	8
1/4	Galón de pintura Aluminio	300	75 ·
10	Pernos de 3/8" Nc largo 50mm	2	20
34	ladrillos refractarios de		
	64x114x229 mm	17	578
1 3	Galón de Mortero Refractario	80	80
3	m² de fibra cerámica de 50 mm de espesor	167	501
7	Tubos de cerámica de o 10 mm	5	35
3	Resistencia de 7 Kw/220 V	1500	4500
3 1	Termocupla	1300	1300
4	mts de alambre asbestado		
	calibre Nº 10	25	100
1	Contactor con bobina a 110 V	600	600
2	mt de cordón TSJ de 2 hilos		
ا ر	calibre NO 6	100	200
2	Fusibles de 60 A Fusibles de 4 A	75	150
1	Fusibles de 4 A Piloto color rojo de 110/6 Vol	35	70 100
2 1 1	Toma hembra trifásico	100 45	100 45
1	Toma macho trifásico	45	45 45
200	Horas-hombre	10	2000
====		• •	
	TOTAL		12,326

CAPITULO V

DETERMINACION EXPERIMENTAL

DE LOS PARAMETROS DEL HORNO

5.1 CURVA DE CALENTAMIENTO

La curva de calentamiento de un horno nos muestra el comportamiento característico de la variación de la temperatura contra el tiempo.

En base a esta curva se puede establecer el tiempo necesario para alcanzar una determinada temperatura.

Para la elaboración de dicha curva, se realizó el siguiente procedimiento:

- 1- Se fijó un incremento de temperatura igual a 50°C, y una temperatura inicial de 50°C
- 2-. Se tomo el tiempo que el horno tardó en alcanzar dicho valor de temperatura.
- 3- Se incrementó nuevamente la temperatura en 50°C y se tomó el tiempo que tardó en este nuevo período.
- 4- Este procedimiento se repite hasta obtener la cantidad suficiente de puntos para la elaboración de la curva.

Todos los valores tomados aparecen en la tabla 5.1

Tabla 5.1 Datos para la elaboración de la curva de calentamiento

TEMPERA- TURA(°C)	55	110	165	220	275	330	385	440
TIEMPO (MIN.)	1.36	3.27	5.07	6.78	8.74	10.82	12.77	14.73

495	550	605	660	715	770	825	880	935
16.9	19.21	22.29	26.29	32.20	40.1	52.02	66.33	81.26

En la Fig. 5.1 se muestra la curva de calentamiento del horno.

5.2 POTENCIA CONSUMIDA.

La potencia consumida es la cantidad de energía requerida para lograr y mantener las diferentes temperaturas de trabajo, durante un período de tiempo aproximado de una hora. Tiempo promedio en el cual se puede realizar un tratamiento térmico.

La potencia consumida esta representada por la figura 5.2, donde el eje de las ordenadas representa las diferentes . temperaturas y el de las abcisas los kilowatt-hora consumidos. En dicho gráfico se observa una tendencia lineal, la cual indica que a medida que la temperatura aumenta también aumenta el consumo de potencia.

Para obtener el gráfico se realizo el siguiente procedimiento:

- 1- Se fijó una temperatura de nicio igual a 100°C y con incrementos de temperatura de 100 °C
- 2- Se tomó el tiempo (to) que el horno tardó en alcanzar dicho valor de temperatura, estos tiempos se presentan en la tabla 5.2.
- 3- Se tomó el tiempo de encendido (ON) y apagado (OFF) para

cada período. Los tiempos de encendido (ON) son los períodos en los cuales se esta reponiendo el calor perdido, y los tiempos de apagado (OFF) son los períodos en los cuales no hay suministro de energía y se estabiliza la temperatura dentro del horno. En la tabla 5.3, se presentan los tiempos de encendido y apagado para las diferentes temperaturas.

- 4-. Se calculó el promedio de los tiempos de apagado y encendido para cada valor de temperatura.
- 5- Se sumó el tiempo promedio de encendido (t_{ON}) más el tiempo promedio de apagado (t_{OFF}) .
- 6- Se procedió a calcular el número de períodos en el lapso de una hora, por medio de la ecuación 5.1:

$$X = \frac{3600}{t_{ON} + t_{OFF}} \frac{\text{seg}}{\text{seg}}$$
 Ec. 5.1

Donde:

x = Número de períodos existentes en una hora

tom = Tiempo promedio de encendido.

torr= Tiempo promedio de apagado.

7- El tiempo de encendido viene dado por la ecuación 5.2

$$t = to + X. ton$$

Donde:

- t = Tiempo total de encendido durante una hora
- to = Tiempo inicial para alcanzar un valor especifico de temperatura.
- 8- Teniendo el tiempo total de encendido (t) para cada valor de temperatura, este se multiplica por el valor de potencia de trabajo: 5.5 kw, con lo cual se obtienen los valores de kw- hora consumidos en el lapso de una hora, para cada valor de temperatura, estos valores se muestran en la tabla 5.4.

Tabla 5.2 Tiempos iniciales para alcanzar un valor especifico de temperatura.

TEMPERATURA (°C)	TIEMPO (Seg)
110 220	128 283
330 440	461
550	651 872
660 770	1163 1483
880	2378

TABLA 5.3. TIEMPOS DE ENCENDIDO Y APAGADO

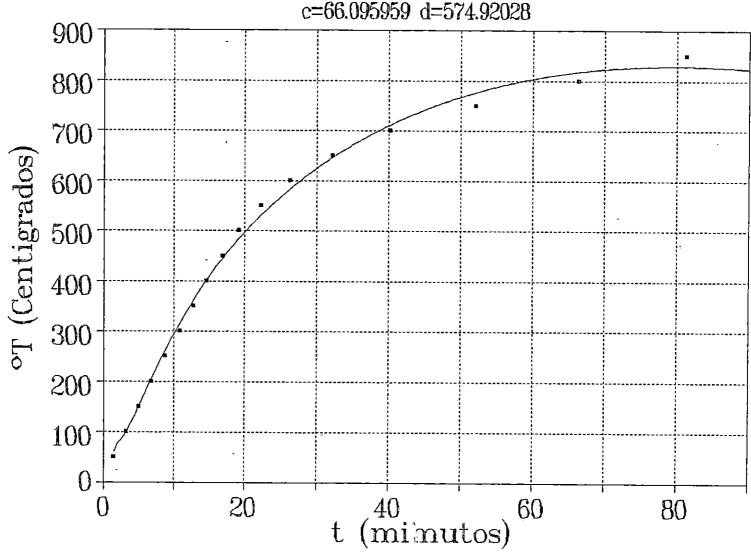
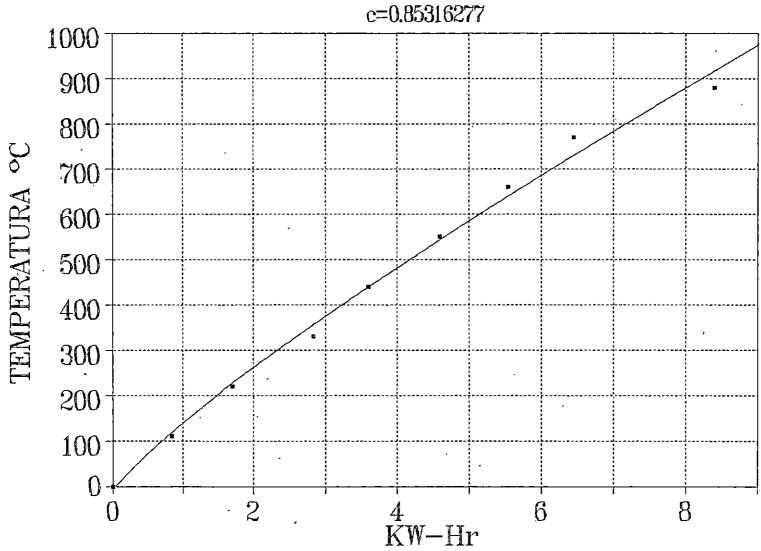

oC i	1	10	2	20	3	30	4	40	55	0	6	60	7	70	8	80
t. seg.	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ОМ	OFF	ON	OFF
	33	249	51	161	61	96	48	44	47	36	66	17	69	16	111	12
	36	246	49	162	65	94	46	49	50	28	59	20	65	17	91	12
	37	250	47	159	63	95	44	52	44	28	48	24	61	18	76	13
	30	247	50	158	57	90	45	55	45	29	44	25	59	19	86	12
	31	252	46	157	55	91	47	53	43	31	42	27	57	21	76	14
	32	250	47	155	54	98	44	52	42	32	42	26	55	22	77	13
	30	250	49	159	59	93	46	51	45	31	51	23	56	21	79	12
t	33	249	159	159	59	93	46	51	45	31	50	23	60	19	84	13

TABLA 5.4. DATOS PARA GRAFICA DE CONSUMO DE POTENCIA

TEMPERATURA °C	TIEMPO (†) seg	KH-hr
110	549	0.84
220	1118	1.71
330	1858	2.84
440	2358	3.60
550	3003	4.59
668	3629	5.54
770	4222	6.45
808	5492	8.48


CURVA DE CALENTAMIENTO

 r^2 =0.997031839 FitStdErr=15.2606177 Fstat=1455.60561 Rank 80 Eqn 2457 y=a+bx\f\x+c(lnx)\f\+dlnx/x^2 a=-53.668463 b=-0.54161881 c=66.095959 d=574.92028

CONSUMO DE POTENCIA

r²=0.993886797 FitStdErr=27.1973817 Fstat=487.741102 Rank 68 Eqn 8010 y=a+bx^c [Power] a=-11.567533 b=151.13365 c=0.85316277

5.3 TEMPERATURA DE OPERACION

La temperatura de operación se puede llegar a establecer de acuerdo al siguiente criterio:

Es la temperatura promedio a la que se realizan los tratamientos térmicos para aceros al carbono.

En este trabajo la temperatura de operación se establece como el promedio de las temperaturas de 850°C y 900°C, obteniéndose un valor de temperatura de 875°C.

Entre las ventajas que se encuentran al utilizar el horno a este valor de temperatura tenemos: una mayor vida útil de los elementos calefactores y del equipo de medición que son los más valiosos.

5.4 MANTENIMIENTO Y OPERACION

Para un buen funcionamiento y una mayor vida útil del horno, es necesario un buen plan de mantenimiento de tal forma que se pueda lograr una operación adecuada y corregir las fallas cuando estas se presenten.

Durante el funcionamiento y operación del horno se pueden presentar fallas, las cuales pueden atribuirse a errores humanos o desperfectos en el equipo.

A continuación se presenta una serie de problemas, la posible causa y la corrección del problema.

DROP! EVA	DOGETHER CALLED	
PROBLEMA - La luz piloto	POSIBLE CAUSA - El horno no está	ACCION CORRECTA
no enciende	conectado a la fuente de energía	- Revisar la conexión a la fuente de energía
	- Interruptor ON -OFF defectuoso	- Reemplazo del interruptor
- El horno no proporciona	- No hay energia	- Revisar la fuente de energía o los fusibles
calor	- Termocupla desconectada o conexión inversa	- Reemplazar la termocupla o revisar la conexión de la termocupla
	- Mal funciona- miento del control de temperatura	- Verificar y corregir los parámetros y valores de la configuración, si la falla persiste eliminar el control
	- Elemento calefactor	- Reemplazo de la unidad
- Baja cantidad de calor	- Linea de voltaje baja	- Instalar una linea con el tamaño adecuado del cable con respecto al voltaje
	- Demasiado carga en la cámara	- Disminuir la carga en la cámara para permitir la circu- lación de calor
	- Elemento calefactor equivocado	- Instalar el elemento calefactor apropiado

Continuación

PROBLEMA	POSIBLE CAUSA	ACCION CORRECTA		
- Lectura inco- rrecta	- Termocupla oxidada o contaminación	- Reemplazo de la termocupla		
	- Mala conexión de la termocupla	- Apretar las conexiones		
	- Ventilación defectuosa en la base	- Limpiar alrededores de la base		
	- Conexión incorrectas o invertidas de la termocupla	- Conectar correctamente la termocupla		

Algunos elementos del horno están más propensos a deteriorarse y en muchas ocasiones es necesario reemplazarlos. Dichos elementos son: Los elementos calefactores o tabletas, termocupla y el control de temperatura.

A continuación se detalla el procedimiento para su reemplazo:

- 1- Reemplazo de los elementos calefactores.
 - a) Desconectar el horno de la fuente de energia.
 - b) Remover la cubierta protectora trasera.
 - c) Identificar los terminales de la unidad dañada
 - d) Desconectar dichos terminales
 - e) Abrir la puerta y sacar la tableta dañada
 - f) Colocar el nuevo elemento en el lugar correspondiente introduciendo sus terminales por los tubos de

porcelana.

- g) Conectar las terminales de la unidad calefactora
- h) Colocar la tapa de protección y conectar el horno.
- 2- Reemplazo de la Termocupla.
 - a- Desconectar el horno de la fuente de poder
 - b- Remover la tapa posterior de protección
 - c- Sacar la termocupla y desconectar los terminales del control de temperatura
 - d- Colocar la nueva termocupla a través del tubo cerámico y dejar el extremo fuera de la pared aproximadamente 25 mm.
 - e- Verificar que los terminales estén conectados correctamente
 - f- Colocar la tapa de protección y conectar el horno.
- 3- Reemplazo de control de temperatura
 - a- Desconectar el horno de la fuente de poder
 - b- Quitar pernos de la tapadera de control
 - c- Desconectar terminales
 - d- Quitar pernos de sujeción del control de temperatura
 - e- Reemplazar el control de temperatura por uno nuevo
 - f- Colocar pernos de sujeción
 - g- Conectar los terminales al control de temperatura
 - h- Colocar la tapadera de control
 - i- Conectar el horno a la fuente de energia.

1- Antes de poner el horno en operación es necesario eliminar la humedad almacenada en la estructura de ladrillos.

Esta humedad puede originarse en un horno cuando esta recién construido o en un horno que no ha sido usado por un largo periodo.

Para eliminar esta humedad debe abrirse la puerta del horno ligeramente y eliminar cualquier objeto que pueda haber en la cámara, luego encender el horno a 50°C por un período de 2 horas, en este lapso sale toda la humedad almacenada en forma de vapor, este procedimiento se repite para 100°C y 200°C.

- 2- La unidad debe ser colocada en una superficie plana y uniforme.
- 3- No colocar el horno cerca de fuentes de calor o frio.
- 4- El horno debe colocarse lo mas cerca posible de la fuente de energia eléctrica.
- 5- Usar el voltaje indicado en la placa de servicio.
- 6- Al manipular los aparatos de control debe tenerse mucho cuidado.

5.5 GUIAS DE LABORATORIO.

,

J.

UNIVERSIDAD DE EL SALVADOR

FACULTAD DE INGENIERIA Y ARQUTECTURA

ESCUELA DE INGENIERIA MECANICA

PRACTICA NO 1

RECOCIDO Y NORMALIZADO

OBJETIVO: Estudiar la microestructura de acero al carbono con contenidos de carbono 0.2%, 0.45%, 0.6%, 0.8% y 1.0%.

MATERIAL Y EQUIPO A UTILIZAR

- Muestras de acero de 0.2%, 0.45%, 0.6%. 0.8% y 1.0% de C.
- Horno de tratamiento térmico
- Tenazas, guantes de cuero, delantal protector
- Embutidora
- Lija, Alúmina, Nital
- Microscopio.

MARCO TEORICO

En una serie de aceros al carbono enfriados lentamente, al aumentar el contenido de carbono disminuye el porcentaje de ferrita libre al acercarse a la composición eutectoide y desaparece al llegar a esta. Más allá de la composición

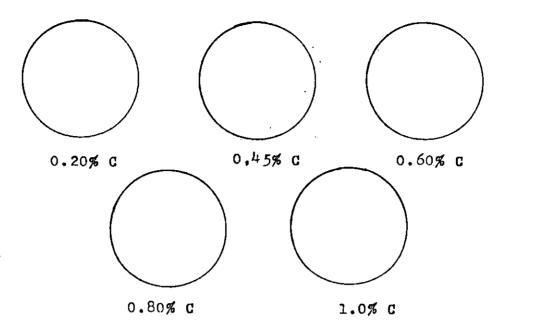
eutectoide, la matriz es cementita libre, a medida que se incrementa el contenido de carbono, aumenta la cantidad de cementita libre. Este comportamiento puede predecirse a partir del diagrama de hierro-carburo de hierro, y las cantidades de la fase de la matriz y la perlita pueden calcularse gracias a esc diagrama. Los resultados previstos se verifican mediante una comparación de los aceros al carbono enfriados lentamente, con los resultados calculados.

Normalmente el estado de entrega de los aceros al carbono es el recocido, entendiendo como recocido al calentamiento a una temperatura adecuada y luego un enfriamiento lento a lo largo del intervalo de transformación. Para los aceros hipoeutectoides la temperatura de recocido es de aproximadamente 10°C por encima de la linea critica inferior.

El normalizado es un calentamiento a una temperatura de 37°C por encima de la linea critica superior para los aceros hipoeutectoides e hipereutectoides seguido de un enfriamiento al aire quieto.

PRELABORATORIO

- Calcular los porcentajes de ferrita proeutectoides, cementita y el porcentaje de perlita para los aceros con 0.25, 0.45%, 0.6% 0.8 y 1.0% de C, a partir del diagrama Fe-Fè₃C
- ¿Cómo se ven afectadas las propiedades mecánicas de los aceros al carbono recocidos al darles un normalizado?.


 Investigar.

OBSERVACION: Si el horno ha dejado de funcionar durante un periodo largo repita el proceso de secaso.

PROCEDIMIENTO

- Encienda el horno girando la perilla de encendido, asegúrese que la perilla del selector de temperatura esté en 0°C.
- 2. Gire la perilla del selector de temperatura hasta que indique 50°C espere el calentamiento y luego repita el procedimiento con incrementos de 50°C hasta llegar a la temperatura de recocido o normalizado.
- 3. Utilizando guantes, delantal protector y tenaza introduzca las muestras y déjelas durante un tiempo determinado a la temperatura del paso 2. Considérese una hora de permanencia por cada 25 mm de diámetro.
- Saque aquellas muestras que se les dará normalizado y déjelas enfriar en aire quieto, luego limpielas.
- 5. Preparar las muestras por medio de la metalografía y luego dibujar las microestructuras vistas en el microscopio.

Llenar los circulos que aparecen mas adelante tal como se ve en el microscopio, dibujando las características estructurales al mismo tamaño que se aprecian.

A partir de sus propios bosquejos, estimar el porcentaje de perlita y los porcentajes de cementita proeutectoide. tomar como base el diagrama hierro-carburo de hierro y calcular los porcentajes de perlita, ferrita proeutectoide y cementita proeutectoide para cada una de las composiciones dibujadas.

% C	VALORES ESTIMADOS % PERLITA, % MATRIZ	VALORES CALCULADOS % PERLITA, % MATRIZ	PERLITA (VERIFICADA) % FERRITA, %CEMENTITA
0.2			
0.45			
0.60			
0.80			
1.00			

UNIVERSIDADA DE EL SALVADOR

FACULTAD DE INGENIERIA Y ARQUITECTURA

ESCUELA DE INGENIERIA MECANICA

PRACTICA No 2

" TEMPLE Y REVENIDO "

OBJETIVOS:

- APLICAR EL PROCEDIMIENTO DE TEMPLAR Y REVENIR EL ACERO
- MEDIR EL GRADO DE DUREZA OBTENIDO Y COMPARARLO CON LA DUREZA ESPERADA.

EQUIPO Y MATERIAL

- HORNO PARA TRATAMIENTO TERMICO
- TENAZA PARA SUJETAR PIEZAS CALIENTES
- GUANTES DE CUERO
- DELANTAL PROTECTOR
- DUROMETRO ROCKWELL
- MUESTRAS DE ACERO

MARCO TEORICO;

TEMPLE:

Este se aplica para aumentar la dureza y resistencia del decero, la cual se logra por la formación de una solución

sobresaturada llamada martensita. Dependiendo del tipo de acero, este se lleva a determinada temperatura, se mantiene el tiempo necesario a dicha temperatura y luego se enfría rápidamente, generalmente en agua o aceite.

REVENIDO:

Es aplicado al acero cuando este ha sido templado y consiste en calentar dicho acero a temperaturas menores que la critica inferior, manteniéndolo un tiempo adecuado y luego enfriarlo a temperatura ambiente, esto con el objetivo de mejorar la ductilidad y tenacidad del acero.

En el revenido se transforma parte de la estructura martensitica en otras que involucran un cambio importante en las propiedades mecánicas; comprende dos etapas bien definidas:

- La primera, abajo de los 204°c, si el principal requisito es la dureza o resistencia al desgaste.
- La segunda arriba de los 204°C, si lo que se quiere es un aumento en la tenacidad y poca dureza.

PRELABORATORIO

Investigar las diferentes temperaturas de temple y revenido de los aceros que se venden en el país, así como el medio de temple.

OBSERVACION:

Antes de poner el horno en operacion es necesario eliminar

la humedad almacenada en la estructura de ladrillo y material aislante.

Para eliminar esta humedad debe abrirse la puerta ligeramente y sacar cualquier objeto que pueda haber en la cámara, luego encender el horno a 50°C por un período de dos horas, en este lapso saldrá la humedad en forma de vapor.

Todo lo anterior debe realizarse si el horno ha permanecido dos meses sin ser usado.

PROCEDIMIENTO:

- 1- Encienda el horno girando el interruptor de encendido, asegurándose que la perilla del selector de temperatura este en 0°C.
- 2- Gire la perilla del selector de temperatura hasta que indique 50°C espere a que se estabilice la temperatura, y luego, incremente en 50°C hasta alcanzar la temperatura de temple.
- 3- Utilizando guantes, delantal protector y tenaza introduzca las muestras y déjelas durante un tiempo determinado a la temperatura del paso 2. Tome una hora de permanencia por cada 25 mm de espesor.
- 4- Saque las muestras usando el equipo numeral anterior e introdúzcalas inmediatamente en el medio de temple indicado (agua, aceite o aire)
- 5- Enfrie el horno hasta la temperatura de revenido.
- 6- Introduzca las muestras al horno y déjelas a esa

temperatura el mismo tiempo tomado en el numeral 3.

- 7- Saque las muestras y déjelas enfriar al aire.
- 8- Limar las muestras para eliminar cualquier película descarburizada.
- 9- En uno de los lados de cada muestra tome cinco lecturas de dureza Rockwell y registre los valores en la tabla siguiente;

ACERO	ENFRIAMIENTO	LECTURAS DE DUREZA	PROME- DIO	DUREZA INVESTIGADA
	HORNO			
	AIRE			
	AGUA, 27 °C			
	ACEITE, 27°C			

CUESTIONARIO.

- 1. ¿Para qué sirve el temple?.
- 2. ¿Qué efectos tiene el temple?.
- 3. ¿Cómo se relaciona el tiempo y la temperatura de temple?.
- Compare las lecturas de dureza con los valores de dureza investigada concluya.

5.6 ANALISIS ECONOMICO DE LOS ENSAYOS.

Básicamente el costo económico de un ensayo de tratamiento térmico dependerá de varios factores tales como: Consumo de

energía eléctrica, costo de embutido, lijado, pulido, uso de microscopio, etc.

El uso de consumo de energía eléctrica se puede calcular a partir de la curva de calentamiento y de la curva de consumo de energía para compensar las pérdidas durante una hora. También se considera una temperatura promedio de 800 °C.

De la fig. 5.1 se lee directamente que para calentar el horno a 800 °C se necesita 70 minutos (1.16 horas).

La potencia del horno es de 5.5 Kw por lo tanto la potencia consumida (P1) para llegar a esa temperatura es:

 $P_1 = 5.5 \times 1.16$

 $P_1 = 6.38 \text{ Kw-h}$

De la fig. 5.2 se lee directamente que para 1 hora de permanencia a esa temperatura el consumo es de 7.25 Kw-h.

El consumo de energía eléctrica total para un tratamiento térmico realizado a 800 °C manteniendo el horno encendido durante una hora a esa temperatura vendrá dado por:

 $P_{c} = (P_{1} + P_{2})(1.10)$

Donde:

Pc: Potencia consumida total

Pi : Potencia consumida para calentar el horno hasta una temperatura T

P₂: Potencia eléctrica necesaria para mantener el horno a una temperatura T durante 1 hora.

1.10 : Factor para compensar costos no considerados como:

Enfriamiento del horno al abrir la puerta, posible humedad, etc.

Datos:

 $P_1 = 6.38 \text{ Kw-h}$

 $P_2 = 7.25 \text{ Kw-h}$

 $P_{c} = (6.19 + 7.25)(1.10)$

 $P_{c} = 15.00 \text{ Kw-h}$

En el cálculo anterior se ha despreciado el consumo de energía eléctrica que ocasionaría al introducir en el horno la muestra de acero al absorber ésta, calor por conducción; ya que según la tabla 5.5 para 25 lbs de acero de consume 2.0 Kw-h. Teniendo en cuenta que la carga del horno serán muestras de acero que sumarán como máximo una libra o sea que consumirá una cantidad de Kw-h que puede ser despreciada.

Tabla 5.5 Kilowatt-Hora de acero calentado (Ref. 16).

LBS	TEMPERATURA (°C)								
DE	100	200	600	800					
ACERO	KILOWATT-HORA								
25	0.25	0.50	1.00	1.32	2.00				
50	0.50	1.00	2.00	2.75	3.75				
100	1.00	2.00	4.00	5.50	7.50				
150	1.50	3.00	6.00	8.25	11.25				
200	2.00	4.00	8.00	11.00	15.00				

En la tabla 5.7 y 5.8 aparece un costo aproximado de un ensayo de tratamiento térmico y un ensayo metalográfico, respectivamente.

5.6.1 DEPRECIACION DEL HORNO.

La depreciación significa una disminución del valor. La mayor parte de los activos valen menos a medida que envejecen.

Excepto en el caso de un valor posible por concepto de antigüedad, el equipo de producción se vuelve cada vez menos valioso debido al desgaste. Esta disminución del valor se conoce como depreciación.

En lugar de cargar la totalidad del precio de compra este desembolso se distribuye durante la vida del activo.

Para calcular la depreciación del horno se hará en base a la vida de servicio de las resistencias eléctricas por considerar que son éstos elementos los que están sometidos a mayor desgaste en la utilización del horno.

En la siguiente tabla se muestran la vida aproximada de las resistencias eléctricas, dependiendo de la temperatura promedio a la cual prestan servicio.

Tabla 5.6 Vida aproximada de las resistencias eléctricas, dependiendo de la temperatura promedio de servicio (Ref. 16).

T (°C)	VIDA APROXIMADA
815	3 ¼ año
871	1 año (2000 horas)
9.27	4 meses
982	1 % meses
1038	2 semanas
1093	1 semana
1149	2 días

Las cartas de aplicación y operación recomiendan un uso máximo de 871 °C para obtener una vida aproximada de 1 año de servicio.

Para el cálculo de la depreciación se utiliza el método de la línea recta, ya que es el método más simple y el más utilizado. (Ref. 17)

El valor de la depreciación es igual a la diferencia entre el precio de compra y el valor de recuperación dividido entre la vida de servicio, matemáticamente:

Donde:

Dc : Depreciación del horno (¢/h)

P : Valor actual (¢)

S : Valor de recuperación (¢)

N : Vida de servicio (h)

En nuestro caso:

P = & 4,500

s = 0.00

N = 2000 horas (Tabla 5.6)

 $Dc = \frac{4500 - 0}{2000}$

 $Dc = 2.25 \, \phi/h$

Este será el valor ha considerar en los costos de laboratorios de tratamientos térmicos.

TABLA 5.7. COSTO DE UN ENSAVO DE TRATANIENTO TERMICO

EQUIPO, MATERIALES Y/O SERVICIO						COSTO TOTAL
CUNSUMO DE ENERGIA ELECTRICA DE EQ. DE LAB.	P1 KM-h	KM-H	(P1+P2)(1 KW-h	.10)	C/KM-h	-
DEPRECIACION DEL HORNO	RECIACION DEL HORNO TIEMPO DE USO (HORAS)		TIEMPO DE USO DEPRECIACION/HORA (HORAS)			
NORAS - HOMBRE DE PERSONAL TECNICO	No. DE TECNICO	S No. DI	HORAS- COSTO (¢) MBRE HORAS - HOMBRE			
	sue-	TOTAL				
	IMPREVISTOS (10%	SOBRE SUB-TO	ITAL)			
	то	TAL				

TABLA 5.8. COSTO DE UN ENSAYO METALOGRAFICO.

	EQUIPO, MATERI	ALES Y/O SERVIC	10		COSTO ¢
CONSUMO DE ENERGIA ELECTRICA DE EQ. DE LAB.	P (KW)	t (HDRAS)	Рх t КИ-h	¢/КИ-h	•
PROCESO DE EMBUTIDO	RESINA FENOLICA (GRAHOS)		¢,	GRAMO	
PAPEL DE CARBURO DE SILICIO	No. DE UNIDADES		COSTO/UNIDAD ¢		
ALUMINA	CANY (GRA	IDAD MOS)	C/GRAMU		
US	O DE EQUIPO	DE LABORATORIO	(6)		
HORAS-HOMBRE DE PERSONAL TECNICO	No. DE TECNIC	No. DE TECNICOS HORAS-HOMBRE C/HORAS-HOMBRE			
	ANALISISDE HOJA	DE RESULTADOS	(0)		
	su	BTOTAL			
	IMPREVISTOS (10	N SOBRE SUB-TOTO	nL)		
	ī	OTAL			

NOTA: El equipo de laboratorio incluye: Embutidora, lijadora y microscopio

5.7 EVALUACION DEL FUNCIONAMIENTO.

El horno de resistencia eléctrica para tratamientos térmicos ha observado un funcionamiento normal durante el período de prueba, ya que se han logrado las temperaturas para las diferentes pruebas que se realizaron.

Se pudo establecer mediante la curva de calentamiento que la tendencia de esta, es la que se esperaba, y que su punto de intersección con el eje ordenado aproximadamente nos proporciona el valor de la temperatura ambiente a la cual se realizaron las pruebas.

También se pudo comprobar el buen funcionamiento del equipo de medición de temperatura, ya que este fue comparado con el equipo de medición de otro horno.

Se observó un problema con el contactor, ya que éste en algunas ocasiones, sus contactos se pegaban y no desconectaban para seguir con el proceso de calentamiento esto se debió a que el voltaje de alimentación se incrementó de 110 voltios para el cual esta diseñado a 130 voltios generando esto un incremento en la corriente de alimentación y por consiguiente un calentamiento excesivo en el contactor.

Este problema se soluciona cambiando el contactor por uno de mayor potencia y así evitando el recalentamiento que generó dicho problema. Este problema se pudo haber solucionado cambiando el equipo a una red que proporcione un valor de 110 voltios y así generar la potencia requerida.

Como se mencionó anteriormente al aumentar el voltaje de alimentación se incrementa la corriente y por consiguiente la potencia generada.

Al elevarse la potencia generada se incrementó la velocidad de calentamiento del horno generando esto una disminución en el tiempo de calentamiento.

Se pudo estimar que los valores de temperatura calculados para las paredes del horno se aproximan a los valores reales.

CONCLUSIONES Y RECOMENDACIONES.

En términos generales el modelo construido se ajusta a los requerimientos de diseño, tales como: Potencia, volumen de la cámara y temperatura de operación.

También resulta más económico construirlo localmente que comprarlo en las distribuidoras del país.

En cuanto a la evaluación de funcionamiento, con la ayuda del recién instalado laboratorio de Metrología legal se calibró el horno, llegando a establecer que la temperatura del elemento patrón no coincide con la que marca el control de temperatura del horno. Ver Anexo NO 8.

El error del control de temperatura con respecto al patrón es del 9%, es decir, si marca 800 °C el dial del horno la temperatura real (elemento patrón) será de (800)(0.91) = 728 °C.

Las recomendaciones generales para la utilización del horno son:

- Si el horno ha dejado de funcionar durante un largo período, dejarlo a 50 °C durante 2 horas para evacuar la humedad, luego utilizarlo normalmente.
- La temperatura máxima de operación será de 875 °C.
- La temperatura a que se pondrá el selector de temperatura viene dada por la ecuación: $T_B = 1.09 T_E$.

Donde T_s: Es la temperatura que marca el selector

Te: Es la temperatura real que se quiere en el interior del horno.

REFERENCIAS BIBLIOGRAFICAS.

- Introducción a la Metalurgia Física Sydney H. Avner
 Segunda Edición McGraw-Hill
 México, 1980.
- Ciencias de Materiales para Ingeniería
 Peter A. Thorton
 Vito J. Congelo
 PHH. Prentice Hall
 México, 1987
- Templabilidad, un Método para Seleccionar Aceros
 P. J. Maroni
 Editorial Libreria Mitre
- 4. Diseño de un Horno para Tratamientos Térmicos Calentado por Diesel.

Juan Carlos Alfaro Aguilar
Rildo Paz Núñez
Martín Ernesto Velasco Rodríguez
Proyecto de Ingeniería Mecánica, 1994
UES.

5. Diseño de un Filtro para Amortiguar en la Red Eléctrica de Distribución los Efectos Producidos por un Horno Eléctrico de Fundición de Metales.

Roberto Arturo Arévalo Cruz Proyecto de Ingeniería Eléctrica, 1993 UES.

6. Manual del Ingeniero Mecánico

Marks

Octava Edición en Inglés (Segunda Edición en Español) McGraw-Hill

México, 1978.

- 7. Aceros para Herramientas
 - F. R. Palmer
 - J. V. Luerssen
 - J. S. Pendleton
- 8. Diseño y Construcción de un Horno de Resistencia Eléctrica para el Trabajo de Cerámica.

José Raúl Romero

Tesis, 1987

UES.

- 9. Hornos Industriales
 - W. Trinks
 - M. H. Maw THINNEY

1971

- 10. Transferencia de Calor
 - J. P. Holman

Editorial C.E.C.S.A.

1989.

11. Ingeniería Metalúrgica

Shuhmann, J. R.

Editorial Continental

1968

12. Hornos

Gilchrist J. D.

Editorial Alhamba S.A.

1969.

13. Instrumentación Industrial

Antonio Creus Sole

Segunda Edición

Publicaciones Marcombo, S.A.

1981.

14. Técnicas de Metalurgia Experimental

Doctor A. U. Seybolt

Doctor J. E. Burke

Primera Edición

Editorial Limusa Wyley S.A.

1969.

15. Catálogo de Colchas Cerámicas Inswool

16. Watlow

Manufacturing Facilities Heather

Houston, U.S.A. 7062

17. Ingeniería Económica

James L. Rieggs

Representaciones y Servicios de Ingeniería

México

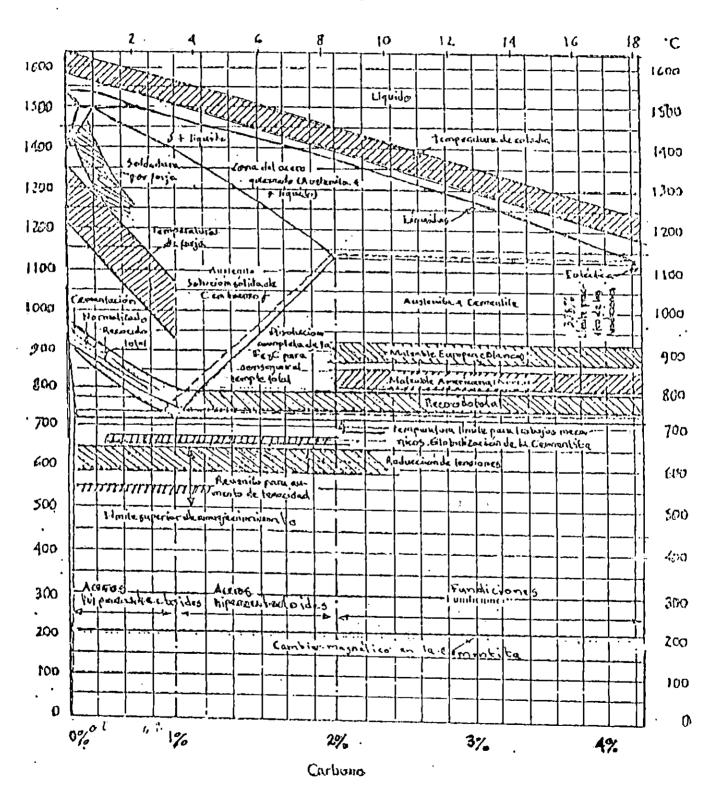
1977

18. Sistemas y Materiales de Soldadura

Indura S. A.

19. Proyecto de Elementos de Máquinas

M. F. Sotts


Editorial Reverté S. A.

1974

ANEXOS

DIAGRAMA PRÁCTICO DE EQUILIBRIO FEC

Carbono en % de alomos

BOEHLER H. ACERO ESPECIAL

ACEROS FINOS AL CARBONO DE ALTA CALIDAD TIPO DE ALEACION %: C 045 Si 0.25 Mn 0.5

NORMAS:

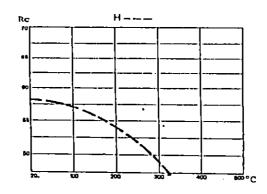
AISI: C 1045

DIN: CK 45(ST 70)

USOS:

Acero fino templable en agua o en aceite, puede ser usado en la fabricación de partes de maquinaria sometidas a esfuerzos medios tales como: ejes, pernos, tuercas, pines guías, pines de sujeción, cuñas, arboles de transmisión, herramientas manuales, placas sufrideras, holders para moldes, etc.

CARACTERISTICAS MECANICAS:


Resistencia a la tracción en estado natural 60/70 kg/mm2 Dureza Brinell en estado natural: 174-207 HB

Dureza máxima en estado templado:

en	aceite	40RC
en	agua .	58RC

TRATAMIENTO TERMICO:

Forjar:	1100-850°C
Normalizar:	820-870°C
Recocer	660-700°C
Templar: en aceite	820-850°C
": en aqua	810-840°C

C2 = CVIIDVD 2NLEBIOR VC = VIIV CVIIDVD C1 = CVIIDVD 1NLEBIOR

VA = ALTA ALUMINA XA = EXTRA - ALTA - ALUMINA AR = ACIDO RESISTENTE

											•
JUNEA WHY CONDAY ASA'S	tengost at a program Costra to			IB MAX.	7 1 2 5 1 2	1200	EENSE	ZS	14	CZ	OF OI
WHILL BOY COLOAN AND	1X10041 A.I.A. A12(1)12(1)1 (141)A. (R)		-	12/51	50°Z	5121 0891	31/35	95	35	ΣV	นเกม
DAY OF CARRYS DE CARRYS DE HOPER I	PI 2511 (151A A CHOCHT 5 118- AVCU 5	962 171	95/68	£2/61	50'Z	0821 2921	92152		£€	٧د	M XID
Cidelth As Ashel	STORES W COLOR	87 b 51 b	Z11 0/	(1/2)	41 Z	0591	O€	1 9	88	яv	\$1·D
ZANIMICO PARCA REZONDENT	3(18)[5]4(1)(1)4	910 535	051 761	\$1/13	હેંદ.૬	0091 0591	1 E/OE	95	ΒĘ	ЯΑ	EMURE-AR
1012454 4 (1911) ግ/ር 12(1) ዓመ 1013 504 እንዛበት (1 4415 እዲህ ነገር ጋግሞብ የመቀለመነትን ዩን የተለያለቀው በተ	A ATMINIS RESTRICTED OF THE OTHER PROPERTY OTHER PROPERTY OF THE OTHER PROPERTY OTHER PROP	018 075	087 251	12/01	30.E	\$107	26	E.O	66	VX	0√46
Object to depart to Physics 2019 Object Service Offices - Part 10 2 (198 2005)	PENSEL EMPERE INVOCED	9971 844	015 105	Z 1/E 1	10.5	SUUT	OF +	9	16	vx	GREENAL-94 M
SEACTORISE DE 1917, RODO CERURAD PRESSON DE VINNAMENTO PLAN ASSESSANCE DE 1917 AND PROPERTORISE	MENTER SECURITION OF THE SECOND CHARLES SECOND IN THE SECO	9921 949	916	91/21	የየ.5	5001	0v +	O1	06	¥X	GREENAL-90 M
AAAN ZCSIBCHI, CHISHADIA TGIRNISCHI ZONGOTI CRIZI IALIBI ISTINI IBIDILI	REVELLEE A CARAINS DE	5211 E01	212 291	11/21	27.72	1992	06 +	ß	16	VX	90 BX
FIVESHIARMICON REACTORES - CALCU- MANAGEMIA MASSACIAN (STANIA) MASSACIAN I CREMA ARMANIA DE DESCRIPTA MASCAL	ENCILENTE REUST, A CAMPIOS EN TEAU Y A CORRECCENTUE ESCORIAS Y ALCARES	455 455	691 501	12/61	SU C	sanı	OFI	8	30	vx	AO-BW
ония ву свыно	thi Albhittess Thistings Ab	722 \$501	10 <i>2</i> 52 <i>2</i>	91/71	En S	5881 10v2	ONTE	01	58	VX	\$0:JV
ADIORUM SUCINCIA E IL MOLENCIA SIOUROR SIOUROR SIOUROR CALLIANA IL MOLENCIA CALLIANA IL MOLEN	ARUI 1104 TQ CIŞUKKM OLDA ŞACINDI ZAMO XI 317278	9921 VVB	107 572	91/21	78.S	2981 2001	ONIGE	Ol	\$8	VX	DV-38-M
OTHINED 3G ASSOLATON ZOUSCH	RESCRIVE A CAMBICH BRUS. CCT OF LITTE BALA CORUSCIADO	V[[Zhv	611 251	22/02	08 2	1892 1892	38/40	OI	SB	. vx	M Va
OTATION DESCALENTANTION DESCALENT	ENGIFIER A ESCENIAS BAS	424 182	121 121	18153	59'2	1032 1032	66/80	51	08	VV	M 08
DITEST DE ACERAÇIYAR	RESTANCE AT ACHIE DE RUTALIS VESCORIAS ELRUDANS	25E 107	221 46	• £2/81	£97Z	SEBI	0£ ±	Ž1	S٤	VV	M 3115UA
A STANDAR OF SHALING SATURATES AND STANDARD OF STANDARD S	A PARES A CARGAS A	£77 542	107	61191	55 Z	S981 Stat	96/06	OE	99	VV	אחר א
i de la composition della composition de la composition de la composition della comp	MATERIA A LANGER DE	601 117	50t 19	2001	95.5	51.01 0201	mwr.	oc	67	vv	KRDYUE W
0004012016	ALIANI EIADEN VON UM 10 A	663 563	91E 11Z	XVM	05 Z	0181 0181	1E/9E	LE	<i>(</i> S	vv	IMIHEEGNYDO GEGENWAT-90 M
CHECKING DE ESURA AL DE MINORA LEXAST DE PECALUDAMENTO	A 174 DE VOLUMENA A 174 DE ME	FF8 E95	1 V C 11/1	21/61	05.5	0781 0181	LEME	33	1 5	, vv	В ЕЕВИМПГ-60 М
ATTICACKY) TEPRICELLY CORPA DE TRAINMENTOS TEPRICESE CALACTOR ALBRECON	REUSER ATACKE DOWN TS- CHIPAS DISGREGACENT TER- AUCA	915 91	07 E11	02/11	21.15	0181 0581	LE19 E	Oξ	59	VV	aw-nozziw
TARNO ZNIACIBIO Y ASROT MIZONROI TRAND LICENSKA Y DICHALMINI ZNIACI TRIBINA A	PENTIE ATAINE COURT TE COURT UNINTEGREEK TER AM A	25E 112	501 C9	12/81	50 2	0/81 0/81	26/9E	FE	09	VV	M UOSSIM
STEEL	PINE A MINASOUTY ESCO.	619 345	92 I 50 I	\$1/11	OL Z	1340	re/ee	ES	£Þ	C2	KX-33 M
USI) PERSON (EAMA	PENGLIST A LA DITOPIA CHAS BASO CARGA ESS CA LISSES	25E 297	141 88	81/61	OE 2	0921 SV21	VEIEE	ES	EÞ	cz	WZb.
JASM135 ON	BRITECOT DE 11 PRIL	25E 198	141 30	81/1	OL'C	0971 SV71	VEIEE	26	96	sċ	WEXKO WK
JAB II 13 P. F.	DE HAN FEWSTANT A LOS CANDOS	92 I 901	01 44	VZ/02	SO Z	0921 SV21	re/ee	66	lb	CZ	WEXKO W
ALTOS HGRNOS	GAGVOR(YI ALAR	223 2 9 1	291 501	91/21	5 7 2	SV21	EEIZE	ES	٤٠	ΣV	REG-18
JA83450 CAU	REWITHCHA A LA ABRAYER	2SE 292	E11 0/	02/91	21.5	51/21 00/1	EEIZE	14	96	, DV	REG
i∧s jetis (s∆r	A AIRTHUR IN THE TAIN THE TAIN A SAIN TO THE TAIN TO THE TAIN TO THE TAIN TO THE TAIN THE TAI	962 922	211 02	0271	512	1300 1300	ELIZE	61	Ω¥	۵v	CM BRITING
ገላል ሥነን። ርኦብ	112038 GAGGISTO ARSUN ZAMO, PRESCO TOCOMÍA	46 E	122 30	F1/01	117	S#21 CO21	CFIZE	95	0E	οV	EMPIRE NISM
IANHUID OUT ZANIULAD	PERMITMENT AT A SOUR THE GREAT A PACION COMMAN CO	97.1 201	7B 64	SCIZZ	00.5	1500	EE/ZE	55	Û٤	ΟV	EVILIBE W
US TREBAL BOND KONTS MODIFABAS	ALL DI CHENCOL ECAF WANNESTOL BING ANACIO LE GEOVIÈL	661 711	613 614	LLIEL	00 2	51/1 0091	21/15	55	ZE	żν	CBOWN M
HORING DE COMOLE HORING DE COMOLE	SALE TOROGONOM REGILES	99£ 202	291 201	61/51	21.5	0891	15/06	85	9£	- CI	KEB 2W
> Ped.	Ê		2 6	388	10 B		ရှိ ဂူ	Ö.	. <u>≥</u> O	ը	
PRINCIPALES	ÿ	2 × 8	, SCELLYSY 'SÈ MODUTO DE	POROSIDAD APARENTE (%)	Limbass Passes	TEMPERATURA ECUIVALENTE	CONC	.53	Ð	CLASFICACION	515555
g g	뗬	(ମ ଗୁଁ ପ	oić Oiai.	품	Ġ	흔	O.K.C		В	ξ	OTOUGONI
ā	CARACTERISTICAS	COMPRESON EN PLANO (kg/gm²)	MODULO DE RUPTURA (kg/cm²)	8	Š	77 × ×	ME.	776		Ö	
				_	DENSDAD PROMEDIO (godari)	ត <mark>៉</mark>	PROMETRICO	Œ.	COMPOSICION COMPOSICION	•	CONCEPTO
981	٤.	ON C	/NEX	1	O		J		ğ		and the second s

* Ahorro en combustible.

* Pronta recuperación de la inversión.

* Costos de construcción menores.

* Fácil de reparar

* Permite la fabricación de hornos más ligeros.

DATOS TECNICOS

Colcha de fibra Cerámica de Alúmina-Silice para 1040°C (1900°F)

TEMPERATURA MAXIMA RECOMENDADA Para uso intermitente Para uso continuo	1040°C 900°C	1900°F 1650°F				
COLORDIAMETRO DE FIBRA	20 cm, prom. 8 pulg. (prom.)					
CAMBIO LINEAL PERMANENTE Porciento de contracción 24 hrs. a 815°C (1500°F) 24 hrs. a 925°C (1700°F) 24 hrs. a 1040°C (1900°F)	. 0.5-1.0% . 1.0-2.0% . 2.0-3.0%					
La prueba de cambio lineal permanente de 24 f experimentará en servicio.	nr. es representat	iva de la contrac	ción que			
CONDUCTIVIDAD TERMICA A TEMPERATUR Kcal-m/m2 -hr-°C (BTU pulg/pie2 -hr-°F)			•			
315°C (600°F) 540°C (1000°F) 750°C (1400°F) 870°C (1600°F)	64 k/pie3 (4 lb/pie3) 0.06 (0.5) 0.11 (0.9) 0.20 (1.6) 0.24 (1.9)	96 kg/m3 (6 lb/pie3) 0.06 (0.5) 0.11 (0.9) 0.17 (1.4) 0.21 (1.7)	128 kg/m3 (8 lb/pie3) 0.05 (0.4) 0.10 (0.8) 0.14 (1.1) 0.16 (1.3)			
ANALISIS QUIMICO Alúmina (Al2 O3) Sílice (Si O2) Oxldo de Fierro (Fe2 O3) Dioxido de Titanio (Ti O2) Alcalis (Na2 - K2 C)	40.0-45.0% 55.0-60.0% Hasta el 1.0% Hasta el 1.5% Hasta el 1.0%					

Los datos de prueba mostrados están basados en resultados promedio de pruebas de control y están sujetos a variaciones normales en pruebas individuales. Estos resultados no pueden ser tomados como máximos o mínimos para propósitos de especificación.

OFICINAS PLANTA: BOULEVARD INDUSTRIAS No. 1900 RAMOS ARIZPE, COAH. TEL (84) 15-16-57, 15-17-06, 15-18-75, 16-13-35, 15-13-59. FAX, (84) 15-18-98 VENTAS-MEXICO RIO DE LA PLATA No. 48 COL. CUAUHTEMOC 06500 MEXICO, D.F. TEL. (5) 286 81 33, 286 35 55 EXT. 3 2 6 0 TELEX 1772487 IPSAME TELEX 1773023 REFME FAX (5) 286 5075

VENTAS MONTERREY AVE. DE LA JUVENTUD No. 265N. SAN NICOLAS DE LOS GARZA, N.L. TEL (83) 30 02 03 TELEX 3 8 2 7 5 2 KERAME FAX (83)53 92 01

VENTAJAS DE LA COLCHA INSWOOL-HP-M

·Bajo contenido de hierro

 Temperatura límite 1315°C (2400°F) ·Baja conductividad térmica

Resistencia al choque térmico

Buena resistencia mecánica

Fácil de cortar, envolver o formar

APLICACIONES TIPICAS PARA LA COLCHA INSWOOL-HP

Recomendada especialmente para aplicaciones que requieran bajo contenido de hierro menor del 1% y para almósferas allamente reductoras.

·Hornos de carbonizado

•Equipos con atmósferas reductoras

·l·lornos de mónoxido de carbono

·Hornos de tratamiento térmico con alto porcentajes de hidrogeno

DATOS TECNICOS

COLCHA INSWOOL-HP Colcha de fibras cerámicas de alúmina - silice de alta pureza para 1315°C (2400°F)

TEMPERA	TURA MAX	IMA	REC	OME	ND	Αľ	ÌΑ		
Para uso	intermitente								
_	. •								

2400°F 1315°C 22509F

COLOR..... Blanco DIAMETRO DE FIBRA 3 - 5 Micrones

GRAVEDAD ESPECIFICA 2.55

LONGITUD DE FIBRA 20 cm. prom. 8 pulg, prom. 12 - 16 pulg, máx. 30 - 40 cms. máx. RESISTENCIA A LA TENSION

Colcha de 128 Kg/m3 (8 lb/pie3)...... 0.7 - 1.0 Kg/cm² 10 - 15 lb/pulg.2

CAMBIO LINEAL PERMANENTE

Por ciento de contracción

24 hrs. a 1093°C (2000°F)........................ 1.8 - 2.6°/°c

La prueba del cambio lineal permanente de 24 hrs. es representativa de la contracción que experimentará en servicio.

CONDUCTIVIDAD TERMICA 64 Kg/m ³	96 kg/m³	128 kg/m³
Kcal-m/m ² -hr-OC (4 lbs./pie ³)	(6 lbs/pie ³)	(8 lbs/pie ³)
(BTU - pulg/pie ² - hr - OF)	,	
315 °C (600°F) 0.06 (0.5)	0.06 (0.5)	0.05 (0.4)
540 °C (1000°F) 0.11 (0.9)	0.11 (0.9)	0.10 (0.8)
760°C (1400°F) 0.20 (1.6)	0.17 (1.4)	0.14 (1.1)
870°C (1600°F) 0.24 (1.9)	0.21 (1.7)	0.16 (1.3)

ANALISIS QUIMICO

Alúmina Al₂ O₃ 49 - 500/o Sílice Si O₂ 50 - 510/o Otros..... Menos del 0.5º/o

Los datos de prueba mostrados están basados en resultados promedio de pruebas de control y están sujetos a variaciones normales en pruebas individuales. Estos resultados no pueden ser tomados como mínimos o máximos para propósitos de especificación.

ANEXO No. 6

PROPIEDADES FISICAS Y QUÍMICAS DE LAS ALEACIONES RESISTENTES AL CALOR

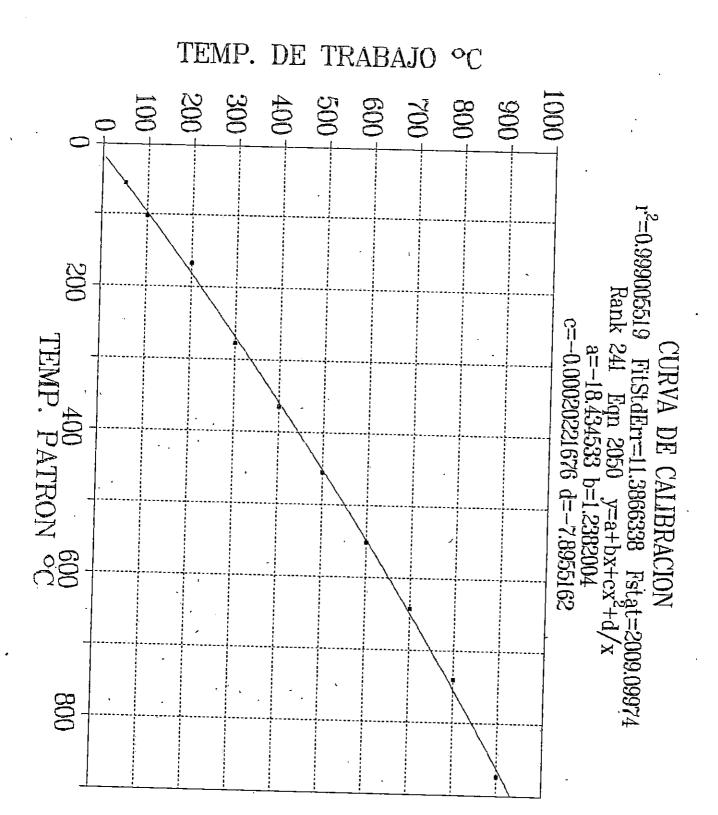
GRUPO		I	11	111		
DESIGNACION AMERICANA		INCONEL	65 - 15	NA-22-H		
	Cr	14	11 - 20	26.3		
	Hi	80	69 - 64	46.0		
	C	0.20 (moldeado) 0.08 (laminado)		0.44		
Composición química, en %	Si	2.0 (moldeado)		8.99		
	' Hn	0.25 (laminado)		1.36		
	Fe	6.0 - 6.5	20 - 25			
	М			5.28		
Densidad Relativa		8-4	8.29 (laminado) 8.06 (moldeado)			
Peso específico, Kg/m³		8497.7	8927.2			
Carga de rotura en frío, Kg	/mm²	78.73(laminado) 49.21 - 66.78(moldeado)	44.99 (moldeado) 71.70 (laminado)	45.69 (moldeado)		
Coeficiente de dilatación t mm por mm y °C	érmica	0.000016	0.000013	9.000015		
Tolerancia de contracción p las piezas moldeadas en mm/						
Conductividad térmica, Kcal (m,h,°C) a temperatura ambi		12.87	9.22			
Calor Específico			0.109		0.114 a temperatura	
Resistividad Eléctrica	istividad Eléctrica		vidad Eléctrica 102.92		ambiente 109.56 (laminado)	
Coeficiente de temperatura	de la		119.5 (moldeado)			
resistividad eléctrica		0.3000108	0.0000171			
		b				

Continuación.

GRUPO		IV	U	VI
DESIGNACION AMERICANA		35 - 15	25 - 12	TIPO 446
	Cr	15 - 20	22 - 30	23.27 *
	Ni	35 - 40	8 - 18	
	c	0.4-0.6 (moldeado)	0.5 (moldeado) 0.25 máx. (laninado)	0.5 (moldeado) 0.10-0.25(laminado)
Composición química, en %	Si		1.0 - 1.5	1.0 máximo
	Mn		1.0	1.5
	Fe	Resto	Resto	
	И			
Densidad Relativa		7.92	7.9	7.65
Peso específico, Kg/m³	ı	8927.2	6975.3	7473.6
Carga de rotura en frío, Kg	/mm ²	46.69-47.80(moldeado) 66.68(laminado)	45.69-77.33(moldeado) 63.27-80.84(laminado)	 28.12-35.15(moldeado) 52.72-66.78(laminado)
Coeficiente de dilatación t	érmica			
mm por mm y °C		0.000013	0.000016	0.000012
Tolerancia de contracción p	ara			
las piezas moldeadas en mm/	iin ii	0.53	0.53	
Conductividad térmica, Koal	,			
(m,h,°C) a temperatura ambi	ente	8.18 - 11.16	12.98	18
Calor Específico		0.112 a temperatura ambiente	0.14 medio, entre 15 y 875	0.12 medio entre 15 y 875
Resistividad Eléctrica	}	111.26	94.62	68.55
Coeficiente de temperatura resistividad eléctrica	de la			

01 01	Tec.0 841.0 116.1 120.2	F65,0 B47,0 E01,1 OF6,1	014'T 624'T 624'T 111'0	009'I 100'I 100'I 100'I	002'0 110'1 110'1 110'1	001,0 703,0 000,1 701,1	881.0 783.0 004.0 007.1	811.0 F12.0 U19.0 ECC.1	8F0,0 FF1,0 EYA,U CUA,L	\$50'T \$18'0 \$18'0 \$50'T	000,0 790,0 897,0 602,1	0) 0C 0C 01
0 10 20 20 20	661,1 — FTF.0 — EQE,0 —	811'I — 60''0 —	180'1 — 101'0 —	0,002 - 0,002 - 0,002	21F.f — 9FC.t — 200,f — 250,0 — 0CS,0 —	859,0 —	000,1 — 000,0 — 110,0 —	202,1 — 208,0 — 502,0 —	1(1,1 — 108,0 — 108,0 —	518,0 —	621.1 — FIT.0 —	oc
05	2,546 - 2,920 - 2,546	75.6 — 78.6.9 — 806.6 — 806.6 —	\$28,5 — \$18,5 — \$18,5 — \$71,5 —	151,0 158,2 161,2 761,2	0CF.C — c11.C — nur.c — oer.c — cof.c —	10.0 — 10.0 — 11.0 — 100.0 —	000.C — 127.2 — 10C.2 — 5C0.2 —	810.C — 100,2 — 71 C,2 — 040,C —	2,00,5 — 2,00,5 — 210,2 — 100,1 —	620,2 — 050,2 — fTs,2 — 659,f —	2,920 - 2,536 - 2,543 - 2,543 - 2,543	09 — 07 — 00 — 0e —
- 100 - 110 - 130 - 130 - 130	216.5 — 600.5 — 601.9 — 601.4 — 601.4 — 601.4 —	110,1 — 110,1 — 110,1 — 111,1 — 111,1 —	208.) 818.) 72C.) 280.) CQT,C	C43.4 — C43.4 — OCC.4 — C40.4 — LDT,C —	710,4 — 700,4 — 600,4 — 650,4 — 650,4 —	207.1 — 132.9 — 572.9 — 700.2 — 407.2 —	814.4 814.4 814.2 804.C 570,C	CFF.F — ent.F — IVE.F — ecq.C — too.C —	Q17,5 — C01,5 — C01,5 — C010,C —	100.4 — 101.4 — 101.4 — 100.C — 100.C —	000,4 014,4 8C1,4 568,C 668,C	- 100 - 130 - 130 - 130
- 120 120 120	160,4 0(5,6 066,6 141,6	018,6 — 617,6 — 118,6 — 611,6 —	000'S 210'S 210'S 210'S	378,8 — 870,8 — 898,3 — 898,3 —	000.0 000.0 175.0 160.0	\$18.4 — \$10.8 \$61.4 — \$10.6 \$20.6	047.4 — \$50.6 — \$55.6 055.4 — \$04.6 —	000,6 — 000,6 — +1+,6 — Fus.e — U0q,+ —	E87.2 — TRG.6 — \$00.0 — CRT.6 — QQV,5 —	T+F.C — 905.d — •FC.d — Fnf.d — DLV.e —	0(r,e — 06d,d — 101,d — 111,d —	001 — 011 — 011 —
- 210 - 210 - 210	\$05.0 —	7(C,0 — C:2,0 — T+1,0 —	05C,5 — C+5,6 —	#80C.0 — #8C.0 — CCC.0 —	111,0 — 080,6 —	00C.0 — C15.0 —	100.0 100.0 500.0	200.0 — 200.0 — 241.0 —	666.5 — 084.5 — 181.5 —	10C.B — 17C.B — 0''1.A —	505.0 — 605.0 — 861.0 —	- 310 - 310 - 310
072 — 032 —	021.0 —	F&+,0	644,6	084.0 —	66+,8 — HEP,8 —	21 O.11.E	051'0	233.0 —	D++,0	111.0 —	861.0	
005 1											968,09	1.200
1.100 1.100 1.100 1.100	015,73 614,73 041,83 130,80 005,93	£81,78 0&7,70 .£(C,88 809,88 u(7,40	67,176 677,00 68,049 68,49	TAN, TO C+O, TO T1C, 8A CQT, 8D FUC, 40	000,T0 608,T0 061,89 207,80 700,40	E60,00 F64,16 CU1,66 F16,06 O62,98	60,004 67,470 68,045 60,193	6 CA, CO C LA, C D BRU, T D C C D, R D C C L, Q D	277,00 22C,70 0C4,73 203,88 870,40	127,00 Tec,70 Cf8,70 Til,00	######################################	021.1 001.1 011.1 011.1
0111 0111 01111 01111	04,735 017,00 017,00 010,00	842,25 678,27 664,65 940,00 004,00	64,240 64,017 64,017 614,63 814,60	\$81,18 081,18 750,68 141,80	\$51,40 207,48 072,20 040,20 044,60	880,48 248,48 242,69 947,89 875,39	00,48 04,46 06,74 06,74 06,00	05,150 06,150 06,150 06,150 06,050 06	63,68 64,471 64,048 64,28 64,28	\$18,60 614,40 109,40 808,60 841,00	TTT, C3 62C, FB CC4, FB 018, 63 TBO, 50	0111
1.050 1.010 1.010 1.050 1.050	61,150 61,050 610,050 610,050	001.10 189,10 506,50 111,50	C1C,1A CYQ,13 F0C,CA CAO,CA	\$98'19 \$98'19 \$50'69 \$60'69	052,18 708,13 845,58 749,58 749,50	801,18 847,18 906,58 804,58 844,60	001,12 198,13 272,28 178,20 004,63	61,041 61,633 61,033 61,033 61,033	61,515 61,515 62,156 62,7,50 110,60	2CP,00 F12,10 F90,V0 F70,58 F2E,50	018,00 021,13 010,53 010,53 011,13	1,050 1,000 1,080 1,080 1,080
1,000 1,010 1,010 1,010	C(2,82 C(2,82 121,92 UV,03 f 40,03	61,474 69,063 60,236 618,00	00'45 00'65 00'45 00'45 00'46 00'46 00'46	86,788 81,68	747,88 66,888 474,04 66,643 643,08	6 C E , 8 A F E O , 8 A E I P , V B I O O , N D E II A , O B	011,82 011,82 025,03 040,03 143,00	021,83 825,83 805,83 805,83	000'63 28'65 139'83 88'651	100,82 502,84 501,62 707,63 125,63	CCC, 62 1C1, 92 BOT, 93 CQC, 03	1,000 1,010 1,010 1,010
046 046 046 046	516'E9 69'1'99 69'1'99	69,482 69,484 60,484 602,784 68,73	£CD,03 6CD,03 7CD,03 6CS,7& 5CB,7&	£FC.23 FFQ.24 FFG.34 OFF,F2	F1C,88 F10,88 F12,08 F111,78	132,28 138,38 121,38 120,72	191,88 191,88 190,08 198,18	P1'231 P0'034 P0'334 P0'314 P0'110	010,88 110,88 610,88 610,88 618,88	800,84 618,88 618,86 618,88 809,78	819,78 64,68 641,68 647,63	050 044 066 096 096
					•	[1][104][1]	W.					
D •	ot	O	8	L	9	g	•	C	ζ	ĭ	0 (895)	(1675 C

(IPTS		_				_			_			
• C	0	1	2	3	4	5	6	7	8	9	10	- C
				-		Hisoitios						
50	2,022	2.004	2,105	2,111	2.160	2.220	2,270	2.712	2,353	2.794	2,474	50
0.0	2.436	2.477	2,510	2,500	2,401 3,016	2,643	2,004 3,100	3,778 3,141	7,767 2,183	2,802 3,274	3,7 9 3,203	80 70
70 80	3,850 3,266	2,892 TUC.C	3,033 3,349	3,975 3,390	3.432	3,068 3,473	3,100	3,511	3,594	3,639	3.203	80
90	3 441	J. 122	3,701	J.806	3,847	3,808	3,030	3.971	4,012	4,054	4.095	90
100	4.095	4,137	1,178	4,210	4,241	4,302	4,332	4,384	4,424	4,467	4,505	100
110	4,508	4,519	4,500	4,032	4.073	4,714	4.755	4,706	4.837	4 878	4.010	110
170	4,919	4,060	5,001	5,042	8,003	6,124	0.184	6,203	5.246	5.287	8.727	170
1.10	5 727	5,368	5,400	0,130	5,490	8,531 8,014	8,571 5,070	6,013 6,016	5,652 6,657	5,497 6,097	5,733 6,137	130
140	B.7.13	6,774	5,014	5,555	5,025	5,030	•				0.530	150
150	4,117 4,119	4 177 4 579	0,210 210,0	0,250 0,659	4,296 0,490	6,338 0,739	0,370 6,779	1,419 1,619	0.459 0,859	4,499 4,899	6 939	100
100 170	6,539 6,939	0.979	7,019	7,050	7,000	7,130	7.179	7,219	7,259	7,200	7 338 %	170
180	7,338	7,778	7,416	7,450	7,490	7.5)#	7,578	7,419	1.658	7.097	7,737	140
190	7,737	ירר, ר	7,817	7.857	7,897	7,937	7.077	8,017	8,057	8,027	8,137	170
200	8,137	8,177	8,246	8,250	0.296	P.336	0,376	0,414	8,450	8,497	8,537	300
210	P.537	6,517	8.817 9.014	n.657	8,097 0,000	8,737 0 1 10	0,777 9,170	5 /17 0.220	8,857 9,200	8 898 9,300	4,938 9 341	310
277 210	8,008 9,041	9.3/1	0,01# 9,421	P, 453	0,000 0,502	P.13P P.843	9 503	0.014	0,004	9,765	0,745	230
240	9.715	9,786	9,626	P.007	100,0	9,948	0,000	10,029	10,010	10,111	10,151	210
250	10,151	10,100	10,233	10.274	10,715	10,355	10.306	10,437	10,475	10,519	10,640	250
260	10,500	10,000	10,641	10,082	10,723	10,764	10,405	10,446	10,807	10,920	10,969	249
270	10,949	11,010	11,051	11,093	11,134	11,175	11,216	11.257	11,298	11,339	11,781 11,703	270 240
250	11,301	11,422	11,401 11,878	11.504 11.918	11.546 11,059	11.567 12,000	11.028 12.042	11,469 12,083	11,711	12,150	12,207	ניםב
200	11,703	11,835	-				12,450	12.408	12,570	12.561	12.623	309
300 310	12,207 12,623	17,219	17,290 17,700	12,312	12,373 12,700	12,415 12,831	12,450	17,714	12,265	17,997	13.039	319
220 210	13,039	13,000	15,172	11,161	13,205	13,247	13 2RP	10.001	10,072	13,411	10,456	320
סר ק.	11,154	17,197	13,539	11,401	11,021	17,695	13,706	17.740	13,779	17,612	17,674	310
310	13,874	13,016	13,967	13,000	14,041	14,003	14,126	14,107	14,204	14,250	14,292	310
350	14,297	34.224	14,374	14,410	14,400	14,502	14,544	14,584	14,020 15,040	14,470	14,712 15 172	7 10 2 10
300	14,712	14,754	1 (, 70 m 1 h , 2 h £	11,838 15,756	14,860 16,300	14.933 18.343	14,001 16,354	10.000	15,465	15.610	15,512	110
) 70 9 N C	15,102 15,552	15,174	15,000	15,619	10,721	15,563	15,805	10.017	15,000	15,931	15 014) mi)
240	15,974	10,010	14,050	14,100	10,142	14,184	10,227	14,209	14,311	14,353	16.305	300
400	14,785	10,470	14,480	14,523	10,544	10,007	10,049	10,001	10,733	14,770	16,616	400
410	10,810	10,800	10,907	10,015	10,007	17.070	17.017	17.114 17.637	17,15 <i>0</i> 17,600	17,627	17,241	410
470	17,711	17,783 17,707	17.33A 17.740	17,308 17,702	17,410 17,034	17,483 17,076	17,495 17,919	17,001	10,001	18,016	10 044	4.10
410	17,664 18,086	10,131	10,173	18,210	18,250	10.301	18,343	10,005	10,428	18,470	18,513	4 (1)
450	18,513	18,585	10,600	18,840	10,003	10,725	10,764	16,610	14 857	14,805	10 016	450
460	18,939	18,010	18.023	10,045	19,109	19,150	10,193	10.235	10,270	10,329 10,716	19,343 19,798	440
470	19,343	10,405	19,414	10,100	10.53J 19.980	10,676 20,001	19,438 20,014	10,001 20,040	19,703 20,137	20,173	20 214	480
400 400	14,708 20,214	10,871 20,257	19.873 20,209	19,91d 20,312	20,365	30,427	20,470	20,013	20,555	20,594	20,640	470
		20,883	20,725	20,764	20,011	20,051	20,094	29,230	20,991	21,021	21,046	600
500 510	20,610 21,066	21,100	21,152	21,191	21,2,17	21,280	21,323	21,365	21,407	21,450	21,173	519
520	21,193	21,515	21,570	21,621	21,001	21,700	21,749	21,791	21,814	21,076	21,919	570 539
500	21,919	21.042	22,001	22,047	22,090	22,133	22,175 22,001	27,710 22,014	22,260 22,607	22,303	22,310 22,772	610
5 10	22,346	33,308	23,431	22,473	27,514	22,559	-				21,198	550
510	27,772	22 815	22,057	23,000	22,042	22,085	27,028	21,070 23,407	27.113 23,639	23,154 23,582	21,671	550
550	71,190	23,241	23,284	23,326	23,349	23,411 23,837	23,454 23,880	23,023	21,905	21.001	21,050	570
570	21,624	23,667	23,710 24,136	23,753 24,110	23,705 24,221	24,263	24,304	24,718	24,391	21,111	21,476	510
580 590	21,450 21,478	24,093 24,519	21,561	24,604	21,010	21,089	24,731	24,774	24.817	24,059	21,902	577
9.70	•						-	25,109	25 212	25,200	25,327	500
600	24,992	21.011	21,887	25,020	25,072	25,111 25,539	25,157 25,592	25,100	25,616	25,709	25,751	σιn
610	25,327	25,369 25,794	25,412 25,036	25,154 25,870	25,497 25,921	25,201	20,000	21,048	28.091	20,133	26,170	620
630 630	25,751 26,175,	26,218	26,260	26,303	26,315	26,387	20,410	24,472	20,515	24.557	26,599	610
610		26,612	20.081	24,720	20,769	26,011	26,853	26,890	20,938	20,980	21,022	610
	-		27,107	37,119	27,192	27,211	27,276	27,318	27,361	27,493	21,115	651
650 640		27,065 27,487	27,107	27,573	21.614	27,655	27,090	27,740	27,783	27,025	27,667	660
010		27,909	27.951	27,093	28,015	20 078	26,120	20,142	28,201	29,216	26,280	579
0.8.0		20.330	39,372	28,414	28,450	20,408	28,540	20,583	20,625	28,567	20,793	679
690		28,751	28,794	28,815	20,077	28 919	26,961	29,002	29,041	29,089	29,128	
700	29,128	29,170	29,212	22,251	29,296	29,338	29,380	29,122	29,164	29,595	29,517	70
710		20 599	29,611	77,673	20,715	29,750	29 7911	29,010	29,802	23,921	29,965	714
779		30.007	TO 019	30,091	20,132	30,174	30,210.	30,257	30,200	30,341	39,383	72'
			•	-								

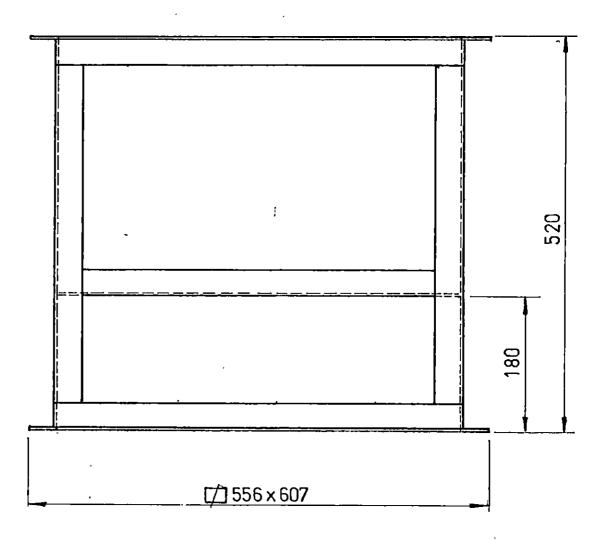

	<u>·</u>												
l	(IPTS	1981)											
Ì	* • C	0	1	2	כ	4	δ	6	7	В	0	10	• C
1	•	•	-	_	-				•	Ů	•	••	
						М	liivoitios						
	7.0	70,3R3	30,124	30,466	30,508	30.519	30,591	00,612	30,074	30,716	30,757	30,700	210
	710	30,799	30,810	30,082	30,024	30,065	T00,1C	31,018	31,000	101,101	31,173	31,214	710
	7.0	31,214	31,256	31,297	31,330	31,380	31,422	31,463	31,504	31.516	31,587	31,629	750
	760 770	31,629 32,042	31,670 32,684	31,712 37,125	21,763 001,86	71,794 32,701	21,838 27,240	31,H77 32,770	31,618 32,331	21.FAU 22,372	32,001 32,414	02,042 02 -5	7d0 77u
1	700	32 455	32,400	32,637	32,670	32,619	32,001	22,702	32,743	32,784	33,625	32 806	700
ł	750	12,866	32,007	37.018	37,490	23,031	31,072	33,113	33,154	33,195	27,270	33,277	340
1	800	33,277	33,318	33,359	33,400	33,441	33,482	33,523	33,564	33,601	33,645	33,606	800
	810 820	33.CHB 34 075	33.777 34,136	33,768 34,176	33,809 34,217	33,860 34,250	37,091 34,209	33 031 34,339	33,972 34,380	34.013 34.421	34.054 34,403	34,005	810 820
l	830	34 502	34,543	24,583	34,624	34,665	34,705	34,740	34,787	34,827	วันเกติย	34,909	830
	# 1 O	34.900	34,949	31,900	25,030	35,071	35,111	35,152	35,192	36,233	35,273	25,314	R 4 O
	850	35,314	25,354	35,395	35,425	35,476	35,516	35,557	35,597	35,637	35,678	25,710	" 850
	00A 073	35.718 36,121	35,758 36,162	35,749 30,202	35,830 36,242	35,880 36,282	35,020 30,323	35,000 36,363	34,600 34,403	30,041 30,443	36,681 36,483	06 121 36,524	860 870
	2 HU	36.524	36,564	36,604	30,644	36,684	36,721	30,764	36,804	30,811	36,805	30,925	889
1	1.0	36,925	30,965	37,005	37,045	27,005	37,125	37,165	37,205	37,245	37,285	37,325	מפח
İ	100	37,325	37,365	37,405	37,445	37,484	37,524	37.564	37,604	37,644	37,604	37,721	900
	910	37,724	37,764 38,162	31,80) 38,201	37,843 38,241	37,883 38,281	37,773 38,320	37,947 38,360	30,002 38,400	08,042 08,439	36,072 36,479	08,122 38,519	f-10 920
ļ	520 530	36,172 38,519	30,142	38,598	30,211	38,077	38,717	38,750	38,100	30,113	30,175	34,915	מנפ
1	940	36,615	38,054	38,004	30,033	20,073	39 112	30,152	141,96	39,231	39,270	39,110	940
)	92.0	39,310	30,349	39,308	39,420	29,467	39,507	DV,546	37,585	39,625	39,664	39,703	950
l	FC0	39,703	39,743	39,702	30.821	39,861	39,900	30,939	39,979	40,018	40,057	40,096	660
l	170 480	40,006 40,488	40,136 40,527	40,175 40,566	40,214 40,605	40,253 40,645	40,202 40,684	40,332 40,723	40,371 40,702	40,410 40,801	40,449	40,498 40,879	970 980
1	610	40,879	40,018	40,957	40,000	41,035	41,074	41,113	41,152	41,191	41,230	41,260	990
	1 000	41,269	41,308	41,347	41,005	41,424	41,463	41,802	41,541	41,580	43,619	41,657	1 000
1	1.010	41,657	41.690	41,735	41,774	41,817	41,061	41.600	41.979	41,VGR	42,000	42,045	1.010 1.020
	7 070 7 030	42,015	47,084 42,470	42,123 42,508	47,101 42,618	42,200 42,566	42,239 42,625	42,277 42 063	42,316 42,702	42,355 42,740	42,779 42,779	42,433 42,617	1 610
1	1,010	42,617	42,850	42,894	42,933	42,971	13,010	43,018	41,087	43,125	43,104	43,202	1.040
	1 050	43,202	41,240	43,279	43,317	43,356	43,394	43,432	43,471	43,509	43,547	43,685	1 050
	1,650	43,565	43,624	43,662	43,700	13,730	43,777	43,615	40,860	43,001	43,930	43 966	1,000
١.	1 070 1 680	43,000 44,349	44,000	44,044	44,082 44,483	44,501	44,510	44,197	41,275	44,273 44,053	44,011 44,011	44 340	1 070
	1 000	44,726	11,767	44,805	44,843	44,001	44,010	41,057	41,995	45,033	45,070	45,108	1.000
1	1.160	45,168	15,148	45,184	45,222	15 710	45,307	45,305	45,373	45,411	45,448	45,486	1.100
1	1.110	45,480	45,624	45,501	45,590	15,617	45,675	45,712	45,750	45,767	45,825	45,661	1.110
	1 150	45,863	45,900	45.U3H	15,975	(0,013	10,051	40,080	40,120	40,103	46,201 46,676	46,238 46,013	1.130 1.130
	1 130 1.140	46,238	40,276 46,649	49,313 48,687	46,724	46,311 40,701	40,425 46,799	40,403 40,830	46,600 46,873	40,637 40,910	40,010	46,985	1.140
1	1.150	40,965	47,022	47,059	47,090	47,134	47,171	47,208	47,215	47,282	47,319	47,356	1,150
	1.160	47,350	47,393	47,430	47,468	47,505	47,542	47,570	47,016	47,053	47,649	47,720	1.160
1	1,170	47,726	47,763	47,800	47,007	47,074	47,911	47,848	47,985	48,021	48,058	411 095	1.170
i i	1.180	48,095	48,132 48,499	48,109 48,636	48,205 40,572	48,242 48,600	48,279 48,645	48,316 40,682	48,362 48,716	48,755	48,420 48,703	48,482 48,628	1,1A0 1,1VD
	1.100	48,462						49,047	40,043	49,120	49,156	40,192	1.300
1	1,200	40,828 40,192	48,805 49,729	48,901 49,205	48,937 49,301	48,974 49,338	40,010 40,374	49,410	49,440	49,483	49,619	19,555	1,210
1	1,220	10,555	49,491	49,627	49,003	49,700	40,736	49,773	40,808	19,814	49,850	49,916	1,320
ļ	1.230	40,016	49,953	49,988	10,021	\$0,000	60,000	60,133	50,168 60,526	80,204 50,602	50,240 60,8v8	&0,218 &0,633	1 210 1.210
Ì	1.310		60,311	80,347	60,383	50,410	50,455	60,491					1.250
1	1 250 1,260		80,669 51,025	60,705 51,001	1)7,0, 51,050	51,176 51,172	51,167	50,847 51,203	50,883 81,238	80.019 81,274	50,954 51,309	699,07 · 6	1.200
1	1,200		51,023 51,380	51,415	51,450	51,404	61,621	61.556	51,592	51,027	51,602	51,697	1.270
	1340	51.697	51,733	61,760	61,003	61.630	51,673	51,908	61,013	61,970	52,014	57,049	1 200 1,290
1	1.290	\$2.049	52,084	52,119	52,164	52,180	52,214	52,259	62,294	62,320	52,364	62,398	
	1,300		62,433	52,468	62,503	62,538	52,673	62,608	62,642	52,077	52,712 53,000	52,747 63,093	1,300 1.310
1	1,310 1,370		52,781 53,128	52,816 53,162	52,851 63,197	52,886 63,232	52,920 63,266	52,955 53,301	52,980 53,335	53,024 83,370	53,059 53,494	53,43P	1.310
	1,320		63,128	63,507	53,547	63,434	63,613	63,015	63,679	63,714	63,748	53,782	1.330
	1.310		50,817	80,851	63,865	53,920	63,064	63,086	54,022	84,057	61,091	54,125	1.340
	1 350		54,150	54,193	51,228	54,282	64,290	64,330	54,304	54,398	54,432	34.466	1.350
1	1 360		54,501	54,835	54,500	54,003	64,637	54,071	54,705	64,709	61,773	64,007	1.340 1,370
	1 3 10	14.807	54,841	84,875									

ANEXO Nº 8

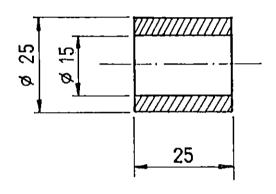
CALIBRACION DEL HORNO

CONACYT Laboratorio Nacional de Metrología Legal

PATRON	TRABAJO
°C	°C
56	50
102	100
167	200
277	300
365	400
455	500
552	600
642	700
740	800
874	900



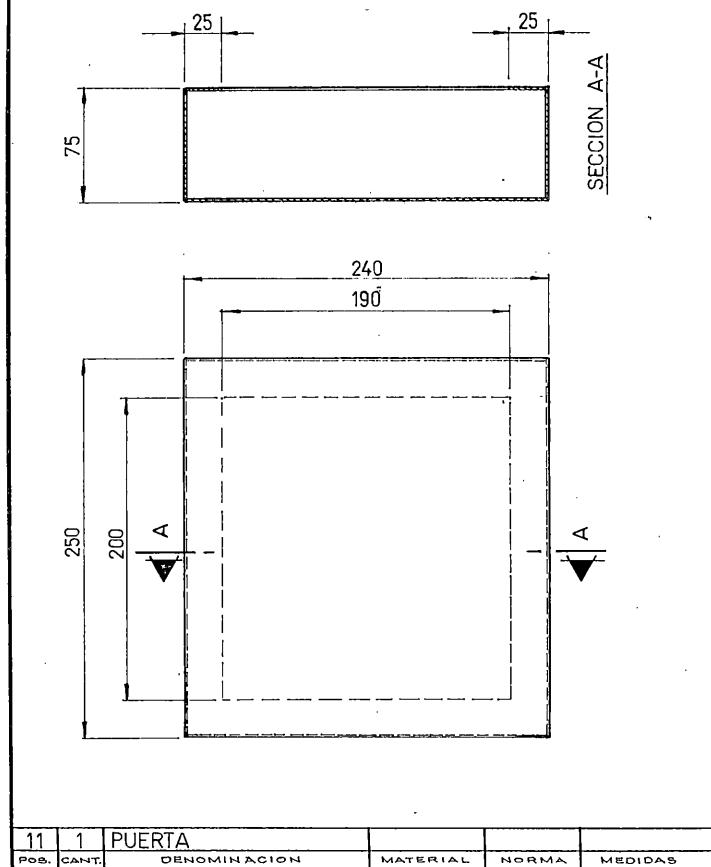
ANEXO B


DIBUJOS TECNICOS - MECANICOS

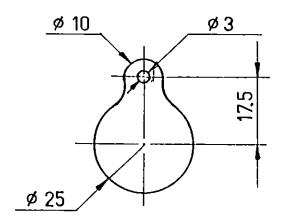
ANEXO B-1

28	1	SOPORTE DE LA HALADERA					18×90×3
27	1	MANECILLA	·				4
26	17	TUERCA	,				3/8-16UNC
25	3	TORNILLO GOLOSO		,			No 8 - 32UNC
24	20	TORNILLO CABEZA REDONDA					No 10-24UNC
23	16	TORNILLO CABEZA HEXAGONAL					3/8-16UNC
22	7_	TUBO CERAMICO					ø12×120
21	1	TUBO CERAMICO					ø15x120
20	3	RESISTENCIAS ELECTRICAS					
19	2	BISAGRAS		_	ĺ		
18	1_1_	TAPADERA DE CONTROL		HIERRO			190x455
17	1	CUBIERTA POSTERIOR					
16	1	MANECILLA DEL PASADOR					
15	1	PASADOR CON LEVA		ACERO	AISI	1020	Ø25xØ125x80
14	1_1_	SOPORTE DE PASADOR					
13	1	CUBIERTA DE LA MIRILLA	"	HIERRO			Ø25xØ10x3
12		FIBRA CERAMICA					
11	1.	PUERTA		•		-	250x75x240
10	.1	BUJE .	_	ACERO	AISI	1020	Ø25xø13x25
9	1	LAMINA PERFORADA POSTERIOR		HIERRO GALV.			200x470x1.5
8	34	LADRILLO REFRACTARIO		EMPIRE M			114x229x64
7	1	TAPADERA		HIERRO			556×607×3
6	1	LAMINA FRONTAL		HIERRO			300x450x3
5	1	LAMINA POSTERIOR .		HIERRO			300x450x3
4	_2	LAMINA LATERAL		HIERRO	<u>.</u>		300x500x3
3	1	LAMINA DE SOPORTE	·	HIERRO			450x500x5
2	2	LAMINA PERFORADA LATERAL		HIERRO GALV.	•	-	200×500×3
1	1	ESTRUCTURA DEL HORNO		HIERRO ANG.			556 x 607 x 520
POS	CAN	DENOMINACION		MATERIAL	NO	RMA	MEDIDAS
	UNIVERSIDAD DE EL SALVADOR DISEÑO Y CONSTRUCCION DE UN						PLANO No 1
		DE INGENIERIA Y ARQUITECTURA DE INGENIERIA MECANICA		O ELECTRICO I OS DE T. T.	raka L	.ABUKA_	Medidas: mm

L					
1	1	ESTRUCTURA METALICA	ANG. 1/2"×1/2"		
Pos.	CANT.	DEHOMIN ACION	MATERIAL	NORMA	MEDIDAS
		INAD DE EL SALVADUR I	DISEÑO Y CONSTRUCCION ELECTRICO PARA EFEC		1 4:5
L		E NICENIEDIA NECANICA	DE TRATAMIENTOS TE		MEDIDAS

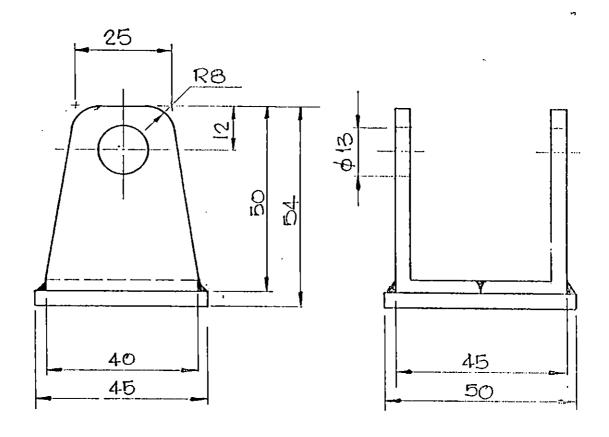


10	1	BUJE			····	
POS.	CANT.	DENOMIN ACION		MATERIAL	NORMA	MEDIDAS
LINI	IVERS	IDAD DE EL SALVADOR	DISEÑO	Y CONSTRUCCION	I DE UN HORN	O ESCALA

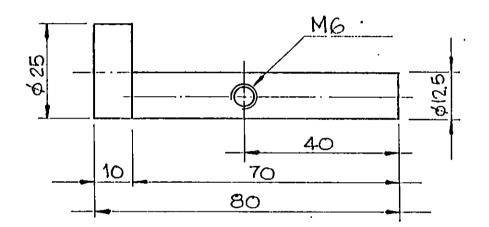

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE INGENIERIA MECANICA

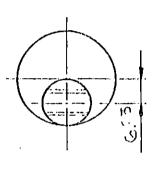
ELECTRICO PARA EFECTUAR LABORATORIOS MEDIDAS DE TRATAMIENTOS TERMICOS

mm



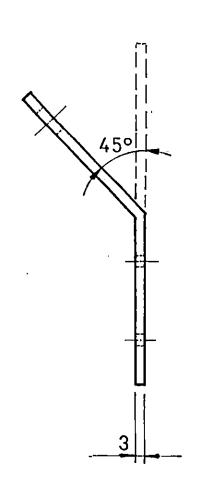
Pos.	CANT.	PUEKIA DENOMINACION	MATER	RIAL	NORMA	ME	DIDAS
FAC	ULTAD C		DISEÑO Y CO HORNO ELECT I.ABORATORIOS D	TRICO P	ara efect	ruar	

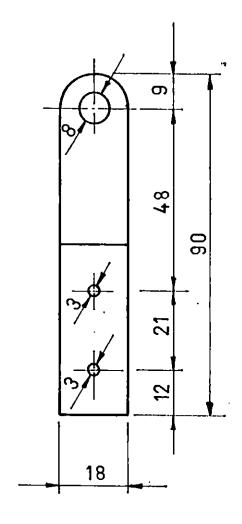



ESPESOR = 3 mm

13 Pob.	CANT.	CUBIERTA DE LA MIRILLA		MATERIAL			
UNI	VERS	IDAD DE EL SALVADOR	l	Y CONSTRUCCION		0	EOLDAS EOCALA 1:1
		E INGENIERIA Y ARQUITECTURA E INGENIERIA MECANICA		RICO PARA EFECTI ATAMIENTOS TEI	•	RIOS	MEDIDAS MM

14	1	SOPORTE				1502	< 50×45
Pos.	CANT.	DENOMIN ACION		MATERIAL	дыяон	1-11	2010/5
FACULTAD DE INGENIERIA Y ARQUITECTURA				Y CONSTRUCCION RICO PARA EFECT DE TRATAMIENTOS	UAR LABORA		ESCALA 1:1 DIMENSIONES INM




15	-	PASADOR	1020		d25, × 80
Pos.	CANT.	DEHOMIH ACIOH	MATERIAL	HORMA	MEDIDAS
					N ECCATA

UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE INGENIERIA MECANICA

DISEÑO Y CONSTRUCCION DE UN HORNO ELECTRICO PARA EFECTUAR LABORATO DIMENSIONE RIOS DE TRATAMIENTOS TERMICOS

mm

28	1	SOPORTE DE LA HALADER	PA.			<u> </u>
Pos.	CANT.	DENOMINACION		MATERIAL	NORMA	MEDIDAS
UN	IVERS	IDAD DE EL SALVADOR	DISEÑO	Y CONSTRUCCI	ON DE UN HO	ORNO 1:1

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE INGENIERIA MECANICA

ELECTRICO PARA EFECTUAR LABORA- MEDIDAS TORIOS DE TRATAMIENTOS, TERMICOS

mm

GLOSARIO.

ALEACION.

Sustancia con propiedades metálicas y compuesta por dos o más elementos químicos de los cuales por lo menos uno es un metal.

ACERO.

Aleación de base hierro, maleable en algún intervalo de la temperatura a que fue inicialmente fundida; contiene manganeso, carbono y a menudo otros elementos de aleación.

AUSTENIZADO.

Templado de la aleación ferrosa desde una temperatura superior al intervalo de transformación en un medio que tiene una rapidez de absorción de calor suficientemente alta para evitar la formación de productos de transformación a alta temperatura, y luego mantener la aleación hasta que se completa la transformación, a una temperatura inferior a la de la formación perlítica y superior a la de la formación martensítica.

AUSTENITA.

Solución sólida de uno o más elementos en hierro cúbico centrado en la cara. En general, el carbono está presente.

BAINITA.

Microconstituyente bifásico que contiene ferrita y cementita, se forma en aceros transformados isotérmicamente a relativamente bajas temperaturas.

CARBURO.

Compuesto de carbono con uno o más elementos metálicos.

CARBURIZADO.

Conjunto de técnicas de endurecimiento superficial por las cuales el carbono se difunde en el acero.

CARBONITRURACION.

Introducción de carbono y nitrógeno dentro de una aleación sólida ferrosa manteniéndola por encima de Acı en una atmósfera que contiene gases apropiados, como hidrocarburos, monóxido de carbono y amoníaco. Las aleación carbonítrurada se endurece generalmente por temple.

CEMENTITA.

Compuesto intermetálico duro y frágil, Fe₃C, que cuando se dispersa aproximadamente proporciona el endurecimiento en los aceros.

CORROSION POR ESFUERZO.

Deterioro de un material en el cual un esfuerzo aplicado acelera la rapidez y el grado de corrosión.

CRISTALIZACION.

Separación, generalmente desde una fase líquida al enfriar, de una fase sólida cristalina.

DESCARBURACION.

Pérdida de carbono de la superficie de una aleación ferrosa como resultado de calentar en un medio que reacciona con el carbono presente en la superficie.

DUCTILIDAD.

Capacidad de un material para deformarse plásticamente sin fracturarse, medida por la elongación o reducción de área en una prueba tensil.

DUREZA.

Resistencia del metal a la penetración de otro cuerpo, sin embargo, el término puede referirse también a la resistencia al rayado, la abrasión o al corte.

ELONGACION.

En una prueba tensil, incremento de la longitud calibrada de la muestra, medida después de la fractura de la muestra en algún punto dentro de la longitud calibrada de la muestra, generalmente expresada como porcentaje de la longitud original de la muestra.

ENDURECIMIENTO POR INDUCCION.

Endurecimiento por temple en que el calor se genera por inducción eléctrica.

ENDURECIMIENTO POR LIAMA.

Endurecimiento por temple en que el calor es aplicado directamente por una llama.

ENFRIAMIENTO, RAPIDEZ CRITICA DE.

Rapidez mínima de enfriamiento continuo apenas suficiente para evitar transformaciones indeseadas. Para el acero, la rapidez mínima a que pueda enfriarse desde una temperatura superior a la critica, para evitar la descomposición de austenita a cualquier temperatura superior a la Ma.

EUTECTICO.

Reacción de tres fases en la cual una fase líquida se transforma en dos fases sólidas.

EUTECTOIDE.

Reacción de tres fases en la que una fase sólida se transforma en dos fases sólidas diferentes.

FERRITA EUTECTOIDE.

Ferrita formada a partir de la austenita de composición eutectoide por la reacción eutectoide.

FERRITA PROEUTECTOIDE.

Ferrita que se separa de la austenita arriba de la temperatura eutectoide. El metal debe de contener menos carbón que la composición eutectoide.

FRAGILIDAD.

Calidad de un material que da lugar a la propagación de fisuras sin deformación plástica apreciable.

FUNDICION.

Proceso en que el metal fundido es forzado dentro de la cavidad de un molde de metal bajo la aplicación de alta presión. (También por gravedad).

GRANO.

Cristal individual en un metal o aleación policristalina.

MATERIALES CERAMICOS.

Materiales formados por compuestos de elementos metálicos y no metálicos.

MATRIZ.

Fase o agregado principal en la que existe otro constituyente.

METALES.

Materiales que consisten principalmente de elementos que liberan parte de sus electrones de valencia, caracterizados también por las disminución de su conductividad al elevar su temperatura.

M.

Temperatura a la que termina la transformación de austenita en martensita durante el enfriamiento.

MICROESTRUCTURA.

Estructura de aleaciones pulidas y atacadas químicamente revelada por un microscopio a una ampliación mayor de diez diámetros.

M,

Temperatura a la que empieza la transformación de austenita en martensita durante el enfriamiento.

NITRURACION.

Introducción de nitrógeno a la superficie de un acero para cambiar la propiedad de sus superficies, es decir, su dureza.

NORMALIZADO.

Tratamiento térmico simple obtenido por austenización y enfriamiento al aire para producir una estructura perlítica fina.

NUMERO DE DUREZA ROCKWELL (R).

Indice de dureza obtenida por métodos estandarizados. La dureza se calibra por la profundidad de huella hecha por el material. Hay muchas escalas de dureza Rockwell variables por indentador.

OXIDACION.

Reacción en la que existe un incremento en valencia resultante de una pérdida de electrones.

PERLITA.

Una microestructura de ferrita más un carburo laminar formado a partir de la austenita de composición eutectoide.

PROPIEDADES.

Atributos cuantitativos de los materiales, ejemplos, densidad, resistencia, conductividad.

PROPIEDADES MECANICAS.

Características de un material como respuesta a las fuerzas externas aplicadas.

PUNTO DE CEDENCIA.

Primer esfuerzo en un material, generalmente menor que el máximo esfuerzo que se puede obtener, en el que ocurre un incremento de deformación sin aumento de esfuerzo. Solo ciertos metales exhiben un punto de cedencia. Si hay un decremento de esfuerzo despues de la cedencia, se puede establecer la difetencia entre los puntos superior e inferior de cedencia.

REACCION-EUTECTICA.

Reacción isotérmica reversible en que una solución liquida se convierte en dos o más sólidos intimamente mezclados al enfriar, cuyo número de sólidos formados es el mismo que el de componentes que integran el sistema.

REACCION EUTECTOIDE.

Reacción isotérmica reversible en la que una fase sólida (generalmente una solución sólida) se convierte en dos o más sólidos intimamente mezclados al enfriar cuyo número de sólidos formados es el mismo que el de componentes en el sistema.

RECOCIDO.

Calentamiento y enfriamiento lento para causar ablandamiento, tenacidad, o liberar esfuerzos.

RECRISTALIZACION.

La formación de nuevos granos a partir de granos sometidos anteriormente a esfuerzo.

RED.

Un arreglo ordenado de puntos que dividen al espacio en porciones del mismo tamaño, dependiendo de la dirección.

RESISTIVIDAD TERMICA (pr).

Resistividad eléctrica originada por la agitación térmica.

REVENIDO.

Un proceso para dar tenacidad en el cual se calienta la martensita para iniciar una microestructura de ferrita más carburo.

SOBRESATURACION.

Exceso de soluto más alta del límite de solubilidad; la más común se logra por superenfriamiento.

SOBRECALENTAMIENTO.

Calentar un metal o aleación a tan alta temperatura que sus propiedades se dañan.

TEMPERATURA EUTECTICA.

Temperatura de equilibrio, a la cual ocurre la reacción cutéctica, donde una solución líquida se convierte en dos o más sólidos intimamente mezclados al enfriar.

TEMPERATURA EUTECTOIDE.

Temperatura de equilibrio a la cual se da la reacción

eutectoide, en la que una fase sólida (generalmente una solución sólida) se convierte en dos o más sólidos intimamente mezclados al enfriar.

TEMPLADO.

Enfriamiento acelerado por inmersión agitando en agua o acelte.

TENACIDAD.

Capacidad de un metal para absorver energia y deformarse plásticamente antes de fracturarse. Generalmente es medida por la energia absorbida en un ensayo de cargas aplicadas con impacto sobre una barra muescada, pero el área bajo la cuerva Efuerzo-Deformación en el ensayo tensil también es una medida de tenacidad.

TERMISTOR.

Dispositivo semiconductor que es particularmente susceptibles a los cambios en la temperatura, lo cual le permite servir como un medidor muy preciso de la misma.

TRATAMIENTO TERMICO.

Calentar y enfriar un metal o aleación sólida en tal forma que se obtengan las condiciones o propiedades deseadas. En esta definición no se incluye el calentamiento con el solo propósito de trabajar en caliente.