UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE INGENIERIA MECÁNICA

Propuesta de mejora en las instalaciones del departamento de servicios de lavandería en el Hospital General de ISSS.

PRESENTADO POR:

CHRISTIAN FRANCISCO CRUZ BELTRAND

PARA OPTAR AL TITULO DE:

INGENIERO MECÁNICO

CIUDAD UNIVERSITARIA, JULIO DE 2008

UNIVERSIDAD DE EL SALVADOR

RECTOR:
MSc. RUFINO ANTONIO QUEZADA SÁNCHEZ
SECRETARIO GENERAL:
LIC. DOUGLAS VLADIMIR ALFARO CHÁVEZ
FACULTAD DE INGENIERIA Y ARQUITECTURA
DECANO:
ING. MARIO ROBERTO NIETO LOVO
SECRETARIO:
ING. OSCAR EDUARDO MARROQUÍN HERNÁNDEZ
ESCUELA DE INGENIERIA MÉCANICA
ESCUELA DE INGENIEMA MECANICA
DIRECTOR:
ING. JUAN ANTONIO FLORES DIAZ

UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE INGENIERIA MECÁNICA

Trabajo de Graduación previo a la opción al Grado de:

INGENIERO MECÁNICO

Titulo:
Propuesta de mejora en las instalaciones del departamento de servicios de lavandería
en el Hospital General de ISSS.
Presentado por:

CHRISTIAN FRANCISCO CRUZ BELTRAND

Trabajo de Graduación aprobado por:

Docentes Directores:

ING. FRANCISCO ALFREDO DE LEON TORRES
ING. LUIS HUMBERTO GUIDOS S.

Docentes Direct	ores:
	ING. FRANCISCO ALFREDO DE LEON TORRES

Trabajo de Graduación Aprobado por:

ING. LUIS HUMBERTO GUIDOS SERRANO.

DEDICATORIA

EL PRESENTE TRABAJO DE GRADUACIÓN, LO DEDICO A DIOS TODO PODEROSO, POR HABERME ILUMINADO Y ACOMPAÑADO SIEMPRE, PROPORCIONANDOME LA FORTALEZA Y LA SABIDURIA NECESARIA PARA CONTINUAR EN LOS MOMENTOS MÁS DIFICILES DE MI VIDA.

A MIS PADRES, MARÍA DEL CARMEN BELTRAND DE CRUZ Y JOSÉ FRANCISCO CRUZ ENAMORADO, QUIENES CON SU AMOR, COMPRENSIÓN Y AYUDA ECONÓMICA HICIERON POSIBLE QUE LOGRARA CONCLUIR SATISFACTORIAMENTE MIS ESTUDIOS.

A MI ESPOSA MARÍA DELMI DEL CARMEN GARCÍA ORELLANA, POR LA COMPRENSIÓN, PACIENCIA Y CONFIANZA QUE ME HA SABIDO BRINDAR DURANTE EL TRANSCURSO Y FINALIZACIÓN DE MI CARRERA.

A MI HIJA JENNIFER MICHELLE CRUZ GARCÍA, QUIEN FUÉ EL MOTIVO PARA NO QUEBRANTARME EN LOS MOMENTOS DIFICILES DE MI CARRERA.

A MIS HERMANAS, EVELIN YANETT CRUZ BELTRAND, NOLVIA NETTY CRUZ BELTRAND Y PATRICIA DEL CARMEN CRUZ BELTRAND, POR HABER ESTADO CONMIGO SIEMPRE TANTO MORAL COMO ECONOMICAMENTE.

AGRADECIMIENTOS

AGRADESCO A LAS AUTORIDADES DEL INSTITUTO SALVADOREÑO DEL SEGURO SOCIAL POR HABER PERMITIDO DESARROLLAR MI TRABAJO DE GRADUACIÓN EN LAS INSTALACIONES DEL HOSPITAL GENERAL

A EL INGENIERO REYNALDO GONZALEZ JEFE DE MANTENIMIENTO DEL HOSPITAL GENERAL, POR PROPORCIONARME LA INFORMACIÓN NECESARIA PARA EL DESARROLLO DEL TRABAJO.

A EL INGENIERO EDWIN ROMEO ZEPEDA MONCADA, POR HABERME BRINDADO INFORMACIÓN GENERAL EN CUANTO A SISTEMAS DE DISTRIBUCIÓN DE VAPOR.

A EL INGENIERO ROMAGOZA, POR DARME INFORMACIÓN GENERAL SOBRE EQUIPOS DE LAVANDERÍA Y DISEÑO DE SISTEMAS DE DISTRIBUCIÓN DE VAPOR.

AL PERSONAL ADMINISTRATIVO Y DE SERVICIOS DEL HOSPITAL GENERAL DEL ISSS, POR AYUDARME CON LA INFORMACIÓN TÉCNICA DE LOS EQUIPOS DE LAVANDERÍA.

AGRADESCO A MIS ASESORES, INGENIERO FRANCISCO ALFREDO DE LEÓN TORRES Y A ÉL INGENIERO LUIS HUMBERO GUIDOS SERRANO.

INDICE

Introducción.	1
CAPITULO I.	
Información general de las instalaciones	
1.1.1.1 Iluminación Natural y Artificial.	3
1.1.2.1 Normas de iluminación en lavandería.	3
1.2.1.1. Ventilación.	6
1.2.2.1. Ventilación de ambientes hospitalarios.	6
1.2.3.1 .Normas de ventilación para lavanderías.	6
1.2.4.1 Por donde ventilar	6
1.2.5.1. Sistemas óptimos	7
1.3.1.1. Características de las instalaciones.	8
1.3.2.1.Eléctricas.	8
1.3.2.2. Características de la red.	9
1.3.3.1 Espacio.	9
1.3.4.1 Desagües.	10
1.3.5.1. Suministro de vapor.	11
1.3.5.1. Fuentes de agua	14
1.3.6.1. Fuentes de aire comprimido	18
1.4.1.1.Características de los equipos de las instalaciones de lavandería	20
1.5.1.1Demanda de ropa terminada	23
1.6.1.1. Accesibilidad a las instalaciones para la introducción de equipos	24
Cuadro resumen del capitulo I	25

CAPITULO II

Determinación de la capacidad instalada.

2.1.1.1. Calculo de la demanda de vapor.	27
2.1.2.1. Condiciones actuales de operación.	28
2.1.3.1. Producción de vapor	30
2.1.4.1. Áreas de trabajo.	30
2.2.1.1 Demanda de vapor por área industrial.	33
2.2.2.1. Demanda de vapor del departamento de lavandería.	33
2.2.3.1. Demanda de área de central de esterilizaciones.	34
2.2.4.1 Demanda de cocina.	35
2.2.5.1 Demanda de casa de máquinas.	36
2.2.6.1 Demanda de vapor por ambiente.	38
2.2.7.1.Demanda de vapor actual.	40
2.3.1.1. Cálculo de demanda energética.	48
2.4.1.1. Disponibilidad de espacios.	52
2.5.1.1. Cálculo de demanda de agua.	54
2.6.1.1. Demanda de casa de máquinas y lavandería.	54
2.7.1.1. Disponibilidad de drenajes.	55
2.8.1.1. Demanda de aire comprimido.	56
Cuadro Resumen del capitulo II	60
CAPITULO III	
Propuesta de ampliación	
3.1.1.1. Justificación para el dimensionamiento.	61
3.2.1.1. Proyección de la demanda.	66
3.3.1.1. Propuesta de dimensionamiento.	70
3.3.2.1. Cálculo de lavadoras.	71
3.3.3.1. Cálculo de secadoras.	73

3.3.4.1. Planchado plano.	74
3.3.5.1. Secado rotativo.	75
3.4.1.1, Cálculo de calderas.	79
3.4.2.1. Selección de calderas	82
3.4.3.1. Características técnicas de calderas	83
3.4.5.1. Requerimientos de caldera	83
3.4.6.1. Tanque de condensado	84
3.4.6.2. Verificación de capacidad del tanque de condensado	85
3.4.7.1. Chimenea	86
3.4.8.1. Tanque de combustible	87
3.4.8.2. Tanque de diario	87
3.4.8.3. Tanque de almacenamiento	88
3.4.9.1. Separador de purgas	89
3.4.10.1. Equipo suavizador	91
3.4.10.2. Características del suavizador	91
3.4.11.1. Normas para el montaje	92
3.5.1.1. Dimensionamiento de espacio para instalaciones	98
3.6.1.1. Sistema de generación de vapor	105
3.6.2.1 Materiales	105
3.6.3.1. Materiales de unión	105
3.6.4.1. Utilización	106
3.7.1.1. Redes de distribución de vapor	106
3.7.2.1. Calculo del diámetro de la tubería de la instalación de vapor	108
3.7.3.1. Velocidades recomendadas	110
3.7.4.1. Calculo de tuberías de sistema método 1	111
3.7.4.2. Tubería principal	111
3.7.4.3. Consumo de vapor	112
3.7.5.1. Ramales	112
3.7.6.1. Calculo de tuberías de sistema método 2	114
3.7.6.2. Tramo principal	114
3.7.6.3. Ramales	115

116
116
116
117
118
119
120
121
122
122
123
124
125
127
128
128
130
131
131
131
132
132
133
135
135

4.2.5.1. Planchador de rodillo	138
4.2.6.1. Puesta en funcionamiento	139
4.2.6.2. Instrucciones de operación	139
4.3.1.1. Condiciones de seguridad en el servicio de lavandería	141
4.3.2.1. Componentes de seguridad	141
4.3.3.1. Recolección y Transporte	141
4.3.4.1. Proceso de lavado	143
4.3.5.1. Lavado de ropa contaminada	144
4.3.5.2. Secado y planchado	145
4.3.5.3. Almacenamiento	145
4.3.5.4. Traslado	146
4.4.1.1. Bioseguridad	147
4.5.1.1. Riesgos laborales	148
4.6.1.1. Principios de mantenimiento	150
4.7.1.1. Manual de mantenimiento preventivo	150
Formatos	151
4.8.1.1. Costos de equipos y accesorios	171
4.9.1.1. Costo de equipos	173
Conclusiones	175
Recomendaciones	178
Bibliografía	179
Anexos	

Introducción

El hospital general del ISSS, cubre la demanda del 70% de la ropa utilizada para labores asistenciales del asegurado, por lo que se considera el centro de apoyos de lavandería más importante de la institución.

Las instalaciones de dicha área, fueron diseñadas hace nueve años y desde entonces no se han realizado estudios de la capacidad instalada. En los últimos años se ha triplicado la demanda de ropa sucia, lo cual ha generado el desgaste en los equipos de lavandería.

El objetivo de una lavandería, es la de proporcionar ropa limpia y planchada para los pacientes y personal. Las operaciones de dicha área constituyen un importante eslabón en la cadena de cuidados que se deben tomar en cuenta para evitar la propagación de enfermedades contagiosas.

Por lo expuesto anteriormente el presente trabajo trata sobre una: **Propuesta de mejora en las instalaciones del departamento de servicios de lavandería en el Hospital General de ISSS.** Este se encuentra dividido en los siguientes capítulos:

En el capitulo I.

Se plantea la situación actual correspondiente a las instalaciones de lavandería del Hospital General del ISSS, la cual cuenta con dos edificios: Cuarto de máquinas y lavandería.

Se detallan una serie de esquemas, para la identificación de áreas de trabajo, distribución en planta de equipos, sistemas de vapor, sistemas de distribución de agua potable, etc. También se hace una recopilación de información sobre las características técnicas de los equipos en las instalaciones; además se caracterizan condiciones de iluminación y ventilación.

En el capitulo II.

Se determinan las condiciones de consumo energético así como también la capacidad de los diferentes sistemas de distribución de fluidos, que componen las instalaciones de lavandería de dicho hospital. Los sistemas que componen estas instalaciones son: sistema de distribución de vapor, de agua, de energía eléctrica, de aire comprimido entre otros.

Se incluyen también cálculos para la determinación de algunos parámetros, que definen los consumos reales para cada sistema y en particular la instalación de vapor.

Además se presentan datos de consumo de vapor por equipo y una ubicación de cada equipo en las instalaciones.

En el capitulo III.

Se procedió a dimensionar la ampliación de la lavandería del Hospital General del ISSS. Tomando en cuenta la información expuesta en los capitulo I y II. Tambien se consideraron criterios de diseño y se estableció la capacidad de la caldera.

En el capitulo IV.

Se incluyen manuales de operación y mantenimiento de los equipos propuestos; además de normas de seguridad aplicadas a las instalaciones de lavandería según normas mexicanas.

Capitulo I.

Información general de las instalaciones

1.1.1.1. Iluminación Natural y Artificial

La iluminación, en lo que respecta al área industrial, debe tener presente un gran número de luminarias, ya que deben abarcar espacios extensos; también deben poseer características distintas a luminarias convencionales o residenciales como: poseer mayor potencia, brillo, incandescencia y aceptar los cambios bruscos de voltaje. Estos tipos de luminarias se crearon con el fin de facilitar los procesos productivos de distinto trabajos industriales. Además de relacionar la cantidad de luz utilizada con respecto a las actividades realizadas.

• Alumbrado de industrias.

A fin de establecer la iluminación apropiada para una zona industrial, es necesario en primer lugar analizar la tarea visual a desarrollar para determinar la cantidad y tipo de iluminación que proporcione el máximo rendimiento visual que cumpla con la exigencia de seguridad y comodidad. El segundo paso consiste en seleccionar el equipo de alumbrado que proporcione la luz requerida de la manera más satisfactoria.

1.1.2.1. Normas de iluminación en lavandería.

Según el apartado 5.33. del manual de "Normas de lavandería y ropería" del Instituto Salvadoreño del Seguro social (ISSS).

La iluminación será de tipo preferentemente natural o en su defecto artificial blanco no calórico, un 50% de esta debe estar conectada al sistema de emergencia del Centro de Atención así como al menos uno de cada uno de los equipos de la lavandería.

La iluminación natural en las instalaciones de lavandería está compuesta por un área principal en donde se introduce la mayor cantidad de luz, la cual está ubicada en la entrada

de recepción de ropa sucia. También hay una sección de pared hecha de bloque de tipo calavera en donde el ingreso de luz es mínimo.

En la zona de secado se tienen secciones estructurales, las cuales permiten el ingreso directo de la luz, además se tiene una entrada muy grande que permite el ingreso de esta (Ver Anexo 1)¹.

La zona de calderas al igual que el área de secado posee elementos estructurales y una entrada al local, similar a la anterior (Ver Anexo 1)². En cuanto a la iluminación artificial se cuenta con una distribución de lámparas de descarga. Cada unidad cuenta con cuatro lámparas sostenidas en un sistema de soportes metálicos. Se tienen veinticuatro dispositivos de iluminación en total. De estas once funcionan correctamente, cuatro parcialmente y nueve están fuera de servicio.

Tabla 1. Áreas de iluminación por ambiente de trabajo

Zonas de trabajo	Área de iluminación (m²)	Observaciones
		Existen partes de la pared
Casa de máquinas	82.67	que están hechas de ladrillo de fuego en donde hay
		filtración de luz mínima
		Existen partes de la pared
Lavado y recepción de	10.70	que están hechas de ladrillo
ropa	10.70	de fuego en donde hay
		filtración de luz mínima
Sacado y doblado de ropa.	41.88	

² Planta arquitectónica casa de máquinas

-

¹ Planta arquitectónica de lavandería

Fig.1 Acceso, área de entrega de ropa terminada

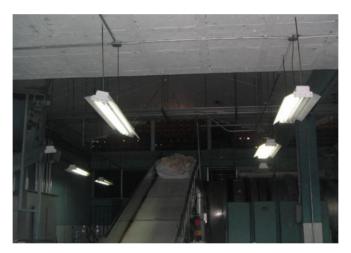


Fig.2 Luminarias en área de recepción y lavado de ropa

• Luminarias.

Tabla 2. Características de luminarias en las instalaciones

Características de luminarias		
Lúmenes	100 lúmenes por vatio	
Voltaje	110 voltios	
Corriente	3.43 amperios	
Potencia	377.3 watts	

1.2.1.1. Ventilación

1.2.2.1. Ventilación de ambientes hospitalarios.

La ventilación o renovación del aire constituye el elemento básico de control; y reducción de la contaminación bacteriológica del aire, única acción verdaderamente eficaz. Estos diversos sistemas de ventilación con menor o mayor grado de complejidad que, estarán indicados según las diferentes zonas del hospital, siendo las principales: a) Ventilación, b) Climatización convencional, c) Ventilación con aire estéril y d) Sistemas de flujo laminar

1.2.3.1. Normas de ventilación para lavanderías.

Según los apartado 5.27 y 5.31, del manual de "Normas de lavandería y ropería" del Instituto Salvadoreño de Seguro social (ISSS).

- El ambiente deberán encontrarse climatizado a una temperatura de +20°C a + 22°C durante todo el año. Además contará con un sistema de ventilación forzada a través de extractores adecuados. Teniendo en cuenta la carga térmica determinada en el área, se ajustará la cantidad de aire extraído del ambiente de trabajo de acuerdo a normas de seguridad e higiene industrial.
- Los productos químicos utilizados durante el proceso de lavado que emanan vapores tóxicos, deberán ser eliminados mediante una chimenea con aireación al exterior. (Alcalinos, detergentes, blanqueadores, neutralizadores, suavizantes, desinfectantes y otros).

1.2.4.1. Por donde ventilar

Cumbreras y partes altas de muros frontones.

Existen variadas formas y accesorios que se pueden utilizar para la ventilación de techumbres: celosías, aleros ventilados, respiraderos de cubierta, cumbreras y otros elementos de acción motriz. No todos aseguran el mejor resultado.

1.2.5.1. Sistemas Óptimos

La mayor eficiencia y óptimo resultado se obtiene al habilitar un Sistema de Ventilación que genere un movimiento efectivo de masas de aire en forma suficiente y homogénea, que comprometa todas las áreas de la cubierta, desde los puntos más bajos hasta zonas más altas del conjunto.

Preferentemente el Ingreso se debe hacer a nivel de Aleros y la Evacuación por las zonas más altas del techo, a nivel de Cumbreras.

En cuanto a ventilación, el edificio de lavandería y casa de máquinas cuenta con varias áreas dispuestas para estos fines, las áreas para iluminación artificial se utilizan también para fines de ventilación, cada equipo cuenta con una salida al exterior del recinto (Ver Anexos 1)³. En el área de calderas se pueden observar tres chimeneas, una por cada caldera. En lavandería se cuenta con un sistema de ductos de área transversal 0.212 mts², estos conectan a seis extractores de gases.

Tabla 3. Áreas de ventilación por ambiente de trabajo

Zonas de trabajo	Área de ventilación (m.²)	Observaciones
		Existen partes de la pared que
Casa de máquinas	101.55	están hechas de ladrillo de
Casa de maquinas		calavera en donde hay filtración
		de aire considerable
		Existen partes de la pared que
Lavado y recepción de ropa	51.32	están hechas de ladrillo de
		calavera en donde hay filtración
		de aire considerable
		Existen partes de la pared que
Secado y doblado de ropa.	102.81	están hechas de ladrillo de
		calavera en donde hay filtración
		de aire considerable

_

³ Planta arquitectónica lavandería y casa de máquinas.

Fig. 3. Entrada a casa de máquinas vista desde el parqueo

1.3.1.1. Características de las instalaciones

1.3.2.1. Eléctricas.

El hospital general está abastecido por diferentes subestaciones, las cuales están numeradas de la 1 a la 7. Una de estas subestación alimenta el área de lavandería y sala de máquinas. Adicional a la subestación se dispone de una planta de emergencia. La acometida de CAESS se introduce por medio de cables subterráneos a 5,000 voltios.

Las líneas de la acometida se llevan a una sala de tableros de control que se encuentra en la casa de máquinas y de aquí se distribuye a las instalaciones correspondientes (Ver Anexos 1)⁴.

-

⁴ Planta arquitectónica casa de máquinas

Fig. 4. Subestación en casa de máquinas

1.3.2.2. Características de la red

El servicio de suministro a la subestación de 225 KVA es trifásico a 5,000 voltios, la subestación cuenta con conexiones combinadas delta estrella, se tiene conexión delta para el primario y el secundario se encuentra conectado en estrella. La conexión para los diferentes equipos es combinada

En cuanto al sistema de soportes de alambrado, la instalación cuenta con una red de tubería conduit colocadas en armazones metálicas, estas se distribuyen en casa de máquinas y en lavandería en donde conecta a un sistema de tableros principales de distribución, de los cuales se alimentan los diferente equipos existentes en las instalaciones.

1.3.3.1. Espacio

Actualmente el espacio disponible para la recepción de ropa sucia, es muy limitado, ya que los equipos existentes ocupan aproximadamente un 90 % de dicho espacio (Ver Anexo 1)⁵. En ciertas épocas del año, la ropa en la recepción se acumula hasta tocar las lámparas de iluminación.

Existe una bodega de ropa, en la cual se efectúan también actividades de doblado. Aquí existe espacio disponible para una posterior utilización, cerca de esta área esta la zona de

⁵ Distribución en Planta de equipos de lavandería

entrega de ropa, la cual esta a tres metros de la recepción de ropa sucia. El espacio es limitado.

En el edificio de casa de máquinas, se cuenta con un área de considerable tamaño la cual no es utilizada y donde se podrían instalar nuevos equipos (Ver Anexo 1)⁶

Tabla 4. Espacio utilizado y disponible en las instalaciones.

Zonas de trabajo	Área total (m.²)	Área ocupada por equipos y otros (m.²)	Observaciones
Casa de máquinas	590.13	469.60	
Lavado y recepción de ropa	210.25	180.11	El espacio esta ocupado casi en su totalidad
Secado y doblado de ropa	603.86	372.65	En esta área es en donde se encuentran algunos equipos que ya están fuera de servicio

1.3.4.1 Desagües

Las instalaciones del área de lavandería en general están provistas de una red de desagües, las cuales se distribuyen en tres zonas:

La primera zona corresponde a la casa de máquinas, en donde se encuentran tres calderas (Ver Anexo 1)⁷, las cuales se detallan en la planta arquitectónica de casa de máquinas. En el piso del área de caldera se observa que tienen un sistema de canales, para evacuar la descarga o purga de las calderas, los cuales desembocan en un canal de desagüe principal el cual esta conecta a un foso de purgas. En este mismo espacio se encuentran los calentadores de agua, los cuales cuentan con un sistema de canalización similar al de las calderas, existen otras alcantarillas que únicamente son utilizadas en caso de emergencia y que forman parte del sistema de aguas lluvias.

⁶ Distribución en planta de equipos de casa de máquinas

⁷ Planta arquitectónica y distribución en planta de equipos de casa de máquinas

En lavandería la mayor cantidad de desagües se encuentran subterráneos, tanto en lavado de ropa como en secado y planchado.

1.3.5.1. Suministro de vapor.

La generación y suministro de vapor para el uso en el hospital General del ISSS, se realiza a través de una central de vapor, la cual consta de 3 calderas horizontales de tubos de fuego; la primera de 300 BHP, la segunda de 200 BHP y la tercera de 150 BHP. La caldera de mayor capacidad es la que se encuentra en línea, mientras las otras dos que están conectadas en paralelo junto a la de 300 BHP, se disponen en stand-by, alternándose cada 6 meses de funcionamiento.

Fig. 5. Caldera de 300 BHP actualmente en línea

La presión máxima de trabajo es de 150 PSIG produciendo 10,350 libras de vapor por hora, con lo que se cubre la demanda.

El vapor generado, es distribuido a presión alta, por medio de una red de tuberías de diámetros y longitudes, como se detallan en el siguiente cuadro.

Tabla 5. Dimensiones de tuberías del sistema de vapor en casa de máquinas⁸

Diámetro nominal (Pulg.)	Longitud de tubería (m)	Tipo	Ambiente	
	Va	por		
6	9.19	Acero al carbón cedula 80		
4	7.03	Acero al carbón cedula 80		
4	5.77	Acero al carbón cedula 80		
6	24.10	Acero al carbón cedula 80	Casa de	
4	21.81	Acero al carbón cedula 80	máquinas	
3	7.5	Acero al carbón cedula 80		
4	0.9	Acero al carbón cedula 80		
1 ½	12.17	Acero al carbón cedula 80		
	Conde	ensado		
1	2.69	Acero al carbón cedula 80		
1 3/4	33.45	Acero al carbón cedula 80	Casa de	
2 1/2	54.07	Acero al carbón cedula 80	máquinas	
3	8.65	Acero al carbón cedula 80	maqumas	
1 ½	15.61	Acero al carbón cedula 80		
Maní-full				
8	4	Acero al carbón cedula 80	Casa de	
0	4	Acero ai carbon ceddia 80	máquinas	

⁸ Ver Anexo 3
Nota: En la tabla 5 se encuentran los valores obtenidos del análisis del plano del "sistema de vapor de casa de máquinas"

Tabla 6. Dimensiones de tuberías del sistema de vapor en lavandería⁹

Diámetro nominal (Pulg.)	Longitud de tubería (m)	Tipo	Ambiente
	Va	por	
6	14.33	Acero al carbón cedula 80	
4	29.32	Acero al carbón cedula 80	
4	44.95	Acero al carbón cedula 80	Lavandería
2	21.15	Acero al carbón cedula 80	Existe una
2	13.48	Acero al carbón cedula 80	junta de
2	9.14	Acero al carbón cedula 80	expansión
2	10.57	Acero al carbón cedula 80	
2	14.88	Acero al carbón cedula 80	
	Conde	ensado	
4	36.69	Acero al carbón cedula 80	
2	28.52	Acero al carbón cedula 80	
1 ½	14.55	Acero al carbón cedula 80	Lavandería
1 ½	8.56	Acero al carbón cedula 80	
1 ½	14.22	Acero al carbón cedula 80	
3/4	22.63	Acero al carbón cedula 80	

Otro aspecto importante es que el vapor que se utiliza en las lavadoras, es evacuado en los drenajes; no hay retorno de condensado en las lavadoras ni en el tren de lavado.

Válvulas y otros. La mayoría de válvulas utilizadas en las instalaciones son:

- Válvulas de Globo
- Válvulas de Compuerta

Nota: En la tabla 6 se encuentran los valores obtenidos del análisis del plano del "sistema de vapor de lavandería"

⁹ Ver Anexo 4

- Válvulas reguladoras de presión. Estas se encuentran antes de cada equipo que trabaja a presión menor que la de caldera, conformando de esta manera las estaciones reguladoras de presión
- Válvulas de seguridad
- Filtros. Permiten la reducción de partículas y suciedad del vapor, que puede ocasionar daños en los equipos.
- Termómetros y manómetros
- Aislamientos térmico.
- Accesorios. Para la interconexión de las líneas de distribución de vapor, se ha utilizado acoples roscados, tales como: codos, tee, camisas, uniones universales, reductores concéntricos, codos laterales, etc.
 - Se cuentan con algunas juntas de expansión, By- Pass, desniveles en el sentido del flujo; además de un código considerable de señalización.
- Las líneas de distribución de retorno de condensado. Sus elementos son de características similares a las expuestas anteriormente tales como: tuberías, filtros, y juntas. El elemento adicional lo constituyen las trampas de vapor que se encuentran colocadas en diferentes puntos del sistema.

1.3.5.1. Fuentes de agua

El suministro de agua potable, para el uso en las instalaciones de lavandería del hospital General del ISSS, se realiza a través de un sistema de cisternas centrales, las cuales constan de 12 cisternas subterráneas interconectadas:

Tabla 7. Dimensiones de cisternas en la red de agua potable

Nº de Cisterna	Volumen (m³)
1	4.74 x 4.52 x 4 = 85.70
2	4.72 x 4.52 x 4 =85.33
3	4.74 x 4.52 x 4 = 85.70
4	4.72 x 4.52 x 4 =85.33
5	4.74 x 3.15 x 4 = 59.47

6	4.72 x 3.15 x4 = 59.22
7	4.74 x 3.15 x 4 = 59.47
8	4.72 x 3.15 x4 = 59.22
9	4.74 x 4.52 x 4 = 85.70
10	4.72 x 4.52 x 4 = 85.33
11	4.74 x 4.52 x 4 = 85.70
12	4.72 x 4.52 x 4 = 85.33

Estas se conectan directamente al sistema de bombeo de todo el hospital general; al pasar por el sistema de bombeo parte del agua es colectada en suavizadores y procesada para la distribución en el hospital, cuarto de máquinas, lavandería y cocina.

La presión máxima de trabajo es de aproximadamente 100 PSI, produciendo entre 183 – 210 galones por minuto (dato tomado del sistema de bombeo a las 12: 15 p.m.), con lo que se cubre la demanda actual.

Fig. 6. Sistema de bombeo del hospital general

El agua suministrada, es distribuida a presión alta por medio de una red de tuberías, de diámetros y longitudes como se detallan en la siguiente tabla.

Tabla 8. Dimensiones de sistemas de tuberías de agua potable en casa de máquinas 10

Diámetro nominal (Pulg.)	Longitud de tubería (m)	Tipo	Ambiente			
		Agua cruda y fría				
4	16.33	Cedula 40, acero galvanizado				
2	36.34	Caño negro cedula 40				
3	4.1	Tubería de hierro galvanizado cedula 40				
6	26.11	Caño negro cedula 40				
3	8.55	Acero galvanizado cedula 40				
4	9.06	Acero galvanizado				
1 ½	2.21	Tubería de PVC clase: 250 PSI	Casa de			
1 ½	12.31	Tubería de acero al carbón cedula 40	Máquinas			
1 ½	16.09	Tubería de PVC clase: 250 PSI				
1 ½	1.7	Tubería de hiero galvanizado				
2	1.76	Acero galvanizado cedula 40				
3	58.53	Acero galvanizado cedula 40				
1 1/4	6.30	Acero al carbón cedula 40				
1 3/4	6.47	Acero al carbón cedula 40				
	Agua caliente					
3	23.89	Acero al carbón cedula 40	Casa de			
2	25.69	Acero al carbón cedula 40	Máquinas			
	Agua de calderas					
1 3/4	17.71	Acero al carbón cedula 40	Casa de			
1 1/4	33.19	Acero al carbón cedula 40	Máquinas			

Ver Anexo 1
Nota: En la tabla 8 se encuentran los valores obtenidos del análisis del plano del "sistema de distribución de agua potable de casa de

Tabla 9. Dimensiones del sistema de tuberías de agua potable en lavandería. 11

Diámetro nominal (Pulg.)	Longitud de tubería (m)	Tipo	Ambiente	
		Agua fría		
4	11.40	Cedula 40, acero galvanizado	Lavandería	
3	39.20	Tubo galvanizado cedula 40	-	
4	20.72	Tubo galvanizado cedula 40	-	
2	5.95	Tubo galvanizado cedula 40	-	
2	4.23	Tubo galvanizado cedula 40	-	
2	3.74	Tubo galvanizado cedula 40	-	
2	4.33	Tubo galvanizado cedula 40	-	
4	50.27	Tubo galvanizado cedula 40	-	
		Agua caliente		
4	69.13	Tubería de cobre Clase: "L"	Lavandería	
2	4.25	Tubería de cobre Clase: "L"		
2	3.76	Tubería de cobre Clase: "L"		
2	4.34	Tubería de cobre Clase: "L"		
Agua cruda				
1 1/4	22.41	Tubo galvanizado cedula 40	Lavandería	
1/2	5.16	Tubo galvanizado cedula 40	Lavanuena	

¹¹ Ver Anexo 1

Nota: En la tabla 10 se encuentran los valores obtenidos del análisis del plano del "sistema de distribución de agua potable de lavandería"

1.3.6.1. Fuentes de aíre comprimido

El suministro de aíre comprimido en las instalaciones de lavandería se hace mediante dos compresores, el primero es un compresor vertical de desplazamiento positivo de dos compresores independientes con 15 HP por motor, el segundo es un compresor vertical en V de 5/8 HP. Este sistema consta de un compresor de desplazamiento positivo del tipo pistón reciprócate con su respectivo motor.

.

El sistema de compresores, suministra una presión máxima de trabajo de 100 PSIG, con lo que se cubre la demanda requerida.

El compresor es conectado a una red de distribución de aíre comprimido, que consta de una red de tuberías, de diámetros y longitudes como se detallan en el siguiente cuadro.

Tabla 10. Dimensiones de sistema de distribución de aíre comprimido, casas de máquinas¹²

	maqunas					
Diámetro nominal (Pulg.)	Longitud de tubería (m)	Tipo	Ambiente			
	Compresor 1					
1 1/2	37.30	Acero al carbón cedula 40	Casa de M máquinas			
	Compresor 2					
3/4	8.59	Acero al carbón cedula 40	Casa de			
1/2	25.36	Acero al carbón cedula 40	Máquinas			

Tabla 11. Dimensiones de sistema de distribución de aire comprimido, lavandería 13

_

¹² Ver Anexo 1

Diámetro nominal (Pulg.)	Longitud de tubería (m)	Tipo	Ambiente
		Compresor	
1/2	19.49	Acero al carbón cedula 40	
3/4	14.98	Acero al carbón cedula 40	
3/4	7.69	Acero al carbón cedula 40	Lavandería
1	3.62		
1 ½	16.48	Acero al carbón cedula 40	
1 1/2	33.43	Acero al carbón cedula 40	

Fig.7. Compresor 2 en casa de máquinas

Fig. 8. Compresor 1 en patio de casa de máquinas

1.4.1.1. Características de los equipos de las instalaciones de lavandería.

• Ambiente: Casa de máquinas

Tabla 12. Características técnicas de calderas instaladas.

Nº	Equipo	Cant.	Características			
1	Caldera	1	Capacidad de Vapor	Faring-rate: 89.5 GPH OIL	Motor Soplador: 10HP	
			Tipo: Horizontal, tubos de	Piloto: A Gas.	Circuito de Control	
			fuego de 3 pasos	Requerimientos Eléctricos	120 volts, 1 PH, 60 Hz,	
			Marca: Cleaver Brooks	Alimentación principal	amp	
			Modelo: CB 100 300 150	220 volts, 3 fase, 60 Hz,	Motor de Bomba de Aceite	
			Capacidad: 300 HP	30.5 amp	115volts,1Fase,	
			Presión Máxima de Vapor:		60Hz,13.8amp	
			150 ST Psig.		Capacidad de Vapor.	
2	Caldera	1	Tipo: Horizontal, tubos de	Entrada:	Capacidad máxima de	
			fuego de 3 pasos	5,277,000TU/Hora	protección de circuito: 148	
			Marca: Cleaver Brooks	Piloto: A Gas	amp	
			Modelo: CB 98 600-150	Requerimientos Eléctricos	Motor Soplador: 7.5 HP	
			Capacidad: 200 HP	Alimentación principal	Circuito de Control	

			Presión Máxima de Vapor: 150 ST Puig Faring-rate: 42 GPH OIL	230volts, 3fases, 60Hz, 37amp Mínima capacidad de circuito 49amp	120volts, 1PH, 60Hz,7 amp Motor de Bomba de Aceite 230volts,3fases,60Hz,7amp
3	Caldera	1	Capacidad de Vapor Tipo: Horizontal, tubos de fuego de 3 pasos Marca: Cleaver Brooks Modelo: CB 100-200 Capacidad:150 HP Presión Máxima de Vapor: 200 ST Puig Faring-rate: 60 GPH OIL	Entrada: 8,369,000 BTU/Hora Piloto: A Gas Requerimientos Eléctricos Alimentación principal 230 volts , 3 fases, 60 Hz, 30 amp Mínima capacidad de circuito 37 amp Capacidad máxima de	protección de circuito: 120 amp Motor Soplador: 10 HP Circuito de Control 120 volts, 1PH, 60Hz, 7amp Motor de Bomba de Aceite 115 volts , 1 fases, 60 Hz, 7amp

Tabla 13. Características técnicas de equipos instalados.

Nº	Equipo	Cant.	Características			
4	Calentador	2	Capacidad del tanque:	Temperatura de trabajo:	Presión máxima de	
			8,000 litros.	60 °C.	trabajo 120psi.	
5	Ventilador	1	Marca:	Temperatura: 350 °f	Tubería: 250 psi	
			Heat EXCHANGER			
			Modelo: UPA-100-1			
6	Compresor1	1	Nº de compresores: 2	Marca: Maratón	Frecuencia: 60 HZ	
			Marca: SAYLOR BEAL	Modelo: 4VC254	Potencia 15 HP	
			MFC CO	TTDX7826 AAL	Velocidad: 1,745 RPM	
			Modelo: UC-PL 4500	Ambiente: 40°C	Voltaje: 208-230 / 460	
			Nº de motores: 2	Tipo: TDR		
7	Compresor2	1	Marca: INGERSOLL	Voltaje: 230 / 460 – 190 /	P.F: 80%	
			RAND TBO	360	Potencia: 3 HP	
			Modelo: NAT L. BD.	Amperaje: 14 / 7 – 11 /	Des: B	
			7403 J	5.5	Clase: R	
			Motor: Baldor	Velocidad: 1,725 / 1,425	Código: A	
			Modelo: spec 366323Y46	RPM		
			FRAME 18 4T SE F1194	Frecuencia: 60 / 50 HZ		
			Potencia: 5/8 HP	NEMA NON: EFF 81.5		
				%		

8	Bomba de	2	Modelo: C41006070	H: 360	Temperatura máxima:
	condensado		P19834	Potencia: 5 HP	250 °F
	Condonsudo		Caudal: 22 GPM	Presión máxima: 300 psi	Velocidad: 3,450 rpm
9	Bomba de	2	Motor	Potencia: 10 HP	Código: H
	condensado		Marca: MARATHON	Velocidad: 1,750 rpm	S.F. 1.15
			Modelo: 4VK215TTD	Frecuencia: 60 HZ	Voltaje: 208 - 230/460
10	Bomba de	2	Marca: FLANKIN	Potencia: 1/2 HP	Frecuencia: 60 HZ
	calentadores		ELECTRIC	Velocidad: 1,725 rpm	Voltaje: 208 – 230/460
			Modelo:		S.F. 1.25

• Ambiente: lavandería

Tabla 14. Características técnicas de equipos en las instalaciones

Nº	Equipo	Cant.	Características Características		
1	Tren de	1	Marca: G.A. BRAUN	Voltaje: 206	Ciclos: 60
	lavado		INC.	Amperaje: 100	Máxima capacidad lbs /
			Modelo: 110 BTW-19		kgs: 110 / 50 por ciclo
			Fase: 3		
2	Lavadoras	3	Marca: G.A. BRAUN	Velocidad de lavado en	Máxima capacidad lbs /
	extractoras		INC.	reversa: 26.5 RPM	kgs: 450 / 204
			Modelo: 400 NMTCP-2	Velocidad de extracción	
			Fase: 3	con contador de reloj: 554	
				/ 227 RPM	
3	Secadoras	3	Modelo: G.A. BRAUN	Corriente: 24 Amp	Tipo de combustible:
			INC.	La máxima capacidad de	vapor a 125 PSI
			Voltaje de entrada: 208	estas máquinas es de: 220	Valúo calórico: 32.8
			Fase: 3	lbs de ropa húmeda	requerimiento de caldera
			Ciclos: 60 HZ	La máxima capacidad en	en HP.
			Carga completa: 67.9	BTU de estas máquinas:	
				200, 000	
4	Secadoras	3	Marca: AMERICAN	Tipo de combustible:	
			DRYER	vapor a 125 PSI	
			Modelo: ADS 200		

1.5.1.1. Demanda de ropa terminada

Según los artículos del manual de "Normas de lavandería y ropería" de el Instituto Salvadoreño de Seguro social (ISSS). Destaca elementos que deben ser considerados en lavanderías hospitalarias, ya que el manejo y operación de estos establecimientos implica riesgos al no ser manipulados adecuadamente:

Artículo 60.- Se define como lavanderías a los establecimientos dedicados a la prestación, para sí o para terceros, del servicio de lavado, reacondicionamiento, desinfección y planchado de todo elemento textil lavable proveniente de los establecimientos hospitalarios. Las mismas deben cumplir con los siguientes requisitos, de acuerdo al marco general indicado en esta misma normativa:

- a. Poseer una Barrera Sanitaria destinada a combatir las infecciones cruzadas en las lavanderías.
- b. Poseer doble entrada, una para acceder al sector de ropa hospitalaria limpia y otra para acceder al sector de ropa hospitalaria sucia.
- c. Contar con la superficie, infraestructura y equipamiento mínimo de acuerdo a las características y necesidades de cada establecimiento de salud, teniendo en cuenta cantidad de camas y tasa de cama caliente.
- d. Poseer un espacio para el reacondicionamiento y/o costura de la ropa hospitalaria con las condiciones y equipamiento mínimo que establezca la reglamentación.
- e. Aplicar las disposiciones de higiene y seguridad del trabajo, sus complementarias y modificatorias.
- f. Desinfección periódica de los pisos e instalaciones.
- g. Programa continuo de análisis bacteriológicos seriados.
- h. Control ambiental de la carga térmica, iluminación, ventilación y nivel sonoro.

Artículo 65.- La barrera sanitaria enunciada debe reunir las siguientes características:

a. Una pared que separe física y funcionalmente a la zona contaminada de la zona limpia.

- b. La carga de la ropa hospitalaria y el desagüe, se realiza en la zona contaminada; la toma de aire y la descarga de la ropa hospitalaria lavada, en la zona limpia.
- c. La zona limpia, tendrá una presurización superior a la zona contaminada.
- d. Los operarios que se desempeñen en la zona contaminada y en la zona limpia, no podrán transitar ni efectuar labor alguna en el área opuesta a la de su tarea.

Fig. 9. Centro de acopio en el estacionamiento del hospital general.

La ropa que se trata en este centro de apoyo, esta dividido en dos categorías generales de lavado, pues de ahí depende el tipo de procedimiento que se le dará, es decir, si se procesará en el tren de lavado-ropa común o en las lavadoras extractoras-ropa contaminada. Esta selección se realiza, en un centro de acopio que se encuentra a 400 mts de lavandería, es ahí donde se recopila la ropa proveniente de los hospitales y luego se transporta en camiones a las instalaciones de lavado. Los contenedores en donde se transporta la ropa no son los mismos ya que existe un sistema de camiones que traslada los bultos.

La demanda promedio de ropa es de aproximadamente 9,200 kilogramos al día, la cual es procesada en las instalaciones y distribuida a los distintos nosocomios de la red del ISSS.

1.6.1.1. Accesibilidad a las instalaciones para la introducción de equipos

Las vías de acceso a las instalaciones están compuestas por una entrada que conecta directamente al parqueo del hospital, la calle tiene un ancho de 6.20 metros, espacio suficiente para el ingreso de equipos de considerable tamaño, las entradas a las

instalaciones se especifican en los planos. Estas cuentan con espacio adecuado para el ingreso de nuevos equipos:

Zona de recepción y lavado de ropa 2.98 X 3.59 mts², ancho de la entrada y Zona de secado y doblado de ropa 2.60 X 3.60 mts², áreas correspondientes a los agujeros de las puerta.

Tabla 15. Resumen del capitulo I

Tabla 15. Resumen del cap Información de las instalaci					
Espacio ocupado por los equipos casa de máquinas	590.13 mts ²				
Espacio ocupado por los equipos lavandería	814.11 mts ²				
Planta arquitectónica	incompleta				
Suministro de vapor	-				
Caldera 1	300 BHP				
Caldera 2	200 BHP				
Caldera 3	150 BHP				
Plano de distribución de vapor	No existe				
Fuentes de agua					
Cisternas	12 con capacidad total distribución				
Cisternas	de183–200 gal/min.				
Plano de distribución agua potable	No existe				
Plano de distribución agua de calderas	No existe				
Plano de distribución agua caliente	No existe				
Aire comprimido					
Compresor 1	15 hp				
Compresor 2	3/8 hp				
Plano de distribución de aire comprimido	No existe				
Procesamiento de ropa					
Demanda de ropa	9,200 kg. / día.				
Plano de distribución en planta de equipos	No existe				
Plano de distribución de químicos para lavandería	No existe				
Equipo de lavandería.					

Tren de lavado	1
Lavadoras extractoras	3
Secadoras rotativas	6
Planchador de rodillo	2
Planchador de forma	

Determinación de capacidad instalada.

2.1.1.1. Cálculo de la demanda de vapor.

La producción de vapor y su utilizacion eficiente, depende en gran parte de los siguientes factores: operación del equipo, estado del mismo, estado de las condiciones de la instalación y de los elementos que intervienen en ella (valvulas, accesorios, dispositivos de control y seguridad).

Con la finalidad de establecer la capacidad instalada de lavandería, se consideran una serie de factores que son esenciales para el cálculo de lo misma:

Producción teórica.

Se refiere a la capacidad nominal de la caldera y esta es establecida por el fabricante del equipo y se expresa en libras/hora.

• Producción real

La capacidad nominal de la caldera es multiplicada por el rendimiento de la caldera este es calculado mediante una relación de evaporación (evaporación real / evaporación equivalente).

Demanda teórica

Es el consumo de vapor de todos los equipos colocados en la instalación de vapor en servicio y fuera de servicio, estos representan la capacidad instalada en función de la maquinaría.

• Demanda real

Es el consumo de vapor de todos los equipos que se encuentran en servicio y que

están conectados en la instalación de vapor.

Eficiencia

La razón entre el calor absorbido por el agua de alimentación, al convertirse en

vapor en la caldera y la energía total disponible del combustible suministrado, es

una medida de aprovechamiento del combustible por la caldera al generar una

determinada cantidad de vapor.

Perdidas.

La energía que no es aprovechada en la producción y distribución del vapor

generado en los sistemas de vapor son esencialmente: perdidas por radiación y

convección en tuberías desnudas, perdidas por fugas de vapor, perdidas por mala

combustión, perdidas por no retornar el condensado.

2.1.2.1. Condiciones actuales de operación

• Presión de trabajo: 110 psi

• Temperatura en la chimenea: 239 °F

• Temperatura del agua de alimentación: 206.6°F

• Temperatura ambiente: 82 °F

• Tiempo de operación: 20 horas/día

Consumo de combustible promedio: 968.0 gal / día

• Eficiencia promedio: 83 %

Registros estadísticos

• Perdidas de calor por aislamiento y fugas de vapor: 2.033E9 btu. / año

• Consumo de combustible diesel: 968.0 gal. / dia.

• Costo de combustible por año: aproximadamente 29,040 dólares

En base al control de consumo y costo de combustible para calderas y plantas de emergencia concerniente a los meses de febrero y marzo de 2007, se tiene que los puntos de mayor consumo entre los meses antes mencionados son:

Tabla 1. Consumo de diesel correspondiente a dos meses

Día	Caldera (BHP)	Consumo (gal. / día)	Costo (\$)				
Dia	Caideia (Biii)	Consumo (gai. / uia)	C03ι0 (ψ)				
Del 01 al 28 de febrero de 2007							
03/02/2007	300	918.5	2,178.22				
04/02/2007	300	683.0	1,619.73				
07/02/2007	300	965.0	2,456.31				
23/02/2007	300	653.0	1,555.05				
24/02/2007	300	652.0	1,552.67				
27/02/2007	300	856.5	2,039.67				
	Del 01 al 31 de	marzo de 2007					
11/03/2007	300	711.0	1,798.05				
17/03/2007	300	915.5	2,288.75				
19/03/2007	<u>300</u>	<u>968.0</u>	<u>2,420.00</u>				
22/03/2007	300	912.5	2,209.98				
25/03/2007	300	682.0	1,651.74				
28/03/2007	300	770.5	1,866.07				

De los valores anteriores se selecciona el correspondiente al 19/03/2007 el cual es de 968.00 galones /día. ¹⁴ (Ver anexo 1)

2.1.3.1 Producción de vapor

-

¹⁴ Control de consumo de combustible de abril y marzo de 2007

Se verificó en la información obtenida de la auditoria energética que: Según el fabricante de la caldera el consumo aproximado de combustible aceite liviano (diesel) es de 88.50 galones/hora (338.8 litros/hora) trabajando a plena carga.

1. Capacidad instalada:

- 1 caldera de 300 BHP
- 1 caldera de 200 BHP, 1 caldera de 150 BHP.

2. Producción teórica:

- Caldera de 300 BHP = 10,350 lbs / h
- Calderas de 200 y 150 BHP = 6,900+5175=12,075 lbs / h

3. Producción real:

Se obtiene de acuerdo a la siguiente expresión:

$$F_e = \frac{We}{Wr}$$

En donde

Fe: Factor de evaporación

We: (Evaporación equivalente)

Wr: (Evaporación real)

- Caldera de 300 BHP = 10,350 / 1.114 = 9,291.0 lbs / h
- Calderas de 200 y 150 BHP = 6,900 + 5,175 = 12,075 / 1.114 = 10,840 lbs / h

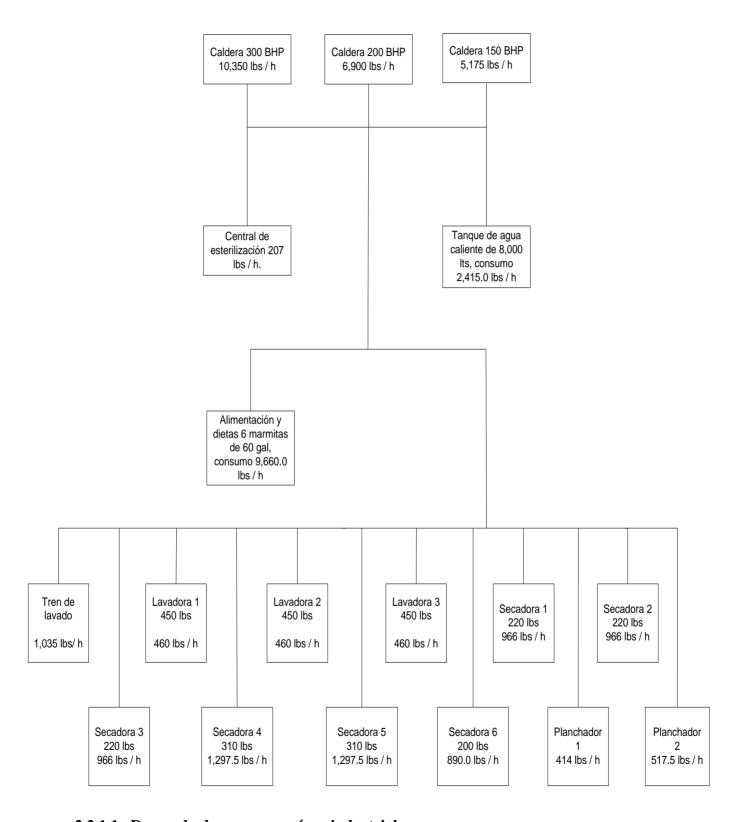
2.1.4.1. Áreas de trabajo identificadas

Las áreas industriales de consumo de vapor en las instalaciones del hospital, están localizadas y distribuidas según su tipo de función de servicio,

Las áreas identificadas son las siguientes:

1) Cocina.

a) Cocina (marmitas).


2) Lavandería.

- a) Lavado
- b) Secado
- c) Planchado
- 3) **Arsenal** (esterilización y desinfectado)
 - a) Esterilizadores (autoclaves tanto de vapor mas c)

4) Calentadores.

 a) Calentadores de uso general en las instalaciones de lavandería, casa de máquinas y cocina.

En el siguiente esquema se plantea la distribución actual del consumo de vapor.

2.2.1.1. Demanda de vapor por área industrial.

Para establecer el consumo real de vapor diario de los equipos de cada ambiente se utilizó el archivo de una auditoria energética realizada en el año 2005; de la cual se ha tenido acceso.

En la presente se incluyen el consumo de vapor por equipo de acuerdo al tiempo de operación, consumo de combustible de caldera, cálculos en el sistema de vapor, etc.

2.2.2.1 Demanda de vapor del departamento de lavandería.

El departamento de lavandería presenta el servicio de lavado, secado y planchado; de los diferentes artículos de vestir de los pacientes, así como protectores de cama y accesorios (cobijas, almohadas y manteles).

La instalación de lavandería, se encuentra a la altura del primer nivel del edificio nuevo del hospital general.

Los equipos identificados son los siguientes:

Tabla 2. Datos correspondientes al consumo de vapor de los equipos del área de lavandería.

iavanueria.							
Equipo	Cantidad	Ciclos de secado	Modelo	Tiempos de trabajo horas	Consumo de vapor (lbs/hora)		
		Sec	ado				
Secadoras Braun	3	63		20.0	2,898.0		
Secadora American Dryer	1	63	ADS 200	20.0	890.0		
Secadora American Dryer	2	63	ADS 310	20.0	2,415.0		
		Planc	chado				

Secador de	1			480 diarias	517.5	
rodillo viejo	1			400 diarias	317.3	
Secador de					414.0	
rodillo	1			480 diarias		
nuevo						
		Lav	ado			
Lavadoras						
de ropa	3				1,346	
Braun						
Tren de						
lavado	1				1,035	
Braun						

2.2.3.1. Demanda de área de central de esterelizaciones.

La ubicación de la instalación de arsenal se encuentra en primer nivel del edificio del hospital general, el servicio que presta.

Los equipos identificados son los siguientes:

Tabla 3. Datos correspondientes al consumo de vapor de los equipos del área de Central de esterilización.

Equipo	Cantidad	Modelo	Periodos de trabajo	Consumo de vapor (lbs./hora.)		
Arsenal (Central de esterilización)						
Autoclave	2	SR-24 FMCV	90 min.	420		

2.2.4.1. Demanda de cocina (alimentación y dieta).

La ubicación del área de cocina, esta junto a las instalaciones de lavandería a la altura de la primara planta del edificio nuevo del hospital general, su función es preparación de alimentos para las siguientes instancias: Hospital Medico Quirúrgico, 1º de Mayo, Policlínico Arce, Hospital Oncología, Hospital General, Servicios de Apoyo, Alimentación y Dietas, Sección de Lavandería, Mantenimiento y Central de Esterilizaciones.

Es importante señalar que en esta institución el área de servicios de alimentación esta parcialmente concesionada.

El total de raciones correspondientes al mes de marzo es de 138,539 las cuales se presentan en la grafica siguiente:

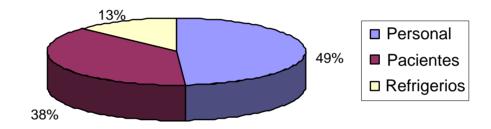


Grafico 1. Porcentajes de raciones del mes de marzo de 2007.

Los equipos identificados son los siguientes:

Tabla 4. Datos de consumo de vapor en Alimentación y Dietas.

	Equipo	Cantidad	Modelo	Tiempos de	Consumo de	
--	--------	----------	--------	------------	------------	--

¹⁵ Informe mensual de raciones servidas a personal y pacientes

-

¹⁵(Ver anexo 2)

			trabajo	vapor (lbs./hora)					
	Alimentación Y Dieta								
Marmitas	6		8:30 – 4:30	1,449.0					
			En otro horario						
			no funcionan						
			las 6						

2.2.5.1. Demanda de casa de máquinas

Las instalaciones de casa de máquinas se encuentran ubicadas junto a las instalaciones de lavandería, a la altura del primer nivel del edificio del hospital general.

Los equipos que registran consumo de vapor en esa área, son los calentadores de agua, los cuales se especifican a continuación.

Tabla 5. Datos de consumo de vapor en casa de máquinas

Equipo	Cantidad	Modelo	Tiempos de trabajo	Consumo de vapor (lbs/hora)			
Casa de máquinas							
Calentadores	2		20 horas	4,830			
			alternándose				
			cada 6 meses				

Tabla 6. Demanda de vapor por equipo

N°	Equipo	Ubicación	Presión de Operación (psig)	Demanda de vapor (BHP-H)
1	Tren de lavado	26	110	30.00
2	Lavadora 1	28	110	13.00
3	Lavadora 2	27	110	13.00
4	Lavadora 3	27	110	13.00
5	Secadora 1	31	110	28.00
6	Secadora 2	30	110	28.00
7	Secadora 3	29	110	28.00
8	Secadora 4	36	110	35.00
9	Secadora 5	40	110	35.00
10	Secadora 6	44	110	26.00
11	Secador de rodillo nuevo	42	110	12.00
12	Secador de rodillo viejo	39	110	15.00
13	Marmita 1	61	20	7.00
14	Marmita 2	72	20	7.00
15	Marmita 3	82	20	7.00
16	Marmita 4	62	20	7.00
17	Marmita 5	73	20	7.00
18	Marmita 6	83	20	7.00
19	Auto clave 1		60	6.0
20	Auto clave 2		60	6.0
21	Calentador 1	13	110	70.0
22	Calentador 2	14	110	70.0

2.2.6.1. Demanda de vapor por ambiente

Tabla 7. Porcentaje de demandad de vapor por ambiente con todos los equipos en servicio

Ambiente	Ubicación	Demanda de vapor	Porcentaje
Ambiente	Obleacion	(lb/hora)	%
Lavandería	Lavandería B 9,522.0		69.0
Alimentación y dieta	С	1,449.0	11.0
Central de		207.0	2.0
esterilización			
Casa de máquinas	A	2,415.0	18.0
Total:		14,007.0	

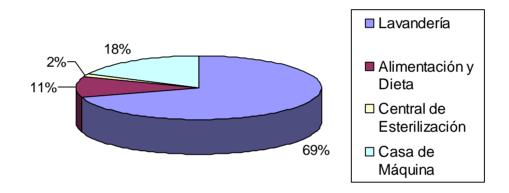


Grafico 2. Demanda de vapor por ambiente de trabajo

Determinación de cantidad de horas de trabajo en las instalaciones

El Consumo de vapor en BHP de acuerdo al tiempo de trabajo de los equipos durante un día es:

De 4:30 a.m. a 5:30 a.m. los equipos son: 4 marmitas, 3 secadoras de ropa American Dryer y 3 secadoras de ropa Braun. El consumo es de 191 BHP-hora.

De 5:30 a.m. a 7:00 a.m. los equipos que trabajan son: 1 marmita, 3 secadoras de ropa American Dryer y 3 secadoras de ropa Braun. El consumo es de 170 BHP-hora.

De 7:00 a.m. a 8:30 a.m. Los equipos que trabajan son: 2 marmitas, 3 secadoras de ropa American Dryer y 3 secadoras de ropa Braun, tren de lavado y 3 lavadoras de ropa Braun. El consumo es de 237 BHP-hora.

De 8:30 a.m. a 4:30 p.m. Los equipos que trabajan son: 6 marmitas, 3 secadoras de ropa American Dryer y 3 secadoras de ropa Braun, tren de lavado, 3 lavadoras de ropa Braun, planchador de rodillo nuevo. El consumo es de 265 BHP-hora.

De 4:30 p.m. a 6:30 p.m. Los equipos que trabajan son: 3 secadoras de ropa American Dryer, 3 secadoras de ropa Braun, tren de lavado y 3 lavadoras de ropa Braun. El consumo es de 223 BHP-hora.

De 6:30 p.m. a 12:30 a.m. Los equipos que funcionan son: 1 marmita, 3 secadoras de ropa American Dryer, 3 secadoras de ropa Braun, tren de lavado y 3 lavadoras de ropa Braun. El consumo es de 230 BHP-hora.

De 12:30 a.m. a 4:30 a.m. Los equipos que funcionan son: 3 secadoras de ropa American Dryer, 3 secadoras de ropa Braun. El consumo es de 163 BHP-hora.

Tabla 8. Demanda de vapor en el 2005 (BHP)

Equipo	Lavador	Tren de		Planchador	,	Auto	Demanda
Hora	as	lavado	Secadoras	de rodillo	Marmita	Clave	Total
4:30 a.m. a			180		28		208
5:00 a.m.							
5:30 a.m. a			180		7		187
7:00 a.m.							
7:00 a.m. a	39	30	180		14		263
8:30 a.m.							
8:30 a.m. a	39	30	180		42		291
4:30 p.m.							
4:30 p.m. a	39	30	180				249
6:30 p.m.							
6:30 p.m. a	39	30	180		7		256

12:30 a.m.				
12:30 a.m.	 	180	 	 180
a 4:30 a.m.				

2.2.7.1. Demanda de vapor actual

Desde el 2005 hasta ahora, se han efectuado algunos cambios en el horario de operación de los equipos de lavandería, pues debido a el aumento de la demanda de ropa terminada, el tren de lavado en particular trabaja eventualmente las veinticuatro horas del día; pues la producción diaria de ropa terminada es mayor que la de las lavadoras extractoras. Una de las lavadoras extractoras esta fuera de servicio.

En el área de planchado y doblado de ropa, los equipos no están siendo utilizados por disposiciones de la gerencia de esa área, aunque según las normas para las instalaciones de lavandería del tipo hospitalarias es imprescindible el uso de estos equipos.

2.2.7.2. Demanda teórica:

Tabla 9. Consumo de vapor normal en las instalaciones de lavandería (BHP) según equipos disponibles

Equipo/ Hora	Lavadora	Tren de lavado	Secadora	Planchador de rodillo	Marmita	Auto Clave	Calentadores	Consumo Total
4:30			180	27	28			235.0
a.m.								
5:00			180	27	28			235.0
a.m.								
5:30			180	27	28			235.0
a.m.								
6:00			180	27	7			214.0
a.m.								
6:30			180	27	7			214.0

a.m.								
7:00	39	30	180	27	7		70.0	353.0
a.m.								
7:30	39	30	180	27	14		70.0	360.0
a.m.								
8:00	39	30	180	27	14	6.0	70.0	366.0
a.m.								
8:30	39	30	180	27	14		70.0	366.0
a.m.								
9:00	39	30	180	27	42]	70.0	394.0
a.m.								
9:30	39	30	180	27	42		70.0	394.0
a.m.								
10:00	39	30	180	27	42		70.0	394.0
a.m.								
10:30	39	30	180	27	42	6.0	70.0	394.0
a.m.								
11:00	39	30	180	27	42		70.0	394.0
a.m.								
11:30	39	30	180	27	42		70.0	394.0
a.m.								
12:00	39	30	180	27	42		70.0	394.0
m.								
12:30	39	30	180	27	42		70.0	394.0
p.m.								
1:00	39	30	180	27	42	6.0	70.0	394.0
p.m.								
1:30	39	30	180	27	42		70.0	394.0
p.m.								
2:00	39	30	180	27	42		70.0	394.0
p.m.								

2:30	39	30	180	27	42		70.0	394.0
p.m.								
3:00	39	30	180	27	42		70.0	394.0
p.m.								
3:30	39	30	180	27	42	6.0	70.0	394.0
p.m.								
4:00	39	30	180	27	42		70.0	394.0
p.m.								
4:30	39	30	180	27	42		70.0	394.0
p.m.								
5:00	39	30	180	27			70.0	352.0
p.m.								
5:30	39	30	180	27		6.0	70.0	352.0
p.m.								
6:00	39	30	180	27			70.0	352.0
p.m.								
6:30	39	30	180	27			70.0	352.0
p.m.								
7:00	39	30	180	27	7		70.0	359.0
p.m.								
7:30	39	30	180	27	7	6.0	70.0	359.0
p.m.								
8:00	39	30	180	27	7		70.0	359.0
p.m.								
8:30	39	30	180	27	7		70.0	359.0
p.m.								
9:00	39	30	180	27	7		70.0	359.0
p.m.								
9:30	39	30	180	27	7	6.0	70.0	359.0
p.m.								

10:00	39	30	180	27	7		70.0	359.0
p.m.								
10:30	39	30	180	27	7		70.0	359.0
p.m.								
11:00	39	30	180	27	7		70.0	359.0
p.m.								
11:30	39	30	180	27	7	6.0	70.0	359.0
p.m.								
12:00	39	30	180	27	7		70.0	359.0
m.								
12:30	39	30	180	27	7		70.0	359.0
a.m.								
1:00		30	180	27			70.0	313.0
a.m.								
1:30		30	180	27		6.0	70.0	313.0
a.m.								
2:00		30	180	27			70.0	313.0
a.m.								
2:30		30	180	27			70.0	313.0
a.m.								
3:00		30	180	27			70.0	313.0
a.m.								
3:30		30	180	27			70.0	313.0
a.m.								
4:00		30	180	27			70.0	307.0
a.m.								

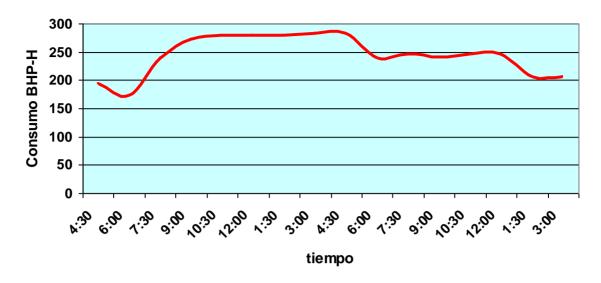


Grafico 3. Demanda teórica de vapor según equipos instalados

2.2.7.3. Demanda real:

Tabla 10. Consumo de vapor normal en las instalaciones de lavandería (BHP) según equipos en servicio

Equipo/ Hora	Lavadora	Tren de lavado	Secadora	Planchador de rodillo	Marmita	Auto Clave	Calentador	Consumo Total
4:30			180		28			208.0
a.m.								
5:00			180		28			208.0
a.m.								
5:30			180		28			208.0
a.m.								
6:00			180		7			187.0
a.m.								
6:30			180		7			187.0
a.m.								
7:00	26	30	180		7		70.0	313.0
a.m.								

7:30	26	30	180	 14		70.0	320.0
a.m.							
8:00	26	30	180	 14	6.0	70.0	219.0
a.m.							
8:30	26	30	180	 14		70.0	219.0
a.m.							
9:00	26	30	180	 42		70.0	354.0
a.m.							
9:30	26	30	180	 42		70.0	354.0
a.m.							
10:00	26	30	180	 42		70.0	354.0
a.m.							
10:30	26	30	180	 42	6.0	70.0	354.0
a.m.							
11:00	26	30	180	 42		70.0	354.0
a.m.							
11:30	26	30	180	 42		70.0	354.0
a.m.							
12:00	26	30	180	 42		70.0	354.0
m.							
12:30	26	30	180	 42		70.0	354.0
p.m.							
1:00	26	30	180	 42	6.0	70.0	354.0
p.m.							
1:30	26	30	180	 42		70.0	354.0
p.m.							
2:00	26	30	180	 42		70.0	354.0
p.m.							
2:30	26	30	180	 42		70.0	354.0
p.m.							

3:00	26	30	180	 42		70.0	354.0
p.m.							
3:30	26	30	180	 42	6.0	70.0	354.0
p.m.							
4:00	26	30	180	 42		70.0	354.0
p.m.							
4:30	26	30	180	 42		70.0	354.0
p.m.							
5:00	26	30	180	 		70.0	312.0
p.m.							
5:30	26	30	180	 	6.0	70.0	312.0
p.m.							
6:00	26	30	180	 		70.0	312.0
p.m.							
6:30	26	30	180	 		70.0	312.0
p.m.							
7:00	26	30	180	 7		70.0	319.0
p.m.							
7:30	26	30	180	 7	6.0	70.0	319.0
p.m.							
8:00	26	30	180	 7		70.0	319.0
p.m.							
8:30	26	30	180	 7		70.0	319.0
p.m.							
9:00	26	30	180	 7		70.0	319.0
p.m.							
9:30	26	30	180	 7	6.0	70.0	319.0
p.m.							
10:00	26	30	180	 7		70.0	319.0
p.m.							

10:30	26	30	180	 7		70.0	319.0
p.m.							
11:00	26	30	180	 7		70.0	319.0
p.m.							
11:30	26	30	180	 7	6.0	70.0	319.0
p.m.							
12:00	26	30	180	 7		70.0	319.0
m.							
12:30	26	30	180	 7		70.0	319.0
a.m.							
1:00		30	180	 		70.0	286.0
a.m.							
1:30		30	180	 	6.0	70.0	286.0
a.m.							
2:00		30	180	 		70.0	286.0
a.m.							
2:30		30	180	 		70.0	286.0
a.m.							
3:00		30	180	 		70.0	286.0
a.m.							
3:30		30	180	 		70.0	286.0
a.m.							
4:00		30	180	 		70.0	286.0
a.m.							

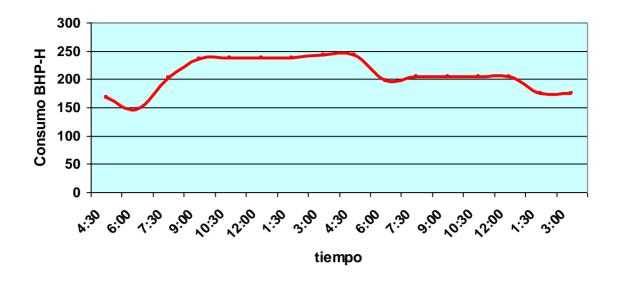


Grafico 4. Demanda de vapor real de equipos en servicio.

2.3.1.1. Cálculo de demanda energética

El cálculo del consumo de energía eléctrica se hizo en base a las lecturas del medidor del servicio de CAESS (contador), el cual se encuentra en las instalaciones de casa de máquinas (Ver anexo 1)¹⁶

Método de cálculo:

Se identificaron las horas donde se estimó un mayor consumo de energía a través del mayor número de equipos que estén demandando de la red. Las horas que se tomaran para este cálculo son horas diurnas desde las 7 a.m. hasta las 7 p.m.

¹⁶ Ubicación de subestación en casa de máquinas.

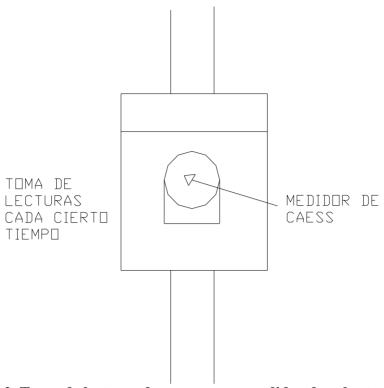


Figura 2. Toma de lecturas de consumo en medidor de subestación.

Tabla 11. Consumo de energía eléctrica de subestación

Hora		sumo por fase K	Total KW-H	
Horu	A	В	С	Total IXW II
8:00 a.m.	1,159.4	6,889.7	1,387.2	9,436.3
8:30 a.m.	1,159.4	6,889.7	1,387.2	9,436.3
9:00 a.m.	1,159.4	6,889.7	1,387.2	9,436.3
9:30 a.m.	1,159.4	6,889.7	1,387.2	9,436.3
10:00 a.m.	1,159.4	6,889.7	1,387.2	9,436.3
10:30 a.m.	1,159.4	6,889.7	1,387.2	9,436.3
11:00 a.m.	1,159.4	6,889.7	1,387.2	9,436.3
11:30 a.m.	1,158.9	6,888.4	1,386.5	9,433.8
12:00 m.	1,158.9	6,888.4	1,386.5	9,433.8
12:30 p.m.	1,158.9	6,888.5	1,386.5	9,433.9
1:00 p.m.	1,158.9	6,888.5	1,386.5	9,433.9

1:30 p.m.	1,158.9	6,888.5	1,386.5	9,433.9
2:00 p.m.	1,159.4	6,890.6	1,387.2	9,437.2
2:30 p.m.	1,159.4	6,890.6	1,387.2	9,437.2
3:00 p.m.	1,159.4	6,890.6	1,387.2	9,437.2
3:30 p.m.	1,159.4	6,890.6	1,387.2	9,437.2
4:00 p.m.	1,159.4	6,890.6	1,387.2	9,437.2
4:30 p.m.	1,159.4	6,890.9	1,387.2	9,437.5
5:00 p.m.	1,159.4	6,891.1	1,387.2	9,437.7
5:30 p.m.	1,159.4	6,891.1	1,387.2	9,437.7
6:00 p.m.	1,159.4	6,891.1	1,387.2	9,437.7
6:30 p.m.	1,159.4	6,891.1	1,387.2	9,437.7

Con los valores obtenidos en la tabla anterior se trazaron curvas identificando los picos de consumo en el transcurso del día.

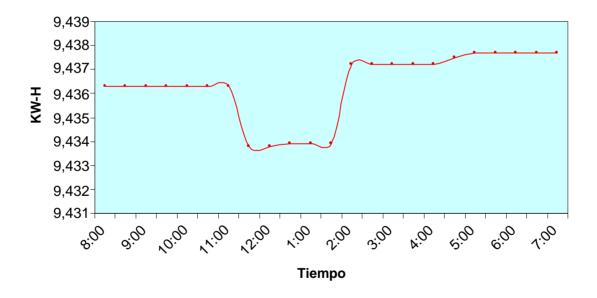


Grafico. 5. Picos de demanda correspondientes a una jornada laboral.

La demanda correspondiente a las instalaciones de lavandería, esta sostenida por una subestación de 225 KVA y con un consumo por fase como se muestra en las graficas siguientes.

Esta instalación eléctrica abastece los edificios de lavandería y casa de máquinas respectivamente

Demanda fase A

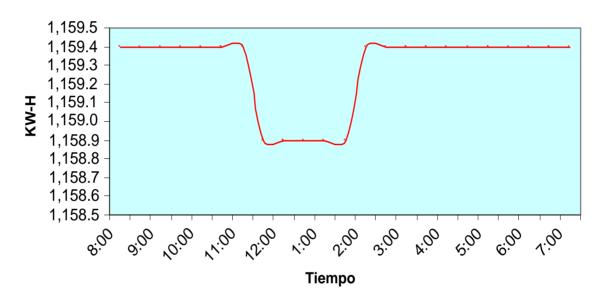
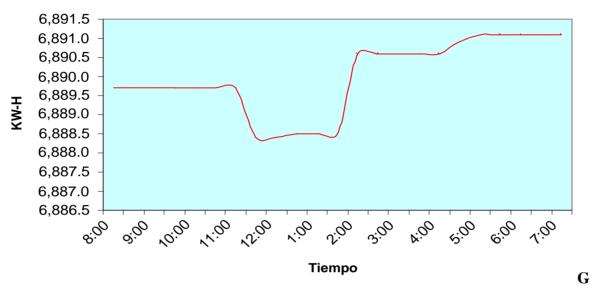



Grafico. 6. Demanda de fase A.

Demanda fase B

rafico. 7. Demanda de fase B.

Demanda fase C

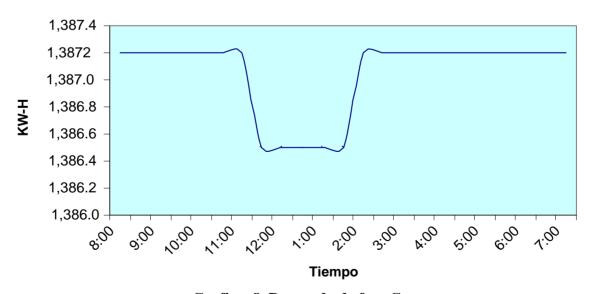


Grafico. 8. Demanda de fase C.

2.4.1.1. Disponibilidad de espacio (sala de máquinas y lavandería)

Como se menciona en el capitulo I^{17} el espacio en algunas áreas es limitado, ya que los equipos existentes ocupan buena parte de las instalaciones. Se cuenta con dos áreas: casa de máquinas y lavandería.

Casa de máquinas.

En este sector actualmente se encuentran los siguientes equipos:

Tabla 12. Espacio utilizado y disponible en las instalaciones.

1 abia 1	Tabla 12. Espacio utilizado y disponible en las histalaciones.							
Zonas de trabajo	Área total (ft.²)	Equipos	Área ocupada por equipos y otros (ft.²)					
Casa de máquinas	6,352.11	3 calderas, 1 subestación, 2	5,054.73					
		calentadores de agua, 2 tanques						
		de condensado, 2 plantas de						
		emergencia, 2 compresores, 2						
		tableros principales,						
		1 tanque de diesel y 1 suavizador						

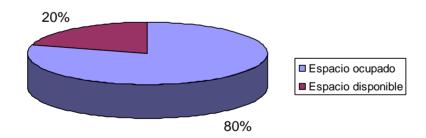


Grafico 9. Disponibilidad de espacio en casa de máquinas.

_

¹⁷ Tema 3.2 Características de espacio, Capitulo I pagina 9

Lavandería

En este ambiente se tienen los siguientes equipos instalados:

Tabla 13. Espacio utilizado y disponible en las instalaciones.

	Tabia 13. Espació utilizado y disponible en las instalaciones.						
Zonas de trabajo	Área total (ft.²)	Equipos	Área ocupada por equipos y otros (ft.²)				
Lavado y	2,263.11	3 lavadoras extractoras, 1 tren de	1,938.69				
recepción de		lavado continuo, dispensario de					
ropa		químicos, 1 banda transportadora					
		y 2 paneles principales.					
Secado y	6,578.58	6 secadoras, 1 prensa hidráulica,	4,011.17				
doblado de ropa		sistema de traslado de ropa					
		lavada a secadoras, 2 máquinas					
		de doblado de ropa, 2 secadoras					
		de rodillo y 1 tanque de aire					
		comprimido.					
Total	8,841.69		5,949.86				

Grafico 10. Disponibilidad de espacio en lavandería.

2.5.1.1. Cálculo de la demanda de agua

El sistema de bombeo, que abastece las instalaciones de lavandería es parte de la red que suministra el hospital general del ISSS. Esta situación hace que la obtención del consumo de esta área no sea posible, ya que no se cuenta con un medidor de flujo de ese ramal. El cálculo de este consumo se hizo a partir de los datos de consumo que se obtuvieron de los equipos que están conectados a este sistema.

2.6.1.1. Demanda de casa de máquinas y lavandería

• Casa de máquinas

Tabla 14. Demanda de agua en casa de máquinas.

Equipo	Consumo (GPM).
Caldera de 300 BHP	64.0
Caldera de 200 BHP	
Caldera de 150 BHP	
Total	64.0

• Lavandería.

Tabla 15. Demanda de agua en lavandería.

Cantidad	Equipo	Consumo (GPM)		
		Agua fría	Agua caliente	Total
1	Tren de lavado	24.0		24.0
3	Lavadora extractora	15.0	27.0	42.0
3	Secadoras Braun	6.0		6.0
3	American Dryer			
Т	Cotal	45.0	27.0	72.0

Alimentación y Dieta.

Tabla 16. Demanda de agua en alimentación y dieta.

Cantidad	Equipo	Consumo
6	Marmitas	Solo el ocupado para cocinar
		sin estimar.

2.7.1.1. Disponibilidad de drenajes

En cuanto a la disponibilidad de drenajes, existe una red de distribución de aguas servidas, provenientes de los equipos de las instalaciones de lavandería. Aun cuando no se posee un plano de ubicación del sistema de desagüe se proporciona en la planta arquitectónica de casa de máquinas y lavandería una ubicación de algunos tragantes que son parte de este sistema.

Ya que en estas instalaciones, se cuenta con un sistema de drenajes los cuales se conectan a la red de aguas negras, se estima que la disponibilidad de desagües en la instalación de nuevos equipos es suficiente ya que se podría implementar una red de distribución de aguas servidas que desemboquen en la red de aguas negras.

2.8.1.1. Demanda de aire comprimido

La demanda correspondiente al aire comprimido como se mencionó en el capitulo I está sostenida por dos compresores:

Compresor 1. Este equipo tiene periodos intermitentes de operación de acuerdo a la demanda de las instalaciones de lavandería; los periodos de operación son los que se muestran a continuación:

Tabla 17. Consumo de aire comprimido compresor de compresor 1.

Hora	Tiempo activado (min.)	Tiempo desactivado (min.)	Producción de aire diaria	
	(mm.)	(mm.)	Pie. ³	
Compresor: Co	Compresor: Compresor 1, Presión: 125 PSI, Desplazamiento de aire: 51 CFM			
7:00 a.m.	4	1	51(4) = 204	
7:30 a.m.	2	2	51(2) = 102	
8:00 a.m.	3	1	51(3) = 153	
8:30 a.m.	3	1	51(3) = 153	
9:00 a.m.	2	2	51(2) = 102	
9:30 a.m.	2	2	51(2) = 102	
10:00 a.m.	2	2	51(2) = 102	
10:30 a.m.	2	2	51(2) = 102	
11:00 a.m.	2	1	51(2) = 102	
11:30 a.m.	3	3	51(3) = 153	
12:00 m	7	6	51(7) = 357	
12:30 p.m.	6	1	51(6) = 306	
1:00 p.m.	13	8	51(13) = 663	
1:30 p.m.	3	1	51(3) = 153	
2:00 p.m.	28	23	51(28) = 1,428	
2:30 p.m.	28	23	51(28) = 1,428	
3:00 p.m.	3	3	51(3) = 153	
3:30 p.m.	3	3	51(3) = 153	
4:00 p.m.	3	3	51(3) = 153	
4:30 p.m.	3	2	51(3) = 153	
5:00 p.m.	3	2	51(3) = 153	
5:30 p.m.	3	1	51(3) = 153	
6:00 p.m.	2	3	51(2) = 102	
6:30 p.m.	2	3	51(2) = 102	
7:00 p.m.	2	3	51(2) = 102	

Compresor 2. Este equipo funciona en las siguientes horas:

Tabla 18. Consumo de aire comprimido de compresor 2.

Hora	Activado	Desactivado	Producción de aire diaria Pie. ³	
Compresor: Co	Compresor: Compresor 2, Presión: 120 PSI, Desplazamiento de aire: 11 CFM			
7:00 a.m.	X		330	
7:30 a.m.	X		330	
8:00 a.m.	X		330	
8:30 a.m.	X		330	
9:00 a.m.	X		330	
9:30 a.m.	X		330	
10:00 a.m.	X		330	
10:30 a.m.	X		330	
11:00 a.m.	X		330	
11:30 a.m.	X		330	
12:00 m	X		330	
12:30 p.m.	X		330	
1:00 p.m.	X		330	
1:30 p.m.	X		330	
2:00 p.m.	X		330	
2:30 p.m.	X		330	
3:00 p.m.	X		330	
3:30 p.m.	X		330	
4:00 p.m.	X		330	
4:30 p.m.	X		330	
5:00 p.m.	X		330	
5:30 p.m.	X		330	
6:00 p.m.	X		330	
6:30 p.m.	X		330	
7:00 p.m.	X		330	

Según la información recopilada en el periodo de tiempo antes especificado, y la información proporcionada por los operarios de las instalaciones, se ha identificado que este equipo funciona las veinticuatro horas del día.

ESQUEMA DE UBICACIÓN DE EQUIPO EN LAS INSTALACIONES HACIA EL PARQUEO

COLINDA CON BOULEVARD JUAN PABLO II¹⁸

-

¹⁸ Ver plano completo del las instalaciones hospitalarias.

Tabla 19. Resumen del capitulo II

Información general		
Producción de vapor caldera 300 BHP	10,695.0 kg. / h.	
Producción de vapor real caldera 300 BHP	9,291.0 kg. / h.	
Consumo de vapor total	6,354.0.00 kg. / h.	
Consumo de combustible	968.0 gal. / día.	
Espacio disponible en casa de máquinas	388.0 mts ²	
Espacio disponible en casa de máquinas	890.0 mts ²	
Consumo de agua	136.0 g / min.	
Porcentaje de utilización de caldera.	98.0 %	
Consumo de energía eléctrica	9,437.0 Kw hora.	
Horas de trabajo	20.0	

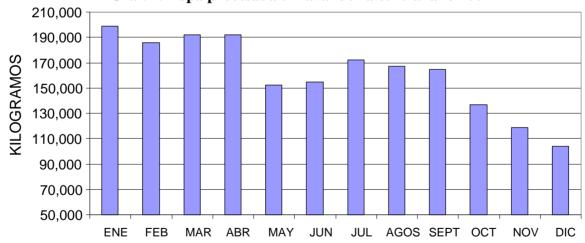
Capitulo III.

Propuesta de ampliación.

3.1.1.1 Justificación para el dimensionamiento

Es importante identificar la capacidad de procesamiento de ropa, que se tiene en lavandería actualmente, ya que mediante esta información se trazará una proyección que determinará el nivel necesario para un procesamiento en los próximos diez años. Este cálculo consistirá en la identificación de la demanda esperada de los mega proyectos que concluiran en los próximos años.

Los mega proyectos se refieren a la ampliación y construcción de nuevas instalaciones hospitalarías; denominadas unidades médicas. Algunas de ellas contaran con los servicios de lavandería independiente, en donde se procesará un porcentaje de la ropa sucia, mientras que el resto se llevará a la lavandería central; por otra parte las unidades médicas que no cuenten con este servicio se integrarán totalmente a las instalaciones centralizadas.


Es importante aclarar que actualmente parte de las nuevas unidades médicas (mega proyectos) ya se sirven de la lavandería, pero se consideran para el cálculo porque seran ampliadas; aun cuando no se pueda establecer en que medida se ampliaran en funcion de la demanda de ropa, ya que la información obtenida hasta el momento es unicamente en cuanto a infraestructura.

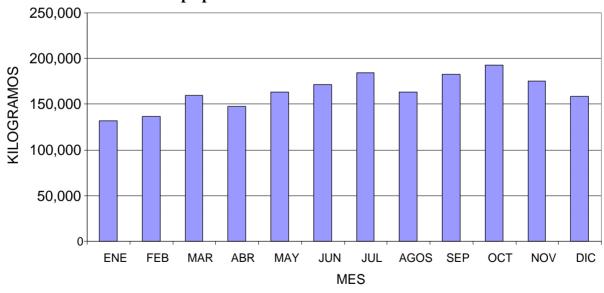
Antecedentes de la demanda en los últimos cinco años:

Tabla. 1. Demanda de ropa correspondiente al año 2002¹⁹

Tabla. 1. Demanda de ropa correspondiente al ano 2002							
Meses	Demanda (Kilogramos)						
Enero	198,916						
Febrero	185,885						
Marzo	192,048						
Abril	191,739						
Mayo	152,430						
Junio	154,741						
Julio	172,230						
Agosto	167,081						
Septiembre	164,719						
Octubre	136,648						
Noviembre	118,649						
Diciembre	104,146						
Total	1,939,232						
Media de consumo	161,603						

Graf. 1. Ropa procesada en lavandería central año 2002

De Enero a Abril se lavó y secó ropa a los Hospitales de Santa Ana y Especialidades


 $^{^{\}rm 19}$ Tabla 1, Datos proporcionados por el ISSS

- A partir del mes de Julio se empezó a dar servicio de lavado y secado a las unidades médicas del área metropolitana de San Salvador
- La disminución de los últimos 4 meses del año se debe a la huelga.

Tabla 2. Demanda de ropa correspondiente al año 2003²⁰

Tubia 2. Demanda de 10pa correspondiente di uno 2005							
Meses	Demanda (Kilogramos)						
Enero	131,565						
Febrero	136,704						
Marzo	160,008						
Abril	147,417						
Mayo	163,711						
Junio	171,209						
Julio	184,916						
Agosto	163,620						
Septiembre	182,599						
Octubre	192,709						
Noviembre	175,625						
Diciembre	158,816						
Total	1,968,899						
Media de consumo	164,075						

Gaf. 2. Ropa procesada en lavandería central año 2003

-

²⁰ Tabla 2, Datos proporcionados por el ISSS

Tabla. 3. Demanda de ropa correspondiente al año 2004²¹

Tabla. 3. Demanda de Topa correspondiente ai ano 2004						
Meses	Demanda (Kilogramos)					
Enero	164,146					
Febrero	165,418					
Marzo	188,028					
Abril	175,211					
Mayo	204,432					
Junio	211,470					
Julio	204,174					
Agosto	185,950					
Septiembre	222,213					
Octubre	252,520					
Noviembre	250,945					
Diciembre	230,447					
Total	2,454,954					
Media de consumo	204,580					

Graf. 3 Ropa procesada en lavandería central año 2004

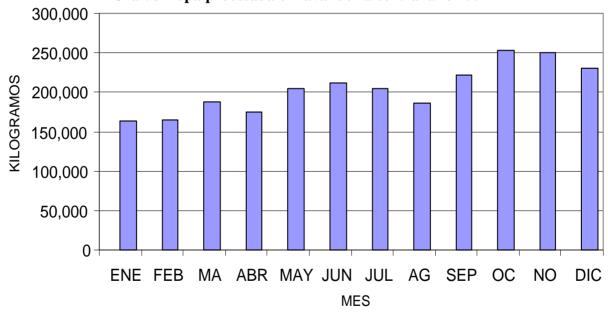
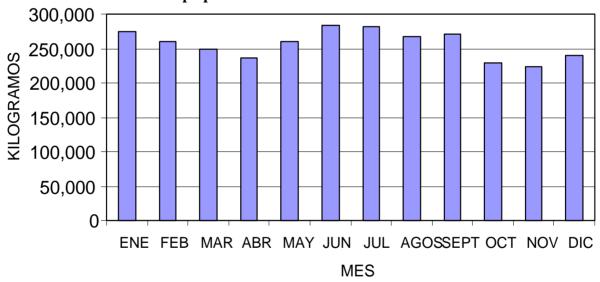
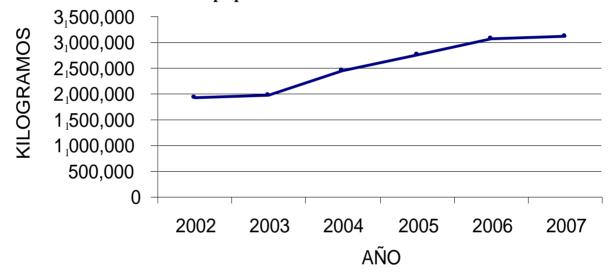



Tabla 4. Demanda de ropa correspondiente al año 2006²²

 $^{^{21}}$ Tabla 3, Datos proporcionados por el ISSS

Meses	Demanda (Kilogramos)			
Enero	274,795			
Febrero	260,789			
Marzo	248,498			
Abril	236,718			
Mayo	259,306			
Junio	284,227			
Julio	282,125			
Agosto	267,588			
Septiembre	270,122			
Octubre	229,377			
Noviembre	224,070			
Diciembre	239,191			
Total	3,076,806			
Media de consumo	256,401			

Graf. 4. Ropa procesada en lavandería central año 2006


3.2.1.1. Proyección de la demanda.

 $^{^{\}rm 22}$ Tabla 4, Datos proporcionados por el ISSS

Tabla 5. Demanda correspondiente a los últimos cinco años

Año	Demanda (Kilogramos)
2002	1,939,232
2003	1,968,899
2004	2,454,954
2005	2,765,880
2006	3,076,806
2007	3 ₁ 387,732

Graf. 5. Ropa procesada en los últimos cinco años

Para proyectar la demanda se debe obtener la ecuación de la línea recta que representa la tendencia de la producción de ropa para los próximos diez años. La ecuación tiene la forma siguiente:

$$y = mx + b$$

Donde:

y= Variable dependiente o "Kilogramos de ropa".

m= Pendiente de la recta.

x= Variable independiente o "año"

b= Intercepto de la recta con el eje Y.

Del Grafico anterior se obtiene la información para el cálculo de la pendiente, se tomaran los últimos dos años por representar un incremento en condiciones establecidas de consumo:

$$m = \frac{\Delta Y}{\Delta X}$$

$$m = \frac{3076806 - 3169110.2}{2007 - 2006}$$

$$m = 92304.2$$

$$m = 92304.2$$
; $b = -182085379.1$

Por lo tanto la ecuación de la recta es:

$$Y = 92304.2 X - 182085379.1$$

Donde:

Y= Kilogramos de ropa

m = 92304.2

X= Año de producción.

b= - 182, 085,379.1, valor tomado de la producción anual.

Sustituyendo valores en "x" para los años de proyección se obtienen los siguientes datos:

Tabla 6. Proyección para los próximos diez años

Año	Demanda (Kilogramos)
2008	3, 261, 414.4
2009	3,353,718.5
2010	3,446,022.7
2011	3,538,326.9
2012	3 ₁ 630,631.1
2013	3,722,935.3
2014	3,815,239.4
2015	3,907,543.6
2016	3,999,847.8
2017	4,092,151.9

5,000,000 4,000,000 2,000,000 1,000,000 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 AÑO

Graf. 6. Producción proyectada para los próximos diez años

Para los próximos años se espera la integración de las nuevas unidades médicas en el área metropolitana como son: Zacamil, Soyapango, Ilopango, Apopa y Santa Anita. Las cuales sumaran una cantidad de ropa servida en las instalaciones centrales de lavandería.

Para el cálculo de la demanda de estas unidades se considerarán de nivel uno, es decir su correspondiente demanda será la calculada para un hospital de nivel uno, aun cuando algunas de ellas contaran con lavandería propia, la cual cubrirá una parte pequeña de la demanda de dicha unidad por lo que siempre se servirán de la lavandería central.

En la determinación de la generación de ropa servida, se tiene que el número de camas para un hospital de nivel uno es de 50 camas; si empleamos un factor de consumo para efectos de diseño según normas IMSS adaptadas a nuestro país, se tiene 16 libras/cama-día equivalente a 7.26 Kilogramos/cama-día y empleando la siguiente expresión para la determinación del factor de consumo:

$$F.C = \frac{kgs \times dia}{numero - camas}$$
 23

De la expresión anterior obtenemos la demanda por día

Producción de ropa: (7.26)(50) = 363 kilogramos al día

En un año se tiene:

363(30) (12) = 130,680 kilogramos en un año. Pero como se tienen cinco unidades médicas, el resultado lo multiplicamos por cinco lo que da un total de 653,400 kilogramos en un año, a este resultado se le sumara la demanda máxima actual obteniéndose una demanda estimada de:

4,092,151.9+653,400 = 4,745,551.9 kilogramos en el año 2017.

En un dia se tiene 13,001.5 kilogramos de ropa.

En el siguiente grafico se demuestra la tendencia de producción desde el año 2002 hasta una proyección de diez años, asi mismo se presenta el limite de produccion actual.

_

²³ Pelerin, Milnor Corporation P.O. Box. 400 Kenner Luisiana, <u>Manual Para El Dimensionamiento De Equipos.</u>

Se puede observar en el Grafico que se está trabajando aproximadamente al limite de la capacidad para la que fué diseñada la lavandería.

3.3.1.1. Propuesta de dimensionamiento.

La ubicación del departamento de lavandería debe estar en relación con las áreas a las cuales sirve dentro del hospital, pero su diseño debe estar orientado de modo que bajo ningún momento pase ropa limpia por las áreas sucias o que la ropa sucia pase por áreas limpias.

Pero es de suma importancia ubicar la lavandería cerca de la sala de máquinas, a efectos de estar muy cerca de la caldera, quien es la que suministrará el vapor de consumo.

En el caso de que se tenga una red de hospitales que estén muy próximos conviene pensar en tener un departamento centralizado de lavandería y un eficiente sistema de distribución.

La demanda para la cual fué diseñada la lavanderia es de 7,200 kg por dia, para ser utilizada en turnos de 12 horas pero la demanda ha aumentado en los ultimos años y junto con ello se han prolongado los tiempos de trabajo y el deterioro de los equipos. Se cálcula apartir de los datos anteriores la produccion de ropa para 20 horas de trabajo que son las que actualmente se tienen:

12 horas
$$\longrightarrow$$
7,200 ki \log ramos

20 horas
$$\longrightarrow X$$

Resulta que es de 12,000 kg de ropa, menos un 15% por deterioro de los equipos. Tenemos entonces 10,200 kg que corresponden a la demanda máxima que se procesa actualmente en lavandería. Si consideramos un lapso de 8 horas diaras, para efectos de mantenimiento preventivo la demanda se tiene de la siguiente manera:

12 horas
$$\longrightarrow$$
7,200 ki \log ramos

16 horas
$$\longrightarrow X$$

Nos resulta una demanda de 9,200 kilogramos que corresponde al dato de demanda promedio, la diferencia entre la demanda proyectada y la demanda actual para 16 horas de trabajo es:

$$13,001.5 - 9,200 = 3,801.5$$
 kilogramos por dia

3.3.2.1. Cálculo de lavadoras

Esta área debe estar diseña de tal modo que la ropa sucia no se cruce con la ropa limpia, aunque se utilice la misma máquina, por lo que se debe establecer según normas una zona blanca y una zona gris en donde la zona blanca será para la ropa limpia y la gris para la ropa sucia.

En cuanto a los sistemas de alimentación de agua tibia, se debe diseñar el sistema de tal modo que el proceso de lavado se inicie con agua a 35 °C para que quite las manchas de

sangre y luego aumentar la temperatura gradualmente a 71° y 80 °C, siempre y cuando la

fórmula utilizada sea la adecuada.

La duración del ciclo de lavado es de 30 a 45 minutos. A efectos de cálculos de

dimensionamiento en el uso y operación de los equipos se puede tomar el tiempo de una

hora, en la cual ya están incluidos los tiempos muertos.

El mejor criterio a considerar es si ya se tiene las características técnicas de los equipos,

pues a partir de estas se pueden realizar los diseños correspondientes en cuento a

dimensionamiento de estos equipos. En la actualidad existen máquinas que lavan y

centrifugan de una sola vez por lo que no hay que considerar un área diferente para tal fin.

Si consideramos lavadoras extractoras con una capacidad de 204.0 kg / ciclo.

Considerando un promedio de dos horas con treinta minutos por ciclo tomando en

cuenta el procedimiento para un tipo de ropa que requiera ese tiempo de lavado

Asumiendo una eficiencia de proceso de 95%.

Para un promedio de 16 horas

Número de ciclos en el dia según modelo de lavadora = 16 horas / 2.5 horas = 6.4

aproximadamente 7 proceso en el dia

Aplicando la ecuación:

$$T = \frac{w}{Cl \times Ef}$$
 24

Donde:

T: Ciclos de lavado en el dia

²⁴ Pelerin, Milnor Corporation P.O. Box. 400 Kenner Luisiana, Manual Para El Dimensionamiento De

Equipos.

W: Cantidad de ropa a lavar

Cl: Capacidad de la lavadora

Ef: Eficiencia de operación.

Despejando para capacidad de lavadora tenemos:

$$Cl = \frac{w}{T \times Ef} = \frac{3,801.5}{7 \times 0.95} = 571.7 \text{ kg}$$

$$lavadoras = \frac{571.7}{204.0} = 2.8 \approx 3 \ lavadoras$$

Se proponen 3 lavadoras de este tipo por efectos de mantenimiento preventivo y de fallo de equipos ya que con 3 lavadoras se le daria cobertura a la demanda que se espera para las proyecciones propuestas. En el caso de fallar los equipos de lavanderia se tendran que aumentar los turnos de operación de los equipos.

3.3.3.1. Cálculo de secadoras

Normalmente se acostumbra tener un sistema de secado del tipo rotativo, lo suficiente para secar lo establecido anteriormente. Para efectos de dimensionamiento se debe considerar un tiempo de ciclo de 30 minutos incluyendo el tiempo muerto. Es recomendable colocar esta sección entre el área de lavado y la ropería

Planchado. Se debe diseñar el sistema para poder planchar dos tipos de ropa, la lisa y la de forma, para tal caso se debe tener en cuenta la cantidad total a secar. Normalmente la mayor cantidad a planchar es la ropa grande como sabanas; para ello se debe tener en cuenta lo siguiente:

- 1. La planchadora de dos rodillos tiene una capacidad aproximada de 68.04 kg/hora.
- 2. La planchadora de cuatro rodillos tiene una capacidad 113.40 kg/hora.

3. La planchadora de seis rodillos tiene una capacidad de 136.08 kg/hora.

El planchado de forma puede hacerse con plancha eléctrica o planchadoras de vapor El acabado de los diferentes tipos de ropa requieren de secado en tómbolas, planchado plano y planchado de forma, siendo los porcentajes estándares los siguientes:

- Planchado de ropa blanca y lisa 70%.(Planchado plano)
- Secado 22%. toallas, batas, pijamas(Secado de tómbolas)
- Planchado de forma 8%, uniformes de médicos de enfermeras.

De acuerdo a las condiciones evaluadas en el diseño de la lavandería actual no se considero el planchado de forma por la utilización de mucho recurso humano, siguiendo esta tendencia de diseño tenemos:

- Planchado de ropa blanca y lisa 60%.(Planchado plano)
- Secado 40%. toallas, batas, pijamas(Secado de tómbolas)

3.3.4.1 Planchado plano

- Se tiene una demanda de ropa de 3,801.5 kg al día.
- Planchado plano = 3,801.5 (0.6) = 2,280.9 kg al día.
- Una eficiencia del 90 %

Aplicando la ecuación:

$$T = \frac{w}{Cl \times Ef}$$

Donde:

T: Ciclos de secado en el dia

W: Cantidad de ropa a secar

Cl: Capacidad de la secadora

Ef: Eficiencia de operación.

Despejando para capacidad de lavadora tenemos:

$$Cl = \frac{w}{T \times Ef} = \frac{2,280.9}{12 \times 0.90} = 211.2 \ kg$$

$$Planchadores = \frac{211.2}{113.4} = 1.9 \approx 2 \ Planchadores$$

Se plantean dos planchas de cuatro rodillos con una capacidad de producción de 113.4 kg/hora.

3.3.5.1. Secado rotativo

- Si consideramos lavadoras extractoras con una capacidad de 91.0 kg / ciclo.
- Se tiene una demanda de ropa de 3,801.5 kg al día.
- Planchado plano = 3,801.5 (04) = 1,520.6 kg al día.
- Una eficiencia del 90 %
- Considerando según normas un tiempo por ciclo de 30 minutos en 16 horas tenemos 12 turnos en el día

Aplicando la ecuación:

$$T = \frac{w}{Cl \times Ef}$$

Donde:

T: Ciclos de secado en el dia

W: Cantidad de ropa a secar

Cl: Capacidad de la secadora

Ef: Eficiencia de operación.

Despejando para capacidad de lavadora tenemos:

$$Cl = \frac{w}{T \times Ef} = \frac{1,520.6}{12 \times 0.90} = 140.8 \text{ kg}$$

$$\sec adoras = \frac{140.8}{91.0} = 1.5 \approx 2 \ \sec adoras$$

Se plantean una secadora rotativa con una capacidad de producción de 91.0 kilogramos/hora.

Según la experiencia que se ha tenido en el ISSS en cuanto a estos sistemas se tiene que la mayor cantidad de ropa es secada en las secadoras rotativas, por lo que la maquinaria debe ser capaz de procesar el cien por ciento de la ropa.

Secado rotativo

- Se tiene una demanda de ropa de 3,801.5 kg al día.
- Planchado plano = 3,801.5 kg al día.
- Una eficiencia del 100 %
- Considerando según normas un tiempo por ciclo de 30 minutos en 16 horas tenemos 32 turnos en el día

Aplicando la ecuación:

$$T = \frac{w}{Cl \times Ef}$$

Donde:

T: Ciclos de secado en el dia

W: Cantidad de ropa a secar

Cl: Capacidad de la secadora

Ef: Eficiencia de operación.

Despejando para capacidad de lavadora tenemos:

$$Cl = \frac{w}{T \times Ef} = \frac{3,801.5}{12 \times 0.9} = 352 \text{ kg}$$

$$\sec adoras = \frac{352}{91.0} = 3.9 \approx 4 \sec adoras$$

Se plantean 4 secadoras rotativas con una capacidad de producción de 91.0 kg/hora.

En este caso se plantea un planchador de cuatro rodillos con una capacidad de producción de 113.4 kg/hora.

Según la tendencia de diseño para las instalaciones del ISSS se considera este diseño en donde las secadoras rotativas tienen la capacidad de procesar la producción total de ropa lavada.

• Cálculo de calentador de agua.

Tabla. 7. Resumen de características del calentador de agua

Cantidad	Equipo	Flujo de agua (gal / hora)				
		Agua fría	Agua caliente	Total		
3		900.0	1,620.0	2,520.0		
3						
Т	otal	900.0	1,620.0	2,520.0		

En el cálculo de las calderas se utilizarán las siguientes ecuaciones:

Vapor requerido =
$$(Ma \times Cpa \times \Delta T)/Qlat$$

En Donde:

Ma: Masa de agua a calentar en una hora en lbs. / gal.

Cpa: Calor específico a presión constante para el agua = 1 BTU / lbs. °F.

Qlat: Calor latente del vapor para el agua = 888.8 BTU / lbs.

 ΔT : (Temp f – temp i) = (180 - 77) = 103 °F.

f: Factor de conversión = 8.33 lbs. / gal.

 $Ma = Flujo de agua caliente \times f$

 $Ma = 1,620.0 \times 8.33 = 13,494.6 \ lbs/hora$

 f_1 = Factor de almacenamiento = 0.9.

 f_2 = Factor de demanda = 0.9.

Total de agua a calentar = 1,735.0 gal.

Almacenaje = total agua a calentar $\times f_1 \times f_2 = (1,735.0) (0.9) (0.9) = 1,405.0 \text{ gal.}$

Vapor requerido = $(13,495.0 \times 1 \times 103)/888.8 = 1,563.8 \approx 1,564.0$ *lbs/hora*

Vapor requerido BHP = 1,564.0/34.5 = 45.33

Conclusión:

Para la selección del equipo requerido tenemos que los valores obtenidos como tal, no son comercializables por lo que se aproximarán de acuerdo a los modelos existentes en el mercado y de acuerdo al vapor requerido; también se tomará en cuenta la capacidad de almacenaje:

Tabla. 8. Características de calentador de agua

Almacenaje	Producción	Vapor requerido
galones	Gal. / hora	en BHP.
1,500.0	1,800.0	50.

 $Ma = 1,800.0 \times 8.33 = 14,994.0 \ lbs/hora$

Vapor requerido = $(14,994.0 \times 1 \times 103)/888.8 = 1,737.6$ *lbs/hora*

3.4.1.1. Cálculo de calderas.

Según incremento de demanda

En el cálculo de las calderas se utilizarán las siguientes ecuaciones: ²⁵

Capacidad de caldera = $(Ct \times fs + Ct \times fs \times Pt) fe$

En donde:

Ct: Consumo total de vapor en BHP.

fs: Factor de simultaneidad.

fe: Factor de evaporación.

Pt: Perdidas en tuberías.

Capacidad de calderas en BHP.

Considerando que para efectos de diseño se tiene:

Ct: 194 BHP.

fs : 0.7

fe : 1.114

Pt: 5 %

Capacidad de caldera = $(194 \times 0.7 + 194 \times 0.7 \times 0.05)1.114 = 158.8 \ BHP \cong 159.0 \ BHP$

Se proponen dos calderas de 150 BHP.

²⁵ Ministerio de salud pública. Ing. Romagoza. <u>Recopilación de información para el dimensionamiento de calderas.</u>

Según sobrecarga de equipos.

Para el cálculo de las calderas se utilizaron las siguientes ecuaciones: ²⁶

Capacidad de caldera = $(Ct \times fs + Ct \times fs \times Pt) fe$

En donde:

Ct: Consumo total de vapor en BHP.

fs: Factor de simultaneidad.

fe: Factor de evaporación.

Pt: Perdidas en tuberías.

Capacidad de calderas en BHP.

Considerando que para efectos de diseño se tiene:

Ct: 600 BHP.

fs: 0.7

fe : 1.114

Pt: 5 %

Capacidad de caldera = $(600 \times 0.7 + 600 \times 0.7 \times 0.05)1.114 = 491.27$ BHP $\cong 491.0$ BHP

Se proponen dos calderas de 450 BHP.

De acuerdo a lo expuesto en el capitulo II, en donde se determinó la capacidad instalada y el cálculo anterior sobre la capacidad de caldera para los equipos de la propuesta se ha determinado que el sistema de distribución de vapor actual; el cual trabaja en su totalidad correspondiente a un consumo de vapor de 12,213.0 lbs. / hora. No tolera el incremento de carga de vapor de los equipos de la propuesta; los cuales necesitan una caldera de 150 BHP con una producción de vapor de 5,175.0 lbs. / hora. Sumando un total de 17,388.0 lbs. / hora., lo cual excede la capacidad de las calderas actualmente instaladas.

²⁶ Ministerio de salud pública. Ing. Romagoza. <u>Recopilación de información para el dimensionamiento de</u> calderas.

Tabla. 9. Consumo de vapor en las instalaciones actuales de lavandería (situación sin

proyecto v con proyecto).

	Demanda de vapor	Demanda de vapor		
Ambiente	sin proyecto	con proyecto		
	(lb/hora)	(lb/hora)		
Lavandería	8,612.0	12,683.0		
Alimentación y	1,449.0	1,449.0		
dieta	1,447.0	1,449.0		
Central de	378.0	378.0		
esterilización				
Casa de máquinas	256.0	1,994.0		
1		·		
Total:	10,695.0	16,504.0		

De acuerdo a la auditoria energética realizada en el Hospital General del ISSS el sistema de distribución de vapor presenta una serie de perdidas las cuales deberán ser corregidas para la implantación de los nuevos equipos, estas se presentan a continuación:

- 3. Cambiar todas las trampas que no evacuen el condensado.
- 4. Cambiar todas las trampas que dejen pasar el vapor.
- Cambiar la posición de los filtros de horizontal a vertical para evitar las bolsas de condensado
- 6. Cambiar las válvulas de los sistemas de trampeo que dejen pasar vapor, que tengan fugas en los vástagos o en las bridas (flanges).
- 7. Cambiar las válvulas de retensión (check) que no sellen o dejen pasar vapor.
- 8. Las trampas que están mal instaladas se deben instalar en forma adecuada para que puedan evacuar el condensado tan pronto se forme.

- 9. En la línea de alimentación de vapor a las lavadoras de ropa Braun se les debe instalar una trampa para retornar el condensado que se forme mientras no utilicen vapor.
- Cambiar todos los accesorios galvanizados o de hierro negro que se encuentran en tos sistemas de trampeo, en las líneas de distribución de vapor y retormo de condensado.
- 11. Cambiar todos los accesorios que tengan fugas.
- Eliminar las fugas en los serpentines de las secadoras de ropa Braun y American Dryer.
- 13. Instalar aislamiento a las tuberías que no lo tienen.
- 14. Cambiar las válvulas de purga de fondo de la caldera de 300 BHP.
- 15. Eliminar todas las tuberías que no son utilizadas o en su defecto instalar válvulas de corte para aislar la tubería innecesaria.
- 16. Cada tanque debe tener su respectiva tubería de alimentación de vapor con sus respectivas válvulas de corte, esto es porque un tanque satisface la demanda de agua caliente.
- 17. Se debe separar la tubería de alimentación de vapor de Alimentación y Dietas con la de Lavandería, ya que no preparan dietas las 24 horas. Y así durante el tiempo que no ocupen vapor cerrar la válvula de alimentación de vapor.
- 18. Se deben de separar las tuberías de alimentación de vapor de los diferentes equipos de Lavandería, ya que no todos tienen el mismo horario de operación.
- 19. A la tubería de alimentación de vapor de Arsenal se le deben cambiar las mangueras y las trampas, ya que no son las apropiadas para este uso y porque además tienen dos años de estar fuera de operación.
- 20. Analizar el cambio de diesel a aceite No. 6 (bunker), ya que el ahorro que tendrían en el año es sustancial. En El Salvador las calderas de mayor capacidad que utilizan diesel llegan hasta 70 BHP.

- 21. Capacitar al personal de mantenimiento para que ellos conozcan la importancia de brindarles un adecuado mantenimiento a las trampas, cambiar válvulas o accesorios que tengan fuga.
- 22. Implementar un plan de mantenimiento preventivo a las trampas.

3.4.2.1. Selección de caldera.

De acuerdo al calculo de caldera establecido anteriormente se concluye que para suplir la demanda es requerido la utilización de dos caladeras de 150 BHP pero como en estas instalaciones se cuenta con un sistema de tres calderas 300, 200, 150 BHP respectivamente se propone la utilización de una caldera de 150 BHP con la cual se harán arreglos junto con las ya instaladas para generar la capacidad requerida en las instalaciones

3.4.3.1 Características técnicas de caldera.

Tabla. 10. Características técnicas de calderas²⁷

	D	imensiones		Mínimo de espacio				Consumo	
Capacidad				Giro de	Giro de	Remoción	Remoción	aproximado de	
ВНР	Longitud	Anchura	Altura	puerta	puerta	del tubo,	del tubo,	combustible	
	m	m	m	trasera	Aceite liviano				
				m	m	m	m	lts / hora	
150	5.0	1.9	2.1	0.8	1.7	3.5	3.2	170	

3.4.5.1. Requerimientos de caldera

_

 $^{^{\}rm 27}$ Cleaver Brooks, <u>Manual de calderas</u>, pagina 8-9.

Tabla. 11. Requerimientos de calderas²⁸

Cap BHP	Motor soplador HP	Motor de bomba de aceite HP	Calent de aceite KW	Motor de compresor de aire HP	Chim D m	enea B m	Salida de vapor m	Tubería de purga m	Tubería de combustible m	Tubería de agua de alimentación m
150	7 ½	1/2		Accionad o por correa desde el motor soplador	0.40	0.23				

D: Diámetro (Conexión brida), B: Brida del aro delantero al tubo (LC)

3.4.6.1. Tanque de condensado

Uno de los factores principales en la operación óptima de una caldera, es el de contar con un sistema de suministro de agua adecuado para cada caso en particular. Esto es debido a que es indispensable mantener un nivel de agua constante en el interior de la caldera para que no ocurra un siniestro o falla de alguna de sus partes.

Todo sistema efectivo de alimentación de agua de caldera debe contar con:

- Reserva mínima de agua (tanque de almacenamiento).
- Equipo de bombeo.
- Control de sistemas.

Tanque de almacenamiento y selección de bomba.

Tabla. 12. Selección de bombas para calderas²⁹

-

²⁸ Cleaver Brooks, <u>Manual de calderas</u>, pagina 8-9.

Sistema duplex (Una caldera – una bomba en línea y la otra en standby)								
Capacidad de la caldera en BHP	Capacidad requerida de la bomba GPM	Capacidad del tanque GAL	Tamaño del tanque pulg.	Tamaño de la válvula pulg.	Presión de descarga psi.			
150.0	16.0	200.0	24 X 56	3/4	125.0			

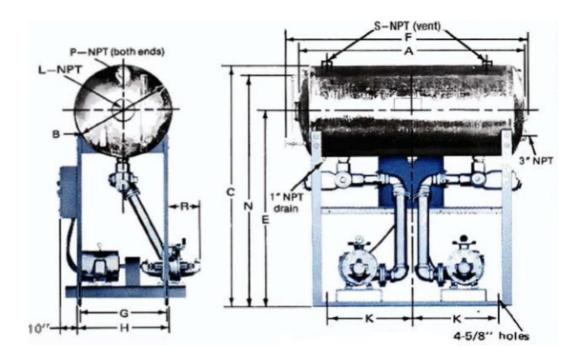


Tabla. 13. Dimensiones del tanque de condensado³⁰

Capacidad en Galones	A	В	С	E	F	G	Н	K	L	N	P	R	S
100.0	56	24	59 11/16	47 ½	59	21 1/4	22 3/4	21	3/4	57	2	4 5/16	3

²⁹ Cleaver Brooks, <u>Manual de tanques y bombas de condensado</u>. ³⁰ Cleaver Brooks, <u>Manual de tanques y bombas de condensado</u>

3.4.6.2. Verificación de capacidad del tanque de condensado

La cantidad de agua que alimenta a una caldera es prácticamente la cantidad de vapor que se produce, por lo tanto la reserva de agua necesaria va en proporción a la capacidad de la caldera. Se debe considerar la cantidad mínima de agua suficiente para sostener la evaporación en la caldera por lo menos por 20 minutos.

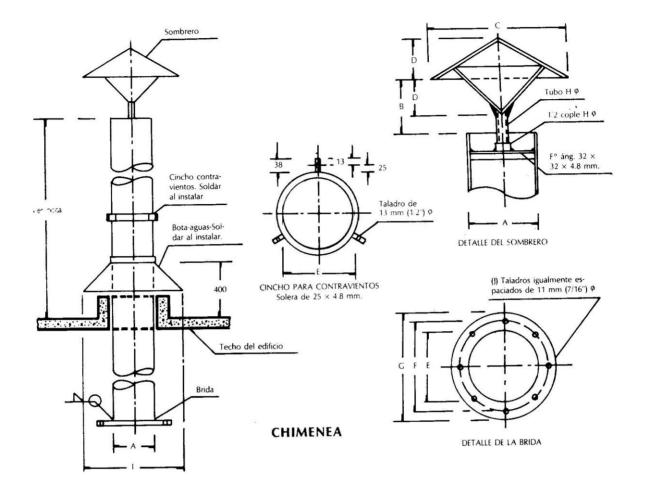
De acuerdo a lo anterior la caldera evapora de esta manera:

150
$$CC \times 0.069$$
 $\frac{gal}{\min}$ $CC = 10.35$ $\frac{gal}{\min}$

La reserva mínima deberá satisfacer la evaporación por 20 minutos

10.35
$$\frac{gal}{\min} \times 20 \min = 207 \ gal$$

Lo cual coincide con los datos anteriores.


3.4.7.1. Chimenea

Según la capacidad de la caldera se tiene lo siguiente:

Tabla, 14. Dimensiones de chimeneas para calderas según su capacidad³¹

Tubia Ti Dimensiones at cumontas para caractas segun sa capacitaa											
Capacidad	Placas		D		-	Г	Г		7.7	т	т
de caldera	del	A	В	C	D	Е	F	G	Н	1	J
ВНР	No.	mm.	mm.								
125 - 200	12	406	305	813	203	410	454	486	25	1,076	12

³¹ Cleaver Brooks, <u>Manual SELMEC de calderas</u>, Sociedad electromecánica S.A. de C.V. 1976, pagina 173.

3.4.8.1. Tanque de combustible

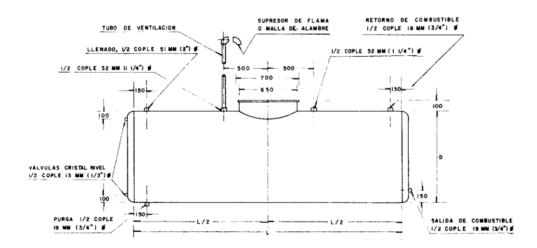
El tanque de combustible se divide en tanque de diario y tanque de almacenamiento:

3.4.8.2. Tanque de diario

De acuerdo a los datos de la caldera se tiene que el consumo teórico de diesel para la caldera seleccionada es de 170 lts / hora. Considerando las horas de la propuesta tenemos:

Horas de propuesta = 16

Consumo diesel = 170 lts / hora.


Capacidad de tanque = (170 lts / hora) (16 horas) = 2,720.0 lts.

De acuerdo a los tanques que se encuentran en el mercado, tenemos que el tanque para esta aflicción es de: 3,000.0 lts.

Características del tanque.

Tabla. 15. Características técnicas del tanque de diario para diesel³²

Capacidad (lts.)	Diámetro (m.m. D)	Longitud (m.m. L)	Calibre de la lamina (m.m.)
3,000.0	1,060.0	3,660.0	14.0

3.4.8.3. Tanque de almacenamiento

Según los datos de la caldera se tiene que el consumo teórico de diesel para esta es de 170 lts / hora. Ahora bien tomando en cuenta las horas de la propuesta y las condiciones de llenado de los tanques de reserva actuales tenemos:

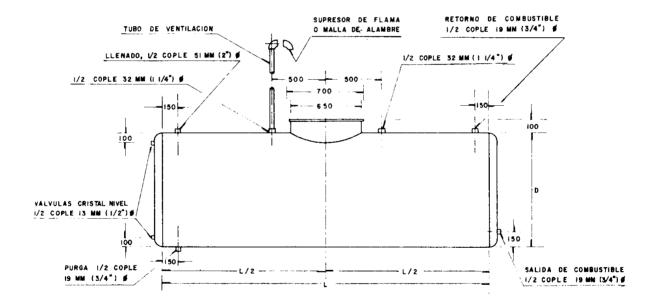
Horas de propuesta = 16

Tiempo para llenado de tanques = 7 días.

Consumo diesel = 170 lts / hora.

³² Cleaver Brooks, <u>Manual SELMEC de calderas</u>, Sociedad electromecánica S.A. de C.V. 1976, pagina 189.

Capacidad de tanque = (170 lts / hora) (16 horas / día) (7 día)= 19,074.0 lts.

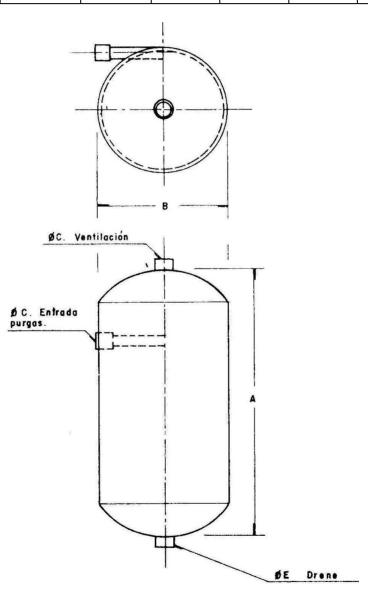

De acuerdo a los tanques que se encuentran en el mercado tenemos:

Dos tanques de 10,000.0 lts.

Características del tanque.

Tabla. 16. Características técnicas del tanque para reserva de diesel ³³

_												
	Capacidad (lts.)	Diámetro (m.m. D)	Longitud (m.m. L)	Calibre de la lamina (m.m.)								
ſ	10,000.0	10,000.0 1,540.0		3.2								


3.4.9.1. Separador de purgas

Las características del separador de purgas son las siguientes.

³³ Cleaver Brooks, <u>Manual SELMEC de calderas</u>, Sociedad electromecánica S.A. de C.V. 1976, pagina 189.

Tabla. 17. Características técnicas del separador de purga según capacidad de caldera³⁴

Cap. de caldera BHP	Presión Psi.	Volumen Lts.	Espesor de placa mm.	A mm.	B mm.	C mm. "	D mm. "	E mm. "
125 - 350	150	75	7.9	864	356	38 (1½)	152 (6)	102 (4

³⁴ Cleaver Brooks, <u>Manual SELMEC de calderas</u>, Sociedad electromecánica S.A. de C.V. 1976, pagina 191.

3.4.10.1. Equipo suavizador

Para determinar la capacidad de un suavizador de agua se considera lo siguiente:

- Capacidad de la caldera = 150 BHP.
- Dureza del agua a ablandar en partes por millón. = 126 ppm
- Capacidad evaporativa de la caldera. = 2,347.0 kg / h
- Horas de operación para cada regeneración. = 48 h
- Porcentaje de retorno de condensado. = 49.0 %

$$cap = 2347 \frac{kg}{h} \times 0.51 \times 126 \ ppm \times 48 \ h = 7239274.6 \ ppm$$

1 gramo de resina → 17.1 ppm

$$X \longrightarrow 7239274.6 \text{ ppm}$$

cap = 423349.0 gramos de resina = 14.0 pie³

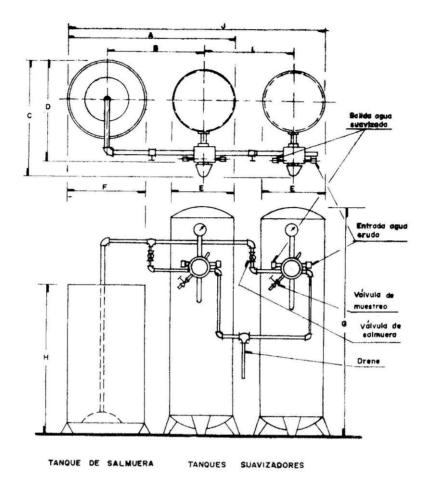

3.4.10.2. Características del suavizador.

Tabla. 18. Características técnicas del suavizador de acuerdo a la capacidad de la caldera³⁵

Capacidad pie ³	Tubería mm	A	В	С	D	Е	F	G	Н	I	J
15	38	1,950	1,125	1,160	915	770	880	1,800	1,220	1,070	3,020

Suavizador de ciclo sódico

³⁵ Cleaver Brooks, Manual SELMEC de cald<u>eras</u>, Sociedad electromecánica S.A. de C.V. 1976, pagina 192.

3.4.11.1. Normas para el montaje de calderas

 La longitud mínima del cuarto de calderas, se da para que permita un futuro reemplazamiento de fluses, (por la parte frontal o trasera de la caldera), a través de una puerta o una ventana. Esto es permitido solamente haciendo una puerta con dimensiones mínimas iguales al diámetro de la caldera.

Si al espacio disponible se le adicionan aproximadamente 0.5 mts. esto permitirá un pasillo adicional o espacio de trabajo en la parte trasera.

2. La siguiente dimensión mínima de un cuarto de calderas es obtenida para permitir el futuro reemplazamiento de fluses por la parte frontal de la caldera. Sin la

consideración de la puerta que permita hacer dicho cambio, si no, que el cambio de

fluses se realiza dentro del mismo cuarto.

Si la norma de espacio adiciona 0.5 mts. Deberá permitirse un pasillo adicional en la

parte trasera para permitir un espacio de trabajo.

3. Un cuarto de calderas amplio es obtenido, permitiendo un futuro reemplazamiento

de fluses a partir de la parte trasera de la caldera dentro del mismo cuarto,

permitiéndose abrir las puertas y proporcionando suficiente espacio para trabajar.

Ancho:

1. Distancia entre caldera y la pared.

Recomendaciones mínimas. Para permitir trabajos de limpieza, 1.00 mts. Entre la

columna de agua de la caldera y la pared. Si el espacio lo permite, esta distancia

deberá ser mayor.

2. Distancia entre calderas.

La distancia entre las calderas deberá permitir realizar los trabajos de limpieza

correspondientes por lo que se propone la siguiente distancia

Capacidad de calderas

1.00 metros 15 - 100 CC

1.30 metros 125 - 350 CC

1.50 metros 400 - 800 CC

Altura:

- **3.** No hay regla general. Esta dimensión puede variar con:
- a. Capacidad de la caldera y altura de la misma, a partir de la línea del piso
- b. Dimensión y localización de la chimenea y sus ramales
- c. Dimensión y localización del cabezal de vapor
- d. Requerimientos del reglamento de seguridad local.

Bases para montar la caldera:

• Dimensiones.

La caldera se debe montar sobre dos bases de concreto de 15 cm. (6 pulg.) de altura.

El uso de estas bases proporcionan un incremento en la accesibilidad de inspección por debajo de la caldera y se aumenta la altura para limpieza de la parte inferior de la misma.

La ventilación del cuarto de calderas:

Es de mucha importancia tomar en cuenta la ventilación del cuarto de calderas. Debe de suministrarse el aire necesario para la combustión. Así como también la disipación del calor generado por la radiación del mismo, a partir de la caldera, ya que debido a esto se eleva la temperatura del cuarto de calderas.

Es importante también el no excederse en la ventilación, ya que se pueden crear corrientes de polvo, siendo éste altamente perjudicial para los controles de la caldera.

El medio ambiente en el que se desarrolle la caldera, es también un factor importante de considerar.

Ya que por ejemplo: la humedad es perjudicial para los controles, para el transformador, para el devanado de los motores y se pueden provocar cortos circuitos.

Ventilación forzada:

- Localización y dimensión mínima de las tomas de aire para el cuarto de calderas.
- a. Son recomendables dos tomas de aire en las paredes exteriores del cuarto de calderas, localizadas en cada extremo del mismo, preferiblemente a una altura mayor de 2.13 mts. Esto con la finalidad de permitir que la corriente de aire barra la caldera.
- b. Estas pueden ser cubiertas para protegerlas de la intemperie. Pero no deberán ser cubiertas con fina malla de alambre, ya que este tipo de cubierta proporciona una pobre cantidad de flujo de aire y está sujeta a obstruirse por el polvo o impurezas.
- c. No es recomendable un extractor de aire en el cuarto de calderas, ya que éste podría crear un pequeño vació bajo ciertas condiciones y causar variaciones en la cantidad de aire necesario para la combustión, y esto dará como resultado un funcionamiento irregular del quemador.
- d. Bajo ninguna circunstancia el área de la toma deberá ser menor que un pie cuadrado, 0.093 m.
- 1- La velocidad del aire aceptable en el cuarto de calderas puede ser:

Descripción	Velocidad
Altura de rejilla (mts)	mts/min
Hasta 2.13	76.25
Mayor a 2.13	152.50
Descarga directa a la caldera	305.00

Chimeneas:

- 1. **Finalidad**. La única finalidad de la chimenea en una caldera, es la de conducir los productos de la combustión a un lugar seguro de descarga (la atmósfera). Un diseño con tiro forzado, elimina la necesidad de una chimenea diseñada para crear el tiro.
- 2. Tiro de la chimenea, las variaciones del tiro de aproximadamente 1/2 pulgada columna de agua en la salida de la caldera no tienen un efecto apreciable sobre la operación del quemador. Esto es debido a la elevada caída de presión, la cual es producida a partir del interior del quemador a la salida de la caldera. Típicas caídas de presión como son las siguientes:
- a) Una caída de (4 a 12 pulgadas columna de agua), es tomada a través del quemador para proveer una elevada turbulencia, una buena mezcla de aire y combustión, y una elevada cantidad de CO₂, para una combustión más eficiente.
- b) Una caída de (2 a 6 pulgadas columna de agua), tiene lugar a través de los cuatro pasos de la caldera, para mantener una alta velocidad de flujo de gases y consecuentemente en la transferencia de calor.

Si la altura de la chimenea es arriba de 40 mts., o una combinación de chimeneas y ramales causan un tiro excesivo, una simple compuerta barométrica puede ser localizada en el ramal muy próximo a la chimenea.

Esta compuerta barométrica solamente deberá ser considerada después de que se ha ajustado el quemador y que efectivamente sea una acción correcta.

- 3. **Localización de la chimenea**. Las chimeneas se pueden conectar de las siguientes maneras: chimenea independiente, en ramales frontales y ramales laterales.
- 4. **Condensación en la chimenea**. La cantidad de condensación en una chimenea, variará con el tipo de combustible, y con la temperatura de los gases en la misma.

Normalmente, la temperatura de los gases en la base de la chimenea de la caldera deberá ser aproximadamente de 52° C., (125° F) por encima de la temperatura del punto de roció de los gases de combustión de caldera.

La condensación en una chimenea, es más probable de ocurrir en la instalación de una caldera de calefacción, donde cargas ligeras e intermitentes, causan una condición fría en la chimenea, la cual da como resultado una condensación del vapor de agua en los de gases de combustión. Esta condensación de agua acelera la corrosión de la lámina de la chimenea.

Los siguientes incisos deberán ser considerados, cuando se planea reducir al mínimo la condensación de una chimenea:

- a) El tamaño de la caldera, deberá ser lo más cercano posible a la carga real de calentamiento. Deberán evitarse calderas sobradas en capacidad.
- b) Las chimeneas de mampostería conservan mejor el calor que las de lámina
- c) Cuando use chimeneas de lámina, un buen aislamiento de ella, ayudara a no permitir pérdidas de calor.
- d) Es recomendable una chimenea de conexión lateral con registro y conexión de purga para evitar que el condensado regrese a la caldera.
- 5. **Peso de la chimenea**. La conexión de la chimenea permite una carga vertical de 910 kg (2,000 libras).
- 6. **Construcción de la chimenea**. Puede ser construida a varios metros por encima del nivel del techo, de acuerdo al código vigente en este país se establece que la chimenea debe instalarse 4 metros sobre la altura del edificio mas cercano.

7. Material de la chimenea. Lamina de calibre No 12, es recomendado como mínimo para las secciones de chimenea. Si las chimeneas van a quedar inaccesibles, el uso de un material anticorrosivo deberá ser considerado.

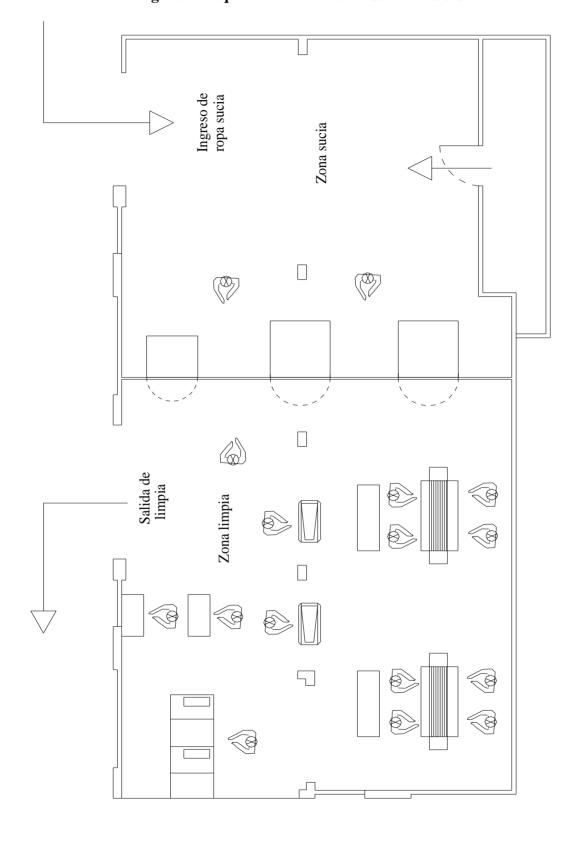
Un sombrero o cubierta, deberá ser usado al final de la chimenea para minimizar la entrada de lluvia, nieve o impurezas.

3.5.1.1. Dimensionamiento de espacio para instalaciones.

El departamento de lavandería debe de planearse de tal manera que la ropa sucia que entra en ella, salga limpia y planchada después de seguir un proceso de trabajo en línea continúa, evitando que el flujo de ropa limpia se cruce con el de ropa sucia. Las secciones que debe poseer una lavandería son las siguientes:

- Recepción de ropa. Este es el lugar donde se recibirá la ropa sucia y la contaminada que viene de los diferentes servicios del hospital, este debe ser un lugar accesible y que no entorpezca los diferentes flujos del hospital ni de la lavandería misma.
 Procedimientos de ingreso.
- Selección y clasificación de ropa (centro de acopio). En estas áreas se seleccionará o clasificará la ropa dependiendo del servicio de donde provenga, de acuerdo al tipo de mancha y a la clase de tela. Así se tendrá espacios para la ropa de cirugía, ropa blanca, ropa de felpa, ropa de forma. Es importante realizar esta acción por que dependiendo de ello, así será la fórmula del detergente a utilizar.
- Pesado de ropa. Una vez seleccionada la ropa se debe pesar a efectos de que cuando pase al proceso de lavado se aplique a las lavadoras el peso necesario de acuerdo a la capacidad de estas máquinas.
- Lavado. Normalmente esta etapa se diseña de tal modo que la ropa que se va a lavar no se cruce con el flujo de ropa lavada, aunque se utilice la misma máquina, para tal caso

se debe pensar en una zona blanca y una zona gris. Esta área tendrá un 25% del espacio disponible.


- Secado y Planchado. Normalmente se acostumbra tener un sistema de secado del tipo rotativo, lo suficiente para secar lo establecido anteriormente.
 Se debe diseñar el sistema para poder planchar dos tipos de ropa, la lisa y la de forma y para tal caso se debe tener en cuenta la cantidad total a secar. Para cada sección se dispondrá de un 25% del espacio.
- Costurería y Ropería. Esta es la sección donde se va guardando el material ya lavado y que se distribuirá en los diferentes servicios, como también la recibida nueva de almacén. Esta área es normalmente el 30% de la requerida para lavandería.

También para el diseño de una lavandería se deben dejar espacios para almacenaje de material consumible y gastable, para el trabajo administrativo, servicios sanitarios, salón de reuniones, etc. Esta área tendrá un 20% del espacio.

Las instalaciones que se plantean son siguiendo el sistema PASS-THROUGH que es un sistema eficiente y seguro en donde se separa las zonas de ropa sucia y ropa limpia.

Por ser un sistema cuya particularidad es separar las áreas de manejo de ropa sucia y ropa limpia, con el fin de minimizar el área de contaminación, previniendo la propagación de infecciones. La siguiente figura muestra un esquema del sistema mencionado.

Figura 1. Esquema del sistema PASS-THROUGH

De acuerdo a la capacidad de la actual lavandería se tiene un área de 833 m² por regla de tres se obtiene el área para la propuesta de lavandería:

833
$$m^2 \longrightarrow 9,800 \ Kg$$

 $X \longrightarrow 3,801.5 \ kg$

El espacio para la propuesta es de 323.13 m².

Área de lavado = $0.25 (324) = 81 \text{ m.}^2$ Área de secado y planchado = $0.25 (324) = 81 \text{ m.}^2$ Área de costurería y ropería = $0.30 (324) = 97.2 \text{ m.}^2$ Área de almacenaje y consumibles = $0.20 (324) = 64.8 \text{ m.}^2$

En la selección del área requerida para las instalaciones, es necesario establecer los siguientes criterios fundamentales para el buen funcionamiento de las instalaciones.

1. Distancia de la caldera

Según las normas mexicanas adoptadas en nuestro país para instalaciones hospitalarias los equipos de lavandería deben estar muy próximos a las instalaciones por efectos de pérdidas de vapor ya que la distancia aumenta las perdidas de calor y es más cara una red de distribución de este tipo debido a los diámetros que se utilizan para llevar el fluido hasta el lugar requerido.

2. Espacio.

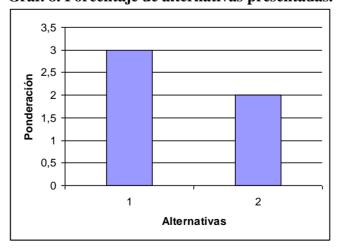
Se refiere al espacio disponible según la propuesta para la implantación de la lavandería, es decir si el espacio es suficiente para los equipos y flujos de procesos.

3. Adaptabilidad de las instalaciones.

De acuerdo al tipo de equipos que se instalen es necesario verificar que en las instalaciones se puedan realizar ciertas modificaciones que no impliquen costos elevados.

Según los criterios antes mencionados se tienen dos alternativas:

- 1. Modificar una parte del área correspondiente a alimentación y dieta tomando un 30% de dicha área para efectos de la reestructuración.
- 2. Construir una nueva edificación para la ampliación de la lavandería.


Evaluación de las alternativas según los criterios anteriores.

Si la alternativa cuenta con el factor indicado se le pondrá una "X", si no cuenta con el factor se le asignara "N".

Tabla. 19. Evaluación de criterios para la selección de alternativas

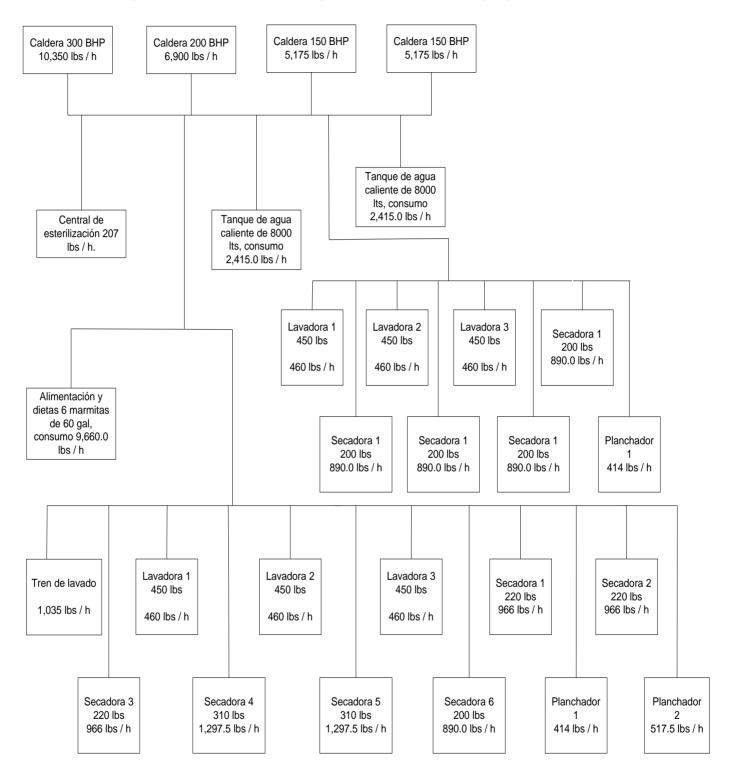
Alternativas	Distancia	Espacio	Adaptabilidad	Total
1	X	X	X	3
2	N	X	X	2

Graf. 8. Porcentaje de alternativas presentadas.

Según el grafico anterior tenemos que la alternativa a elegir es la 1 pues cuenta con los tres criterios establecidos.

Dimensiones requeridas

Se contara con un área de $(22.75 \text{ m X } 18.38 \text{ m}) + (5.30 \text{ m X } 22.75 \text{ m}) = 538.72 \text{ m.}^2$ aproximadamente un 30% de alimentación y dieta


FREEZER FREEZER BODEGA LAVANDERIA FREEZER DESECHOS FREEZER 2 ASED FREEZER FREEZER S.S. BODEGA DE BODEGA DE NPT= 0+2.40 MATERIALES NPT= 0+0.0 NPT= 0+4.25 AREA CIRCULACION ACCESO ELEVADOR NPT= 0+0.0 BODEGA NPT= 0+0.0 VERDURAS NPT= 0+4.25 S.S. HOMBRE: AREA **JEFATURA** SECRETARIAS MUJERES AREA BODEGA LOCKERS S.S. RAMPA S.S. LAVADO RAMPA N= 0+1.80

Esquema 2. Ubicación del área propuesta.

En el siguiente esquema se presenta la nueva distribución de vapor en las instalaciones de la lavandería del Hospital General del ISSS.

VEHICULAR

Esquema 3. Distribución de vapor en las instalaciones propuestas

3.6.1.1. Sistema de generación de vapor.

Generalmente existen dos tipos de calderas: una es la caldera de tubos de fuego en la cual los gases calientes pasan por dentro de los tubos rodeados por agua, a esta normalmente se le llama piro tubular. El otro tipo es la de tubos de agua en la cual los gases calientes de la combustión circulan alrededor de los tubos llenos de agua, a esta se le llama acuo tubular. Toda caldera debe tener una capacidad por lo menos de un 15 por ciento mayor que la demanda actual para poder hacer frente a las demandas futuras. Todo el equipo esencial para la operación segura de un hospital se debe instalar por partida doble o por lo menos con una reserva del 100%. Esto quiere decir que cuando se instalan dos calderas, una de ellas debe tener capacidad suficiente para satisfacer la demanda máxima total.

3.6.2.1. Materiales.

Tuberías.

- En diámetros de 10 a 50 mm las tuberías deben ser de hierro negro para roscar, cédula 40.
- Para diámetros de 64 mm o mayores serán de acero sin costura, con extremos lisos para soldar, cédula 40.

3.6.3.1. Materiales de unión y válvulas

- Para tuberías y conexiones de hierro negro roscados, se debe utilizar cinta teflón de 13 mm de ancho, no se deben aplicar el uso de pintura o pastas.
- Para unir bridas, conexiones y válvulas bridadas, utilizar tornillos maquinados de acero al carbono, con cabeza y tuerca hexagonal y empaques de asbesto con espesor de 3.175 mm

 Las válvulas de seccionamiento serán de globo y serán del tipo de rosca cuando tengan un diámetro hasta de 50 mm y serán del tipo bridadas cuando su diámetro sea mayor a 64 mm.

Se proyectará el uso de juntas flexibles para absorber los movimientos entre juntas constructivas, para absorber los alargamientos y contracciones por efectos de la temperatura o para absorber ambos efectos. Estas juntas serán mangueras metálicas con interiores y entramado exterior de acero inoxidable.

3.6.4.1. Utilización.

El vapor producido por los generadores de vapor generalmente se utiliza en:

- Producción de agua caliente.
- Esterilización
- Equipos de cocina.
- Equipos de lavandería.

Las presiones manométricas de trabajo de los equipos utilizados y que requieren vapor para su operación son

- De 8.8 a 10.5 kg/cm² en equipos de lavandería.
- De 3.5 a 5.6 kg/cm² en equipos de esterilización
- De 1.05 kg/cm² en equipos de cocina, lavadores esterilizadores.

3.7.1.1. Redes de distribución de vapor.

Se diseñarán redes de distribución de vapor de tres tipos:

- La red de distribución de alta presión con vapor de 8.8 kg./cm² o de 10.5 kg./cm² de presión, la cual dependerá de muchos casos de la presión demandada por los equipos a los que alimente directamente.
- La red de vapor de presión intermedia la cual se diseñará con una presión de vapor de 5.0 kg/cm².
- La red de distribución de vapor de baja presión la cual se diseñará para que opere con presiones de 1.4 a 1.05 kg./cm².

Dependiendo del equipo a alimentar y de acuerdo a la presión de trabajo de este, así se requerirán reguladores de presión, pero también se debe considerar como norma en las instalaciones de vapor que antes de cualquier válvula de control o trampa de vapor se debe instalar un filtro en la tubería que da servicio a esos elementos.

- Equipos de lavandería.
- Mangles y tómbolas, se considera una simultaneidad del 100 %.
- Planchadores de ropa de forma, de cada grupo de 3 piezas considere las dos de mayor consumo
- Lavadoras de ropa, considere el consumo de vapor que resulte mayor, ya sea el de una lavadora o el del 50% de la suma de los consumos de las lavadoras a las que se le da alimentación, el consumo de las lavadoras se calculará bajo las bases siguientes:
- 1. Si el agua caliente para la lavandería está a la temperatura de 82.2 °C, las lavadoras no requerirán de vapor.
- 2. Si el agua caliente para la lavandería está a la temperatura de 71.1 °C, las lavadoras requerirán de 05 kg./hora de vapor por kilogramo de ropa seca a lavar.
- 3. Si el agua caliente para la lavandería está a la temperatura de 60 °C, las lavadoras requerirán 1.0 kg/hora de vapor por kilogramo de ropa seca por lavar.

Otros aspectos a considerar:

- Para secadora un promedio de 5 kg de vapor /hora por kg de ropa a secar
- Para lavadoras un promedio de 3 kg vapor / hora por kg de ropa a lavar

3.7.2.1. Cálculo del diámetro de la tubería de la instalación de vapor

Variables a considerar

- Caudal máximo probable
- Presión de trabajo
- Velocidad aceptable
- Perdidas de presión

Normas:

El sistema contempla una presión de 6.89 bar, para manejar esta presión se requiere el uso de tuberías y accesorios según normas ASTM.

Condiciones a cumplir:

- Acortar longitudes de tuberías
- Reducir perdidas
- Reducir caídas de presión

Proceso de cálculo:

- Para calcular los diámetros de las tuberías se utilizaron las siguientes fórmulas, tablas y graficas.

Fórmulas³⁶

$$\frac{P_1 - P_2}{L} = F$$
 Ref. (3.4)

$$Y_{real} = \frac{Y \times V}{10 pie^3 / lb}$$
 Ref. (3.4)

$$\mu = 1.22X10^{-7}T^{1.772}$$
 Para: 200 < T < 400°F Ref. (4.1)

$$Re = \frac{6.31W}{d\mu} = \frac{5.165X10^7 W}{dT^{1.772}}$$
 Ref. (4.1)

$$K = F \frac{L}{D}$$
 Para tuberías Ref. (3.9)

$$W = \frac{2\pi KL(T - T_a)}{\ln(\frac{rs}{ri})Hfg}$$
 Ref. (3.5)

$$Qs = AU\Delta T$$
 Ref. (3.4)

$$Qc = \frac{T - T_a}{\left(\frac{rs}{K}\right)\ln\left(\frac{rs}{ri}\right) + \frac{1}{F}}$$
 Ref. (3.4)

$$Wc = WXFcXFs$$
 Ref. (4.2)

Simbología.

³⁶ Nota: Las referencias anteriores están vinculadas con la bibliografía.

 P_1 : Factor basado en la presión inicial.

 P_2 : Factor basado en la presión final.

L: Longitud equivalente de la tubería.

F: Factor de caída de presión.

A: Área m² de superficie / metro lineal

D: Diámetro interior teórico de tubería en m

F: Coeficiente de resistencia de película de aire

f: Coeficiente de fricción

Hfg: Calor de evaporación en

Ki: Coeficiente de resistencia al flujo. Metros

K: Conductividad térmica

L: longitud en metros

Re: Numero de Reynold

ri: Radio exterior de la tubería en metros

rs: Radio exterior del aislamiento en metros

T: temperatura estimada °C

t: Tiempo estimado, minutos

v: Velocidad limite permisible, metros por minuto

V: Volumen especifico, m³/kg.

W: Caudal del fluido, en kg/h

Wp: Peso de la tubería, en K/m

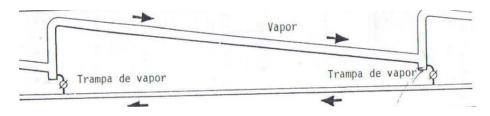
ΔP: Caídas de presión, en PSI

δ: Calor especifico del acero

μ: Viscosidad dinámica.

3.7.3.1. Velocidades recomendadas según normas mexicanas:

0 a 0.69 bar. Vapor Saturado: 304.8 a 1,219.2 m/min.


0.69 a 2.07 bar. Vapor Saturado: 1,219.2 a 1,828.8 m/min.

2.07 a 10.34 bar. Vapor Saturado: 1,828.8 a 13,048.0 m / min.

Vapor Sobre Calentado: 1,348.0 a 4,572.0 m / min.

En la siguiente figura se muestra la instalación correcta del las líneas de vapor y su correspondiente retorno de condensado.

Figura 3. Esquema del sistema de retorno de condensado con su respectiva inclinación y trampa

Con la tabla 1.³⁷ Se determina los factores de presión, para conocer el factor de caída de presión el cual se utilizará en la tabla 2³⁸, para determinar el diámetro standard.

Para la determinación del diámetro se utiliza la fórmula Nº 1 $\frac{P_1 - P_2}{L} = F$ la cual nos proporciona el factor de caída de presión. Con este factor se encuentra el diámetro para la tubería principal y los ramales.

3.7.4.1. Cálculo de tuberías de sistema método 1

3.7.4.2. Tubería principal.

³⁸ Ver anexos 1, tabla 5.

2'

³⁷ Ver anexos 1, tabla 4.

$$P_1(110 \ psi) = 11,515, P_2(105 \ psi) = 10,540$$

$$\frac{11,515 - 10,540}{253.31} = 3.85 \approx 4^{39}$$

En el cálculo de la velocidad real se emplea la fórmula Nº 2. $Y_{real} = \frac{Y \times V}{10 \, pie^3 \, / \, lb}$

De la tabla 2.40 se tiene que para 5,386.0 lb./h y 3 pulgadas:

Y = 310 pies/s

De la tabla 1.41 se tiene para 105 psi.

V = 3.8 lb./pie

$$Y_{real} = \frac{310 \ pies / s \times 3.8 \ pie^3 / lb}{10 \ pie^3 / lb} = 117.8 \ pie / s \approx 7,068 \ PPM = 2,154.0 \ m/\min$$

3.7.4.3. Consumo de vapor

Tabla. 20. Características técnicas de equipos propuestos, utilizados para el cálculo de tuberías del sistema de distribución de vapor.

Equipo	Cantidad	Consumo c/u (kg./h)	Presión de trabajo (bar.)	Consumo (kg./h)
Lavadora extractora	3	213.0	6.89	639.0
Secadora	4	404.0	6.89	1,616.0
Planchador de rodillo 1 188.0 6.89				188.0
	2,443.0			

³⁹ Con este factor buscamos en la tabla 5. Con el consumo y el factor de presión se encuentra el diámetro de la tubería.

⁴⁰ Ver anexos 1, tabla 5.

⁴¹ Ver anexos 1, tabla 4.

3.7.5.1. Ramales.

Se tomaran tres medidas para el cálculo

$$P_1(105 \ psi) = 10,540, P_2(103 \ psi) = 10,300$$

$$\frac{10,540-10,300}{40.27} = 5.96 \approx 6^{42}$$

$$P_1(105 \ psi) = 10,540, P_2(103 \ psi) = 10,300$$

$$\frac{10,540 - 10,300}{20,50} = 11.71 \approx 12^{43}$$

$$P_1(105 \ psi) = 10,540, P_2(103 \ psi) = 10,300$$

$$\frac{10,540 - 10,300}{23.93} = 10.00 \approx 10^{44}$$

En el cálculo de la velocidad real se emplea la fórmula N° 2. $Y_{real} = \frac{Y \times V}{10 pie^3 / lb}$ De la tabla 5. 45 se tiene que para 890.0 lb./h y 1 1/2 pulgada:

$$Y = 230 \text{ pies/s}, Y = 330 \text{ pies/s}, Y = 300 \text{ pies/s}$$

De la tabla 1 46 . se tiene para 100 psi.

$$V = 3.8 \text{ lb./pie}$$

⁴² Con este factor buscamos en la tabla 2. Con el consumo y el factor de presión se encuentra el diámetro de la tubería.

⁴³ Con este factor buscamos en la tabla 5. Con el consumo y el factor de presión se encuentra el diámetro de la tubería.

⁴⁴ Con este factor buscamos en la tabla 5. Con el consumo y el factor de presión se encuentra el diámetro de la tubería.

⁴⁵ Ver anexos 1, tabla 5.

⁴⁶ Ver anexos 1, tabla 4.

$$Y_{real} = \frac{230 \ pies / s \times 3.8 \ pie^3 / lb}{10 \ pie^3 / lb} = 89.4 \ pies / seg = 5,244.0 \ PPM = 16,35.0 \ m/\min$$

$$Y_{real} = \frac{330 \ pies / s \times 3.8 \ pie^3 / lb}{10 \ pie^3 / lb} = 125.4 \ pies / seg = 7,524.0 \ PPM = 2,293.0 \ m/\min$$

$$Y_{real} = \frac{300 \ pies / s \times 3.8 \ pie^3 / lb}{10 \ pie^3 / lb} = 114.0 \ pies / seg = 6,840.0 \ PPM = 2,085.0 \ m/\min$$

En cuanto a la longitud equivalente se conoce la distancia mas no los accesorios, es decir se asumirá un efecto de forma a lo largo de la tubería debido a la fricción de 10%.

En base a lo anterior se tiene:

• Red de vapor a 110 psi. = 7.58 bar.

Especificaciones:

- Tuberías: Acero al carbono ASTM A-53 GrA Cedula 80
- Válvulas: Bronce
- Velocidad: 6,000 pies / min. = 1,828.8 m / min.

3.7.6.1. Cálculo de tuberías de sistema método 2

Para la utilización de este método se aplica la fórmula siguiente: $d = \sqrt{\frac{4xv}{\pi xC}}$

Donde:

d: Diámetro de tubería.

v: Caudal volumétrico. = demanda de vapor X volumen específico.

C: Velocidad de flujo.

Presión de distribución 100 psi.

Velocidad de flujo 25 m./s.

Volumen específico $0.24 m^3 / kg$

3.6.1.2. Tramo principal.

Flujo total = 2,443.0 kg./h. = 0.6786 kg./s.

$$\dot{v} = 0.6786 \text{ kg./s. } \text{X} \ 0.24 \ m^3 / kg = 0.16287 \ m^3 / s$$

$$d = \sqrt{\frac{4x v}{\pi x C}} = \sqrt{\frac{4(0.16287)}{\pi x 25}} = 0.09107 \ m = 3.6 \ pu \lg$$

De acuerdo a las tablas para tubería cedula 40 el diámetro para esta aplicación sería el de 3 ½ pulg. Pero para fines de diseño tomaremos el diámetro de 4 pulg., el cual no coincide con el diámetro antes sugerido.

3.7.6.2. Ramales.

Flujo total ramal 1 = 404.0 kg./h. = 0.11222 kg./s.

$$\dot{v} = 0.11222$$
 kg./s. X 0.24 $m^3 / kg = 0.02693$ m^3 / s

$$d = \sqrt{\frac{4x\dot{v}}{\pi xC}} = \sqrt{\frac{4(0.02693)}{\pi x25}} = 0.03704 \ m = 1.4 \ pu \lg$$

De acuerdo a las tablas para tubería cedula 40 el diámetro para esta aplicación sería el de 1 ½ pulg.

Ya que los demás flujos son inferiores al antes calculado tenemos que para efectos de diseño se tomará el diámetro de 2 pulg, el cual no concuerda con el diámetro antes sugerido. Se tomará este diámetro para el diseño.

Tabla. 21. Características de las instalaciones del sistema de distribución de vapor

		Caudal	Diámetro	Velocidad Velocidad
Tramo ⁴⁷	Longitud (m)	(kg./h)	mm. / pulg.	(m / min.)
0 – 1	77.21	2,443.0	101.6 / 4	2,154.0
3 – 4	5.21	213.0	50.8 / 2	1,635.0
5 – 6	11.15	404.0	50.8 / 2	2,293.0
7 – 8	11.17	404.0	50.8 / 2	2,293.0
9 – 10	5.68	213.0	50.8 / 2	1,635.0
11 – 12	11.16	404.0	50.8 / 2	2,293.0
13 – 14	5.29	404.0	50.8 / 2	2,293.0
15 – 16	11.15	213.0	50.8 / 2	1,635.0
17 – 18	6.63	188.0	50.8 / 2	2,085.0

3.8.1.1. Diseño de tuberías de retorno de condensado.

- Red de condensado
- Cálculo

El cálculo de las líneas de retorno de condensado difieren considerablemente del empleo en las líneas de vapor y agua. Esta diferencia se da por una variable a considerar, la cual es el vapor de flasheo, cuyo comportamiento no es tan predecible como el del vapor y agua.

Dentro de las líneas de retorno de condensado, existen una mezcla de vapor momentáneo de "flasheo" y agua, la cual hace complicado el análisis de los diámetros a emplear.

_

⁴⁷ Anexos 1. Planos de nuevas instalaciones

3.8.2.1. Consumo de vapor

Tabla. 22. Características técnicas de equipos propuestos, utilizados para el cálculo de tuberías de condensado.

Equipo	Cantidad	Consumo c/u (kg./h)	Presión de trabajo (bar.)	Consumo (kg./h)
Secadora	4	404.0	6.89	1,616.0
Planchador de rodillo 1 188.0 6.89				188.0
	1,804.0			

3.8.3.1. Tubería principal

A partir de tabla 3.48 Con presión de suministro de 100 psi. (6.89 bar) y presión de retorno de 30 psi. (2.07 bar.) Se obtiene el diámetro de la tubería.

El diámetro para este flujo se encuentra entre dos valores:

- Diámetros de 3/4" (19.05 mm.), 6.75 psi (0.47 bar.) de caída de presión y 1,675 lb./h (759.77 kg/h.).
- Diámetro de 1" (25.4 mm.) con una caída de presión de 4.36 psi. (0.30 bar.) y 2,715 lb./h (1,231.5 kg/h.) respectivamente.

Seleccionamos 1 pulgada para el diámetro por presentar menos perdidas de presión. Debido a los efectos de la distancia se genera condensado en las líneas de vapor de la tabla 7.49 Tenemos 0.093 lb./h-pie entonces se genera por la tubería 22.40 lb/h más de condensado:

Nuevo consumo = 1.804.0+144.00 = 1.948.0 lb./h = 884.0 kg/h.

⁴⁸ Anexos 2, tabla 6. ⁴⁹ Anexos 2, tabla 7.

Resultando un tubería de diámetro = 1 pulgado = 25.4 mm.

3.8.4.1. Ramales

Condensado en tramos de tuberías.

Condensado tramo 1-1 = 890 + 38.45 (0.093) = 894.0 lb./h = 406.0 kg/h.

Condensado tramo 4-4 = 415.00 + 22.44 (0.093) = 417.00 lb./h = 189.0 kg/h.

Para los ramales se emplearan tuberías de ¾ de pulgada (19.05 mm.) el cálculo para estos diámetros esta por debajo de los valores presentados en la tabla por lo que elegimos este valor para evitar perdidas en el cambio de sección.

Tabla. 23. Características de las tuberías de condensado.

Tramo ⁵⁰	I am aiturd (ma)	Caudal	Diámetro	Velocidad
1 ramo	Longitud (m)	(kg./h)	mm. / pulg.	(m/min)
0-0	73.89	1,810.0	25.4 / 1	1,524.00
1 – 1	11.72	406.0	19.05 / 3/4	1,524.00
2-2	11.70	406.0	19.05 / 3/4	1,524.00
3 – 3	11.70	406.0	19.05 / 3/4	1,524.00
4 – 4	6.84	189.0	19.05 / 3/4	1,524.00

3.9.1.1. Diseño de soportes de acuerdo a la longitud de la tubería.

La frecuencia de soportes de tuberías varía de acuerdo con el diámetro, material y la posición, generalmente los soportes de tuberías deben cumplir la Norma BS 3974 Parte 1974: "Soportes Colgados Deslizantes y de Patín" ⁵¹

Criterios de ubicación:

⁵⁰ Anexos 1, Planos de nuevas instalaciones.

⁵¹ Manual distribución de vapor, Spirax Sarco.

- Deben ir montados en las uniones de tuberías a intervalos no mayores de los mostrados en la tabla. 13.
- Cuando hay dos o más accesorios montados por una tubería común, la distancia de los puntos de soporte debe ser la adecuada para la tubería de menor diámetro.

Tabla. 24. Soportes recomendados para tubería.

Tabia. 24. Soportes recomendados para tuberia.					
Diámetro no	Diámetro nominal (mm.)		Intervalo de recorrido		corrido vertical
Acero /	Cobre.	Horizo	ntal (m.)	(m.)	
Φ interior.	Φ exterior.	Acero suave	Cobre	Acero suave	Cobre
12	15		1.0		1.2
15	18	2.0	1.2	2.4	1.4
20	22	2.4	1.4	3.0	1.7
25	28	2.7	1.7	3.0	2.0
32	35	2.7	1.7	3.0	2.4
40	42	3.0	2.0	3.6	2.4
50	54	3.4	2.0	4.1	2.4
65	67	3.7	2.0	4.4	2.9
80	76	3.7	2.4	4.4	3.2
100	108	4.1	2.7	4.9	3.6
125	133	4.4	3.0	5.3	4.1
150	159	4.8	3.4	5.7	
200	194	5.1		6.0	

Línea de vapor

Presión = 100 psi. = 6.89 bar.

Tabla. 25. Características de tuberías de acero para líneas de vapor.

Tipo	Diámetro mm. / pulg.	Longitud (m).	Peso (kg.).	Anclaje	Soportes ⁵²
	101.6 / 4	77.21	1,680.0	2	19
	50.8 / 2	5.21	49.0	1	2
	50.8 / 2	11.15	105.0	1	4
Tubería de acero al	50.8 / 2	11.17	105.0	1	4
carbón A-53 GrA''	50.8 / 2	5.68	50.0	1	2
Ced. 80	50.8 / 2	11.16	105.0	1	4
	50.8 / 2	5.29	49.0	1	2
	50.8 / 2	11.15	105.0	1	4
	50.8 / 2	6.63	62.0	1	2

3.9.3.1. Tubería de condensado

Presión: 30 psi.

Tabla. 26. Características de tuberías de acero para tuberías de condensado.

Tipo	Diámetro mm. / pulg.	Longitud (m).	Peso (kg.).	Anclaje	Soportes
	25.4 / 1	73.89	273.0	2	27
Tubería de acero al	19.05 / 3/4	11.72	64.0	1	5
carbón A-53 GrA''	19.05 / 3/4	11.70	64.0	1	5
Ced. 80	19.05 / 3/4	11.70	64.0	1	5
	19.05 / 3⁄4	6.84	17.0	1	3

3.9.4.1. Dimensionamiento de juntas de expansión

⁵² Ver anexos 3. Soportes para instalación.

Consideraciones:

Distancias entre puntos fijos

Determinar la longitud de los tramos que se elongación por temperatura.

- De a cuerdo a la temperatura de operación considerar elongación total.

Temperatura ambiente 80°F velocidad del aire nula.

De acuerdo al cálculo de elongación se determina si el tramo necesita o no junta de

expansión.

Toda la tubería que pasa de un edificio a otro se recomienda la instalación de junta.

Las variaciones de presión y temperatura en líneas de tuberías transportadoras de vapor

ocasionan movimientos en estas. Siendo esta la mayor dificultad del problema

principalmente en un sistema de tuberías flotantes.

Estos movimientos causan esfuerzos excesivos sobre la misma línea y también sobre

anclajes, soportes, paredes y equipos.

Para compensar estos movimientos se recomienda colocar juntas de expansión en puntos

determinados en el sistema de acuerdo al cálculo.

Tipos de movimientos en las líneas de tuberías

Movimientos axiales

Movimientos laterales.

Movimientos angulares y radiales.

Red de vapor a 100 psi. = 6.89 bar.

Material: Acero al carbón ASTM A-53 GrA.

Temperatura: 338 °F.

Temperatura ambiente: 80 °F.

Coeficiente de dilatación⁵³ a 338 °F = 2.683 pulg./100 pies.

Coeficiente de dilatación⁵⁴ a $80 \, {}^{\circ}\text{F} = 0.58 \, \text{pulg}$.

Diferencia: 2.103

Recorrido esperado: 5.33 (F.S = 10%)

Criterio: Para el cálculo se toman tramos cuyas longitudes sean mayores de 60 pies o cuyas

elongaciones sean mayores de 1.5 pulg.

3.10.1.1. Tubería de vapor

Tabla. 27. Características técnicas de juntas de expansión para líneas de vapor.

Tramo ⁵⁵	Longitud (m.)	Elongación (m.)	Junta de expansión recomendada
0-1	77.21	0.1482	UNAFLEX

Red de condensado a 30 psi.

Material: Acero al carbón ASTM A-53 GrA.

Temperatura: 274 °F.

Temperatura ambiente: 80 °F.

Coeficiente de dilatación a 274 °F = 1.887 pulg./100 pies.

Coeficiente de dilatación a 80 °F = 0.58 pulg.

Diferencia: 1.307

Recorrido esperado: 3.17 (F.S = 10%)

Criterio: Para el cálculo se toman tramos cuyas longitudes sean mayores de 60 pies o cuyas elongaciones sean mayores de 1.5 pulg.

3.10.2.1. Tubería de condensado

⁵³ Ver anexos 2. Tabla 8 Coeficientes de dilatación.

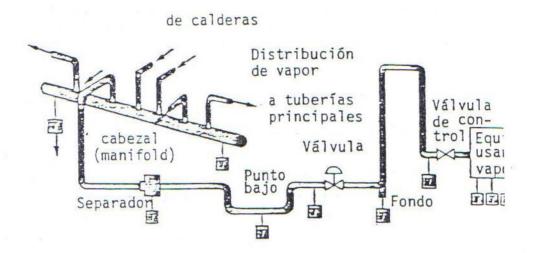
⁵⁴ Ver anexos 2. Tabla 8 Coeficientes de dilatación.

⁵⁵ Ver anexos 1. Planos de nuevas instalaciones.

Tabla. 28. Características técnicas de juntas de expansión para tuberías de condensado

Tramo ⁵⁶	Longitud (m.)	Elongación (m)	Junta de expansión recomendada
0-0	73.89	0.1182	UNAFLEX

3.11.1.1. Trampas de vapor.


Para eliminar el condensado que se forma en las tuberías de distribución de vapor y en los equipos, utilicé trampas separadoras de condensados y como criterio para la localización de las trampas de vapor consideré los siguientes aspectos:

- En las líneas generales de distribución cada 30 o 40 metros y en los extremos de ellas
- En los extremos de los ramales de vapor cuando excedan de 10 metros de longitud.
- En todos los puntos donde la línea de vapor cambie de horizontal a vertical por pequeño que sea este cambio de dirección.
- Las trampas se eligen en función de la diferencia de presiones y en base a la carga de condensado.
- Para la selección del tipo y factor de seguridad se utiliza la tabla en función de la aplicación.
- En todos los equipos con circuito cerrado en que se utilice el calor latente para el proceso, como es el caso de las secadoras tipo tómbola, mangles marmitas etc.

En la siguiente figura se muestra la ubicación de las trampas de vapor.

⁵⁶ Ver anexos 1. Planos de nuevas instalaciones.

Ubicación de trampas en el sistema de vapor.

3.11.2.1. Estaciones de trampeo.

El cálculo esta referido a las trampas que drenan el condensado de las líneas de distribución de vapor como se detalla a continuación.

- Distribución de vapor
- Puntos intermedios según consideración.
- En finales de línea.

El tipo y tamaño de la trampa se seleccionará de acuerdo a:

- La cantidad máxima de condensado acumulado
- Aplicación del factor de seguridad
- Determinar la presión diferencial

Tabla. 29. Selección de trampas en el sistema de distribución de vapor.

	Caudal		Caudal	Tra	ampa recomend	ada
Tramo ⁵⁷	(kg./h)	F.S	(kg./h)	Tipo ⁵⁸	Diámetro (mm.)	N° Estación ⁵⁹
0-0	767.64	3	2,302.92	FT-14-14	38.10	T-0
0-0	767.64	3	2,302.92	FT-14-14	38.10	T-0
1 – 1	127.29	3	381.88	FT-150 ⁶⁰	19.05	T-2
2 - 2	127.29	3	381.88	FT-150	19.05	T-3
3 – 3	127.29	3	381.88	FT-150	19.05	T-4
4 – 4	189.15	3	567.44	FT-150	19.05	T-5

3.12.1.1. Aislamientos térmicos.

- Las tuberías de distribución de vapor y de retorno de condensados deben aislarse térmicamente, empleando tubos preformados en dos medias cañas de fibra de vidrio.
- El espesor del aislamiento será indicado de acuerdo con la presión de vapor según se indica a continuación.

Tabla. 30. Recomendaciones de espesores de aislamiento según Normas Mexicanas.

Diámetro del tubo (mm)	Espesores de acuerdo con la presión del vapor (Kg/cm²)		
,	Hasta 1.5	De 1.5 a 14.0	
13-25	25	38	
32-38	38	38	
50-300	38	50	

3.12.2.1. Dimensionamiento del aislamiento.

⁵⁷ Ver anexos 1. Planos de nuevas instalaciones.

⁵⁸ Ver anexos 2. Tabla 13 y 14, <u>Selección de trampas según Manual Spirax Sa</u>rco.
⁵⁹ Ver anexos 1, Plano de nuevas instalaciones.

⁶⁰ Ver anexos 2. Tabla 15 y 16, Selección de trampas según Manual Spirax Sarco.

Consideraciones:

Norma: Según ASTM.

Conductividad térmica: 0.2 a 0.3
$$\frac{Btu \times pu \lg}{{}^{\circ}F - pie^2 - h}$$

Consideraciones de normas mexicanas: Tabla 17.

Las perdidas de calor serán calculadas, tomando en cuenta una temperatura ambiente de 80°F y una operación para 24 horas continuas, es decir 8760 horas al año.

Coeficiente de conductividad:
$$f = 1.68 \frac{Btu}{h - pie^{2} \circ F}$$

Por formula N° 8 Ref. 5
$$Q_c = \frac{T - T_a}{\frac{rs}{K} \ln(\frac{rs}{ri}) + \frac{1}{F}}$$

Para una presión de 100psi y temperatura de 338°F:

Temperatura media: 209°F,
$$\Delta T = 258$$
°F, $K = 0.31 \frac{Btu - pu \lg}{{}^{\circ}F - pie^2 - h}$

Tabla. 31. Características técnicas de espesores de aislamiento para líneas de vapor.

Diámetro mm. / pulg.	Diámetro externo mm. / pulg.	Espesor (mm.)	Perdida de calor $\frac{KW}{m^2} / \frac{Btu}{h - pie^2}$	Longitud (m.)
101.6 / 4	114.30 / 4.50	76.20	0.0593 / 18.80	77.21
50.8 / 2	60.45 / 2.38	76.20	0.0558 / 15.70	67.44

Consideraciones:

Norma: Según ASTM.

Conductividad térmica⁶¹: 0.2 a 0.3
$$\frac{Btu \times pu \lg}{{}^{\circ}F - pie^2 - h}$$

Consideraciones de normas mexicanas: Tabla 17.

Las perdidas de calor serán calculadas, tomando en cuenta una temperatura ambiente de 80°F y una operación para 24 horas continuas, es decir 8760 horas al año.

Coeficiente de conductividad⁶²:
$$f = 1.68 \frac{Btu}{h - pie^{2} {}^{\circ} F}$$

Por fórmula N° 8 Ref. 5
$$Q_c = \frac{T - T_a}{\frac{rs}{K} \ln(\frac{rs}{ri}) + \frac{1}{F}}$$

Para una presión de 30 psi y temperatura de 274 °F:

Temperatura media: 177 °F,
$$\Delta T = 194$$
° F , $K = 0.29 \frac{Btu - pu \lg}{{}^{\circ}F - pie^2 - h}$

Tabla. 32. Características técnicas de espesores de aislamiento para tuberías de condensado.

Diámetro mm. / pulg.	Diámetro externo mm. / pulg.	Espesor (mm.).	Perdida de calor $\frac{KW}{m^2} / \frac{Btu}{h - pie^2}$	Longitud (m.)
25.4 / 1	33.53 / 1.32	38.10	0.0798 / 25.30	73.76
19.05 / 3/4	26.67 / 1.05	38.10	0.0757 / 24.00	41.96

3.13.1.1. Requerimientos de agua.

Ver anexo 2. Tabla 10. <u>Conductividad térmica.</u>
 Ver anexo 2. Tabla. 11. <u>Coeficientes de conductividad.</u>

En dado caso que el suministro de agua que se le de al hospital de parte de la ciudad no sea el adecuado se debe de considerar que el consumo de agua por kilogramo de ropa puede ser de 30 a 40 litros, a efectos de determinar la capacidad del sistema de almacenaje.

Se recomienda que la dureza del agua para lavandería no exceda de 1 a 40 PPM. ya que si esta aumenta se desperdicia el jabón y detergentes en un aproximado de 0.73 kg de jabón por kg de dureza de agua

Según lo expuesto anteriormente se requerirá un mínimo de agua de:

$$1 \ kg - ropa \longrightarrow 40 \ litros - agua$$
 $3,801.5 \ kg - ropa \longrightarrow x$

Re querimiento = 152,060.0 litros = 152.06 m³ / dia = 27.90 gpm.

Agua requerida para equipos de propuesta:

Tabla. 33. Consumo de agua para equipos de la propuesta.

Cantidad	Equipo	Consumo $(g / min) =$ (m^3/min)
3	Lavadora extractora	300(3)
Total		900.00

3.14.1.1. Requerimientos de aire comprimido.

Dado que los equipos propuestos necesitan aire comprimido para el control de los sistemas neumáticos se presenta una tabla en función de los datos técnicos proporcionados por el fabricante para los equipos propuestos:

Tabla. 34. Consumo de aire comprimido para equipos de la propuesta.

3	Lavadora extractora	3(1.3) = 3.9
4	Secadoras	4(2.0) = 8.0
Total		11.9

Se recomienda un compresor que maneje un desplazamiento de aire de 12.00 c.f.m. y para ser instalado en una red que se distribuya a 100 psi.

3.15.1.1. Otros requerimientos.

Los tableros de control y de suministro de energía eléctrica deben de estar alejado de los equipos por posibles fugas de agua o de vapor, además la altura mínima de los contactos debe estar a 1.20 metros del nivel de piso terminado La iluminación será del tipo fluorescente y un 50 % de esta debe estar en el sistema de emergencia y respecto a los equipos al menos uno de cada tipo deberá estar en la planta de emergencia

Tabla. 35. Consumo de aire comprimido para equipos de la propuesta.

Cantidad	Equipo	Consumo (kw-h.)
3	Lavadora extractora	3(7.69) = 23.07
4	Secadoras	4(7.69) = 23.07
Total		46.14

Tabla. 36. Cuadro resumen de las condiciones del proyecto. 63

⁶³ Nota.

	Situación sin proyecto	Situación con proyecto		
Aspectos generales.				
Consumo de vapor	6,354.0 kg. / h.	8,707 kg. /h.		
Demanda de ropa	3,387,732 kg. / año.	4,092,152 kg. / año.		
Espacio de instalaciones de lavandería	833.0 mts ²	1,157.0 mts ²		
Consumo de agua	1,008.0 g / min.	1,908.0 g / min.		
Porcentaje de utilización de caldera.	97 %	97 % mas una nueva caldera de 150 BHP		
Consumo de energía eléctrica	9,437 Kw hora.	9,484 Kw hora.		
Horas de trabajo	20	16		
Equipo de lavandería.				
Tren de lavado	1	1		
Lavadoras extractoras	3	6		
Secadoras rotativas	6	10		
Planchador de rodillo	2	2		
Planchador de forma				
	Otros aspectos.			
Planta arquitectónica	Incompleto	Desarrollada		
Plano de distribución de vapor y condensado	No existen	Desarrollada		
Plano de distribución de agua potable y tratada	No existen	Desarrollada		
Plano de distribución de aire comprimido	No existen	Desarrollada		
Plano de distribución de químicos.	No existen	Desarrollada		

Capitulo IV

Los planos que se presentan en este trabajo a los cuales se hace referencia en los capítulos I y III fueron elaborados en el desarrollo de la tesis.

Aspectos complementarios.

4.1.1.1. Seguridad en calderas

Los trabajadores que utilizan y hacen el mantenimiento a las calderas saben que éstas son potencialmente peligrosas. Las calderas son recipientes cerrados con quemadores de diesel, bunker, gas, etc. que calientan agua u otros líquidos para generar vapor.

El vapor está a presión y sobrecalentado, y se usa para generar electricidad, para calefacción o para otros propósitos industriales. Aunque las calderas normalmente están equipadas con una válvula de alivio de presión, si la caldera no puede resistir la presión, la energía que contiene el vapor se libera instantáneamente. Esta combinación de metal explotando y vapor sobrecalentado puede ser extremadamente peligrosa.

Sólo trabajadores autorizados y debidamente capacitados deben operar las calderas. Los trabajadores deben conocer bien el manual de operación y las instrucciones del fabricante de la caldera.

Los operadores de calderas deben inspeccionar las calderas con frecuencia en búsqueda de fugas, combustión correcta, funcionamiento de los dispositivos de seguridad e indicadores, así como otras funciones. Muchas calderas viejas, así como las tuberías de vapor o agua caliente pueden tener recubrimientos aisladores, enrollados o forros de asbesto. Los trabajadores deben inspeccionar esas áreas periódicamente para asegurarse de que los materiales no estén dañados, que no se estén descascarando y que no estén deteriorados. Deben reportarse la existencia de materiales dañados y deben repararse o eliminarse de inmediato por un contratista certificado para trabajos en asbesto. Indicios de superficies rajadas, prominencias, corrosión u otras deformidades deben ser reparadas de inmediato por un técnico autorizado. Los registros detallados de la operación y el mantenimiento de la caldera pueden ayudar a asegurar su seguridad.

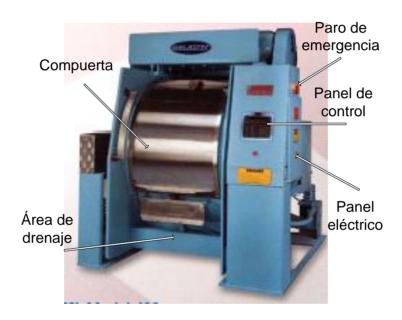
El área que rodea a la caldera debe mantenerse libre de polvo y desperdicios, y no se deben almacenar materiales combustibles cerca de ninguna caldera. Los pisos a menudo son de concreto sellado y pueden ser muy resbalosos cuando están mojados. Los derrames deben trapearse o limpiarse de inmediato. Asegúrese de que haya suficiente iluminación y que cualquier lámpara defectuosa se repare de inmediato. Debido a que las calderas tienen superficies calientes, debe haber suficiente espacio a su alrededor para que los trabajadores puedan moverse en la sala de calderas. Las salas de calderas pueden ser ruidosas, por lo tanto el área debe estar identificada como tal y los trabajadores deben usar protectores para los oídos cuando trabajen dentro de la sala de calderas.

4.2.1.1. Manual de operación de equipos.

Las condiciones operación de los equipos generadores de vapor y su red de distribución son de suma importancia debido a que de una adecuada operación depende la eficiencia de producción y entrega del vapor a los diferentes puntos de consumo a la vez que se prolonga la vida útil del equipo.

4.2.2.1. Sistemas de distribución de vapor y retorno de condensado.

- Asegúrese que las válvulas de salida del vapor en la caldera, como las de distribución estén cerradas durante el periodo de carga (inicio).
- Una vez se haya alcanzado la presión de operación abrá las válvulas siguientes: Válvulas de detención (o de salida) de vapor de la caldera.
 - Verifique las lecturas de presión en las diferentes derivaciones (estación reductora de cada ambiente)
 - Utilice los by-pass al inicio de la operación del sistema (by-pass de distribución 1 y 2).


- Al finalizar el ciclo de trabajo cierre las válvulas de distribución de vapor y de la salida de la caldera.

4.2.3.1. Equipo de lavandería

4.2.3.2. Lavadora extractora

• Carga:

La consideración más importante en la carga de la lavadora-extractora, es estar absolutamente seguro de que la ropa esté perfectamente repartida entre los compartimientos.

Panel de control programable

• Recomendaciones:

- Cargue los compartimientos con el mismo tipo de ropa.
- No sobrecargar la máquina, es importante que la carga sea justamente la especificada por el fabricante (Considere que si la máquina se sobrecarga, la calidad del lavado disminuye).

Ejemplo:

Si se dispone de una lavadora que tiene una capacidad de 150 lbs, con un cilindro de tres compartimientos.

Entonces:

Cada compartimiento deberá cargarse con 50 lbs de ropa seca, del mismo tipo y con el mismo grado de suciedad.

Cada compartimiento debe cargarse con igual peso

4.2.3.3. Puesta en funcionamiento (Operación automática)

La máquina esta equipada con varios dispositivos que previenen una operación equivocada, por lo que antes de energizarla se deben revisar las siguientes condiciones:

- 1. Verificar que la presión de aire en la línea sea de 100 P.S.I.
- 2. Verificar que la presión de vapor en la línea sea de 100 P.S.I.
- 2. Que los interruptores en el panel de control estén todos en posición "automática".
- 3. Que la compuerta exterior esté bien cerrada.

Enseguida:

- 1. Inserte en el programa manualmente permite su movimiento y arranque" (Start) el equipo.
- 2. Accionar el interruptor de "arranque" (Start) ubicado en el panel de control.

a) Período de trabajo.

• El ciclo se desarrollará automáticamente y la máquina efectuará las instrucciones contenidas en el programa insertado (llenado, lavado, dreno, extracción).

Nota:

En caso de requerirse un paro repentino durante el ciclo de lavado o de extracción, accionar el botón de paro (Stop)

Para la aplicación de productos de lavar, la máquina posee un inyector automático con varios compartimientos donde se colocan los productos que se van a utilizar durante el ciclo (blanqueadores y detergentes), y en el momento requerido uno o más compartimientos son inundados con agua y los productos diluidos son introducidos en el cilindro de lavar.

b) Al finalizar

- La máquina se detendrá automáticamente al terminar el ciclo y se escuchará una señal. Luego accione el interruptor de paro (Stop).
- Para abrir la compuerta, oprima el botón "abrir" (open).

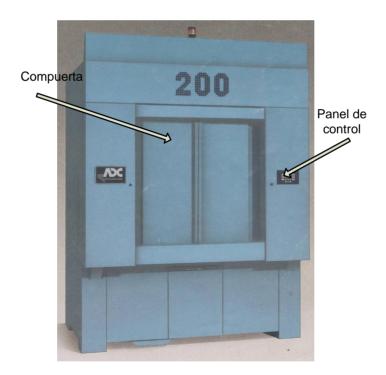
c) Al terminar la jornada diaria.

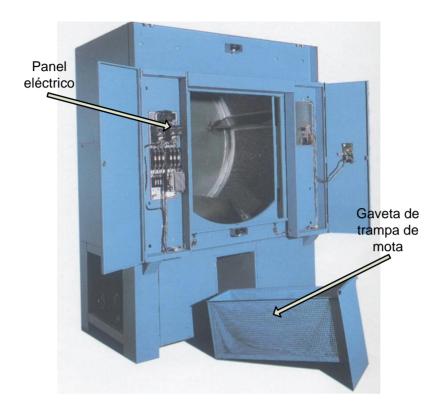
- Desconecte la energía eléctrica
- Asegúrese que las válvulas de vapor, agua y aire comprimido, queden cerradas.
- Limpiar la máquina exteriormente con un trapo húmedo, removiendo los residuos de jabón, al final de la jornada.

d) Operación manual.

- Interruptores separados en el panel de control, permiten ejecutar las funciones que se requieran, por ejemplo:
- Encender y apagar el motor de lavado o extracción
- Abrir y cerrar el drenaje
- Aplicar agua caliente o fría
- Subir o bajar el nivel del agua y temperatura
- La duración de las operaciones manuales será controlada por el operador.

4.2.3.4. Consideraciones antes de puesta en marcha.


- Asegúrese de que las puertas interiores estén cerradas y aseguradas apropiadamente, la puerta principal completamente cerrada y apretada.
- 2. Asegúrele que todos los compartimiento hayan sido cargados; el mejor método es tener tres cestas de ropa de lavandería previamente pesada y clasificada a la mano
- 3. Revisar la presión de aire en el manómetro.
- 4. Observar cualquier ruido sospechoso o inusual u otro signo de mal funcionamiento (motor sobrecalentado, freno humeante, disminución de la velocidad normal) antes de que se desarrolle algún problema serio.
- 5. La máquina no opera cundo la puerta no está adecuadamente cerrada: sin embargo, para conocer la posición, la puerta debe abrirse y todos los interruptores, excepto le


de control deben ser apagados. Para activar los controles el interruptor debe estar encendido.

4.2.4.1. Secadora rotativa.

a) Carga

- Clasificar la ropa para que la carga sea solamente con un tipo de ropa.
- Abrir la puerta y cargar la tómbola con la cantidad de libras (ropa seca) especificada por la capacidad del equipo.
- Considerar que una sobrecarga dará como resultado un secado deficiente.
- Asegúrese de que la puerta quede bien cerrada.

b) Puesta en marcha.

La máquina esta equipada con varios dispositivos que previenen una operación equivocada, por lo que antes de energizarla se deben revisar las siguientes condiciones:

- En la primera operación del día, abrir la válvula de vapor y conectar la energía eléctrica, accionando el interruptor principal (caja térmica).
- Verificar que la presión de aire en la línea sea de 100 P.S.I.
- Que los interruptores en el panel de control estén todos en posición "automática"
- Que la compuerta exterior esté bien cerrada.
- Cargar el programa requerido dependiendo del tipo de ropa a procesar luego arranque accionar el interruptor de "arranque" (Start) ubicado en el panel de control.

Nota:

Recuerde no cargar la máquina con material plástico o piezas ahuladas.

c) Período de trabajo.

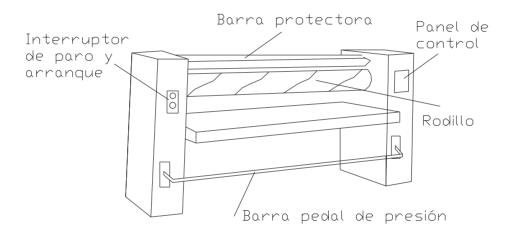
- Durante el período de trabajo de secado, la temperatura del aire dentro de la tómbola será mantenida al nivel marcado en el selector, una luz piloto indicará que la operación es realizada.
- Al completarse el tiempo de secado, el período de enfriamiento comenzará, y aire a temperatura ambiente circulará a través de la tómbola enfriando la carga.

Una luz piloto indicará la ejecución del período de enfriamiento.

d) Paradas repentinas.

Por seguridad, la máquina se detendrá cuando la puerta se abra. No introduzca las manos dentro de la tómbola cuando esté girando.

e) Al finalizar


- Cuando el tiempo de enfriamiento ha concluido se encenderá una luz piloto y sonará la alarma; la tómbola seguirá girando hasta que el operador accione el interruptor de paro (ON-OFF).
- Al concluir la jornada del día proceder a limpiar la trampa de mota, con la precaución de no hacerlo cuando la máquina esté en operación.
- Además, cerrar la válvula del vapor y cortar la energía eléctrica accionando el interruptor principal (caja térmica).

4.2.5.1. Planchador de rodillo.

Antes de comenzar a planchar, la ropa se debe doblar en forma adecuada a la longitud del rodillo. Ello permite un mejor aprovechamiento del planchador.

La ropa a planchar debe contener la humedad justa (por ejemplo la que deja los 12 minutos de centrifugado) para obtener un buen planchado.

Considerar la humedad de la ropa

4.2.6.1. Puesta en funcionamiento.

- Al comenzar la jornada del día, abrir la válvula de vapor, y conectar la energía eléctrica accionando el interruptor principal (caja térmica).
- Poner en movimiento el rodillo del planchador conectando el interruptor de paro y arranque.
- Una vez caliente la plancha (o concha), baje la barra pedal hasta que éste trabe.

Esto hará que el rodillo se presione contra la plancha, quedando la máquina lista para ser usada.

a) Período de trabajo.

- Introduzca la ropa en la medida que la velocidad del rodillo se lo exija.
- En caso de emergencia accione la barra protectora.

Nota:

Nunca baje la barra pedal sin estar el rodillo en movimiento

b) Al finalizar

- Soltar la barra del pedal (desaccionarla) para que el rodillo se aleje de la plancha.
- Accionar el interruptor de " paro y arranque " para detener el giro del rodillo.
- Al terminar la jornada diaria cerrar la válvula del vapor y cortar la energía eléctrica accionando el interruptor principal (caja térmica).
- Nunca pare el giro del rodillo sin haber retirado el rodillo de la plancha.

4.2.6.2. Instrucciones de operación.

- Suministrar la energía eléctrica accionando al interruptor principal.
- Abra la válvula del vapor y verifique la presión de operación 125 FWG Max.
- Caliente el planchador lo necesario antes de empezar a trabajar (10 a 15 min).
- Abra la válvula de retorno de condensado by-pass para drenar e1 condensado acumulado y así acelerar el calentamiento del planchador.
- No trate de aplicar presión a los rodillos ni de planchar ropa hasta que la máquina este totalmente caliente.
- Alcanzada la temperatura de trabajo arranque el motor con el control de velocidad seleccionado para la velocidad inferior. Gradualmente aumente la velocidad hasta el límite deseado para la operación. Para detener los rodillos desembráguelos por medio la palanca de embrague. Para parar al motor utilice los frenos de control (arranque - parada).

 Aplique solamente la presión necesaria a los rodillos para producir un buen acabado.

La presión correcta esta determinada por los espesores de los artículos a planchar. Nunca utilice más presión de la necesaria.

- En máquinas nuevas o cuando los forros de los rodillos son nuevos debe de aplicarse la misma presión que se registre en el dial por un período de un par de días por lo menos, para que los forros se asienten de manera uniforme.
- En períodos de reposo la máquina, es recomendable retirar la presión para proteger los rodillos.
- La velocidad correcta de la máquina esta determinada en todos los casos por la cantidad de humedad permanente en los artículos y por el tipo de acabado requerido.
- Al finalizar el ciclo de trabajo, cierre la válvula de vapor y corte la energía eléctrica.

Los artículos deben de distribuirse uniformemente sobre 1a mesa de alimentación estirando la pieza para cubrir el ancho total del rodillo y utilizar al máximo la capacidad de la máquina.

Reducción considerable de presión origina una disminución de rendimiento de la máquina.

4.3.1.1. Aspectos de Seguridad en lavandería.

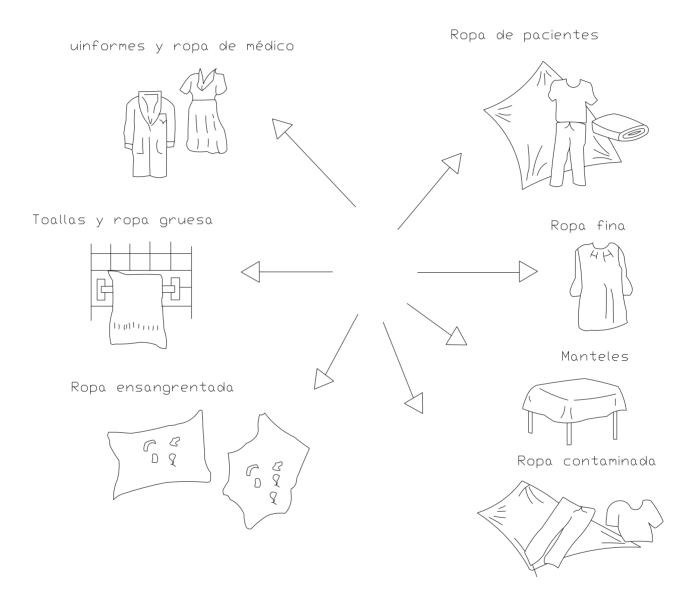
4.3.2.1. Condiciones de seguridad en el servicio de lavandería

- No eliminar guardas de seguridad que protegen elementos en movimiento de las máquinas
- Evitar la humedad en las partes eléctricas de las máquinas
- No introducir las manos en partes en movimiento de las máquinas.
- Mantener las canaletas de drenaje con sus parrillas.
- No usar vestimentas con cordones volantes.

 Utilizar guantes y mascarilla durante el proceso de clasificación, pesado y carga de las máquinas.

4.3.3.1. Componentes de Seguridad.

En las actividades que se realizan en las áreas de lavandería, se debe cumplir con normas específicas para los procesos que en ella se realizan. En nuestro país estas normas, son una adaptación de las normas Mexicanas, para las actividades hospitalarias. Estas plantean lo siguiente:


4.3.4.1. Recolección y transporte:

- El personal responsable de la recolección de ropa en las diferentes áreas o servicios deberán utilizar guantes, mascarillas y gabachones.
- Toda la ropa se deberá colocar en bolsas de aro de lona o mantas de algodón rotulando únicamente la bolsa con ropa contaminada.
- Las bolsas se cerrarán y rotularán especificando: Tipo, cantidad de ropa, fecha, nombre y firma de quién entrega y recibe.
- No deberán utilizarse bolsas plásticas negras o rojas ya que estos colores son utilizados para colocar desechos.
- Se utilizará bolsa transparente para el manejo de ropa contaminada y se colocará dentro de la bolsa de ropa con aro para su traslado, para minimizar el riesgo de contaminación y la humedad de la ropa sucia y la bolsa. La ropa de pacientes recién nacidos e Inmunodeprimidos deberá ser procesada independientemente del resto.

- La cuenta y separación de ropa no debe realizarse en el área de pacientes y durante su recolección se debe evitar la agitación para reducir la diseminación de microorganismos al ambiente
- Se deberán colocar las bolsas con ropa en carritos de acero inoxidable y de uso exclusivo para este fin y se entregarán al área de acopio o recepción.
- Cuando la ropa se tenga que trasladar a otro centro se conducirá en vehículos cerrados, evitando que el personal tenga contacto con las bolsas. Hacer énfasis en que no se deben de acostar sobre ellas, aunque solo contengan ropa sucia y no transportar otro tipo de material o equipo.
- Posterior al traslado de ropa (sucia o contaminada) se deberá realizar el proceso de desinfección completa del vehículo de transporte.

4.3.5.1. Proceso de lavado

Selección de ropa para el proceso de lavado.

 Para el lavado de la ropa nunca mezclar detergentes con hipoclorito de sodio ya que produce toxicidad e inactivación.

- Para el lavado de la ropa sucia: El desmugre se realizará con abundante agua fría durante el tiempo necesario
- El prelavado se realizará, de acuerdo al tipo de equipo disponible a la suciedad y a la dureza del agua.
- La fase de enjuague se realizará con agua templada hasta eliminar todos los restos de jabón.
- La fase de blanqueo, se efectuará con sustancias blanqueadoras como: cloro inorgánico, peroxido de hidrogeno, hipoclorito de sodio al 1% y otros.
- El personal deberá conocer la importancia de la temperatura y el tiempo necesario para la acción mecánica y el proceso químico adecuado.

4.3.6.1. Lavado de ropa contaminada:

- El desmugre de la ropa contaminada se realizará con abundante agua fría, hasta eliminar el mayor porcentaje de secreción biológica.
- El Prelavado se realizará con jabón aniónico o no iónico, de ph neutro, con agua a 30° o 32° C. (medida con termómetro), durante el tiempo establecido
- El Lavado y desmanchado se realizará igual que el prelavado, agua a 30°C o 32°C, (medida con termómetro), el tiempo recomendado.
- Enjuagar con agua templada hasta eliminar restos de jabón. Efectuar un segundo enjuague con sustancias blanqueadoras. Efectuar un tercer enjuague que es el final con agua fría si el equipo no tiene los procesos recomendados por el fabricante.

- Los operadores de las máquinas y el controlador deberán estar atentos a los ruidos, vibraciones anormales y a los registros gráficos; en caso de suceder anormalidades apagarán el equipo inmediatamente y notificarán al supervisor o jefe del área.
- Al terminar la jornada diaria el Técnico responsable: Desconectará la energía eléctrica, se asegurará de que las válvulas de vapor, agua fría y caliente queden cerradas además limpiará la máquina exteriormente con un trapo húmedo, removiendo los residuos de jabón y luego con un paño humedecido con agua clara.

4.3.6.2. Secado y planchado

- El técnico responsable deberá respetar la capacidad de la máquina con respecto al peso, teniendo el cuidado de no sacarla húmeda.
- Si el técnico identifica anomalías deberá apagar los equipos y notificar inmediatamente al supervisor o encargado del área, para la coordinación con mantenimiento.

4.3.6.3. Almacenamiento:

- El personal que manipula la ropa ya procesada (limpia) deberá usar el uniforme exclusivo de esa área.
- La ropa debe almacenarse seca, ya que la humedad favorece el desarrollo microbiano, no recibirla si esta húmeda.
- Almacenar en estantes metálicos o armarios cerrados, secos, protegidos de polvo, humedad, insectos y roedores. Nunca almacenar en esta área alimentos u otros artículos.

- Para manipular la ropa limpia en ropería el personal deberá usar las medidas de Bioseguridad (gorro, mascarilla, guantes) y lavarse las manos previas y posteriores al manejo.
- Cuando el responsable presente una enfermedad respiratoria aguda deberá de excluirse de su área de trabajo hasta que se mejore ya que puede contaminar el área y la ropa.

4.6.3.4. Traslado:

- Los carritos utilizados para el transporte de ropa limpia a los servicios de internación no deben ser los mismos que se utilizan en la recolección de ropa sucia y contaminada, si la disponibilidad es única, deberá ser el carrito transportador previamente desinfectado con un paño humedecido con hipoclorito de sodio al 2%, haberlo dejado por lo menos cinco minutos antes de quitarlo con otro paño humedecido con agua limpia y secado.
- La ruta de transporte no deberá ser la misma donde circula la ropa sucia, ni la misma donde circula la mayoría de los visitantes.
- Si la ropa ya tratada se llevara a otro Centro de Atención está se colocará además de la bolsa del transporte en bolsas de polietileno transparentes, se sellarán y etiquetarán con la fecha de lavado y por ningún motivo durante el traslado el auxiliar debe acostarse sobre los bultos.
- La ropa limpia debe ser utilizada dentro de los 15 días de lavada, pasada esa fecha se deberá lavar nuevamente.

4.7.1.1. Bioseguridad:

- Condiciones de seguridad en el servicio de lavandería y ropería:
 - a) No se comerá ni se almacenarán alimentos dentro de cualquiera de las áreas de lavandería y ropería.
 - No eliminar guardas de seguridad que protegen elementos en movimiento de las máquinas.
 - c) Evitar la humedad en las partes eléctricas de las máquinas.
 - d) No introducir las manos en partes en movimiento de las máquinas.
 - e) Mantener las canaletas de drenaje con sus parrillas.
 - f) No usar vestimentas con cordones volantes, anillos, pulseras y mantener el cabello retraído con el gorro.
 - g) Utilizar el equipo de protección personal para cada una de las fases del proceso de lavandería y ropería.

Lavandería Externa:

- En casos en que el lavado se realice en Centros Externos el traslado de la ropa limpia deberá efectuarse además de las bolsas de lona en bolsas de polietileno transparente.
- El día del transporte deberá ser exclusivo para está actividad, garantizando que el vehículo haya sido desinfectado previamente con una solución de hipoclorito de sodio al 2% como se describió anteriormente.

4.8.1.1. Riesgos laborales.

- El personal que labora en la lavandería y ropería tiene que estar conciente que esta expuesto a innumerables riesgos capaces de provocar alteraciones o patologías laborales, los riesgos más comunes son los físicos, químicos, biológicos y ergonómicos por lo que debe de acatar todas las recomendaciones preventivas.
- En el caso de los riesgos físicos se debe tomar siempre en cuenta:
 - a) La capacitación, comunicación y reglamentación interna para prevenirlos.
 - b) Vigilancia estrecha de un adecuado control de la temperatura y ventilación de los ambientes, tales como las salas de máquinas de lavado, secado y planchado. El uso adecuado de protección personal en el área de recepción y pesado (zona contaminada) y ropería (distribución).
 - c) Entrenar al grupo humano para los casos de accidentes con corto punzante, quemaduras o heridas.
 - d) Tener un botiquín adecuadamente implementado para urgencias.
- En el caso del hipoclorito de sodio, nunca debe ser mezclado con amoniaco y se acataran las recomendaciones del productor al usar ácidos y álcalis.
- En todas las áreas de la lavandería se utilizarán las barreras físicas establecidas además del uniforme (gorro, mascarilla quirúrgica, guantes y gabachón) y la inmunización (vacunación con antitetánica para adultos, hepatitis B, influenza).
- En cuanto a los riesgos ergonómicos se tomara en cuenta:

- a) Mantener una relación directa con el equipo de trabajo para identificar rápidamente factores ambientales (humedad, vapor, calor) que afecten los límites normales de confort.
- b) Capacitar al personal sobre las posturas adecuadas para el trabajo y los movimientos naturales que se deben aplicar al trasladar: cargas, levantar peso, etc., teniendo presente el uso de ayudas tales como, carros de transferencia o equipos mecánicos adecuados, para evitar la fatiga y los trastornos músculo-esqueléticos.
- c) Los muebles de trabajo (sillas, mesas, bancos y otros) deberán estar acondicionados de tal manera que permitan la ergonomía postural recomendados y o avalados por el Comité de Seguridad e Higiene Industrial Local.
- d) Establecer una rotación de las actividades entre el personal para evitar monotonía en el trabajo.
- e) Mantener la organización del trabajo en equipo, la participación, el ritmo de trabajo y la automatización evitará problemas de estrés o de ergonomía psicosocial.
- f) Cualquier situación fuera de las ya enumeradas en esta norma deberá ser consultada con el Programa de Atención Integral en Salud Ocupacional

4.9.1.1. Principios de mantenimiento

Se saben los inconvenientes que causa un mal funcionamiento del equipo por falta de mantenimiento de las calderas, sea por pinchaduras en los tubos ó paredes de la caldera, deficiente puesta a punto, mala combustión, mal funcionamiento de los sistemas de seguridad, temperatura del sistema errónea (muy baja o muy alta), mal manejo por los encargados del sistema, etc., sobre todo en época invernal con sus consecuencias; mayor consumo de gas, interrupción del servicio de calefacción, o agua caliente, etc.

Algunos servicios que se pueden realizar son:

- Limpieza de sedimentos del fondo de caldera
- Limpieza de los tubos de humo
- Prueba de la eficiencia de la combustión y tiraje
- Limpieza interna y externa de la superficie de calentamiento
- Desarmado, limpieza y puesta a punto del equipo de combustión
- Mantenimiento de los dispositivos de corte de combustible por bajo nivel de agua
- Mantenimiento de los dispositivos de corte de combustible por falta de llama
- Mantenimiento de los dispositivos limites y operativos
- Limpieza del tanque de expansión
- Verificación general de todo el sistema
- Puesta en marcha

4.10.1.1. Manual de mantenimiento preventivo

Para el manual de mantenimiento preventivo del sistema de vapor, se emplean los siguientes formatos:

Formato A. Contiene la siguiente información:

Identificación de la máquina.

- Actividad a realizar.
- Frecuencia de realización.

Formato B. Contiene la siguiente información.

- Nombre de la máquina.
- Ambiente en el que se encuentra.
- Distribución por semana de todo el año.

Formato C. Contiene la siguiente información.

- Ambiente donde se encuentra la máquina.
- Nombre de la máquina.
- Fecha de realización del trabajo
- Tiempo que duro el trabajo.
- Tipo de trabajo realizado.
- Descripción del trabajo realizado.

El formato A y B contendrán toda la información que se necesita de cada uno de los equipos del sistema.

Cuando se detecte algún problema en el equipo, este deberá ser reportado al departamento de mantenimiento del hospital.

Los formatos que se plantean, contienen la información del mantenimiento preventivo que se propone para los siguientes elementos del sistema de vapor.

- Calderas
- Instalación general
- Lavadoras
- Secadoras

FORMATO A.

	SOCIAL (ISSS	VADOREÑO DI), HOSPITAL G N SALVADOR								
PROGRAMA DI	E MANTENIMIENTO I	PREVENTIVO								
AMBIENTE:										
MÁQUINA:										
SERIE / MODEL	.O:									
MARCA:										
CODIGO:										
					FR	ECI	JENO	CIA		
OPERACIONES	DE MANTENIEMINT	0		D	S		M	Т		A
						~	111	-	~	
D: DIARIO	Q: QUINCENAL	T: TRIMESTRAL	A: ANUAL							
S: SEMANAL	M: MENSUAL	S: SEMESTRAL								

FORMATO B.

	INS	STIT	ruto	SA	ALV	AD	OR	REÍ	ŎЙ	DE	L S	SEC	GUF	RO	so	CI	AL	,	IS	SS						3		ÁQU		A:					
HOSPITAL GENERAL ISSS				PF	ROC	SRA.	MΑ	L	DE I	MА	NT	EN.	IMI	EN	ТО	PR	EV	EN'	ΓΙV	О								UII ⁄/BI		TE.					
FECHA ACTIVIDAD	ENER 1° 2° 3° S S S	O 4°	FEBF 1° 2° 3	RO 3º 4º	M P 1°	ARZ 2° 3°	ZO 4°	A 1°	BRI 2° 3'	L 9 4°	Model No.	IAY 2° 3	O 0 40	J 1°	UNI 2° 3	O ° 4'	J o 1°	ULI 2° 3	O 8° 4°	A lo	GO:	ST(3° 4	O S	SET ° 2°	BR 3°	E 4°	OC 1°2	TB 2° 3°	RE 4°	NC 1°)VE 2° 3	RE ° 4°	1°	IC 2°	BRE 3° 4°
	SSS	S	SSS	SS	S	SS	S	S	SS	S	S	SS	SS	S	SS	SS	SS	SS	SS	S	S	S	SS	SS	S	S	S	SS	S	S	SS	SS	S	S	SS
																1						1													\vdash
																																			\vdash
		+								+	+	\vdash	+			+			+	+		+	+	+							+	+			\vdash
												\vdash										+									+	+			\vdash
																						4													
											+	\vdash								-		+									+	+			\vdash
		+																																	\vdash
																																			\vdash
																																			\vdash
		+																																	\vdash

FORMATO C.

	TRO DE TRABA REALIZADOS	JOS	SAILEY .		LVADOREÑO DEL SE GENERAL, SAN SALV	
AMBIENTE:			EQUIPO:			
FECHA	PERSONAL	TIEMPO	TIPO DE T	TRABAJO	DESCRIPCIÓN DEL	H: HORAS. P: PREVENTIVO.
TECHY	TERGOTTIE	Н	P	С	TRABAJO	C: CORRECTIVO.

PROGRAMA POR EQUIPO

INSTITUTO SALVADOREÑO DEL SEGURO SOCIAL (ISSS), HOSPITAL GENERAL						
SAN SALVADOR						
PROGRAMA DE MANTENIMIENTO PREVENTIVO						
AMBIENTE: Casa de máquinas						
MÁQUINA: Calderas						
SERIE / MODELO:						
MARCA: Cleaver Brooks						
CODIGO:						
OPERACIONES DE MANTENIEMINTO	D	FR:	ECU Q	JENO M	CIA T	S A
Conjunto quemadores						
Boquillas. Revise su estado.				X		
Quemador. Revise su estado				X		
Electrodos del quemador. Vea su ajuste				X		
Aisladores de electrodos. Revise el estado de la porcelana.				X		
Cables del transformador. Vea su estado y apriételos.				X		
Quemador de gas. Verifique la presión de gas.			X			
Limpieza de foto celda. Límpiela y al igual que su conducto y haga la prueba de falla de flama			X			
Combustión. Analice que los gases de combustión sean los % de CO 2 a % de O 2.				X		
Temperatura máxima de gases de chimenea. 470 °F.						
Control de nivel						
Cristal de nivel. Corrija cualquier fuga.				X		
Niveles de operación. Compruebe los niveles de operación.				X		
Grifo de cristal.				X		
Electrodos. Vea que estén limpios.					X	
Diafragma del flotador. Revise su estado.						X
Columna de nivel. Verifique su limpieza interior.						X
•						
Bomba de inyección de agua						
Temperatura de cojinetes.				X		
Lubricación de cojinetes. Revisar que se haya cambiado la grasa.						
Cojinetes. Con la bomba desarmada revisar que hayan cambiado					X	
Prensaestopas. Vea que se hayan cambiado todos los empaques.						X
Flecha. Vea si no esta rallada.				X		
Alineación. Compruebe su alineación con el motor.						X
Cuerpo de la bomba. Con la bomba desarmada vea que no esta incrustada.						X
Cuerpo de caldera						
Limpieza por el lado del agua. Inspeccione el interior.						X
Conexiones y tuberías. Verifique su limpieza interior.						X
Fugas en los fluxes. Vean que no existan.						X
Limpieza de fluves. Vea que no estén hollinados.						X
Material refractario. Inspecciónelo.						X
D: DIARIO Q: QUINCENAL T: TRIMESTRAL A: ANUAL						
S: SEMANAL M: MENSUAL S: SEMESTRAL						

INSTITUTO SALVADOREÑO DEL SEGURO SOCIAL (ISSS), HOSPITAL GENERAL SAN SALVADOR PROGRAMA DE MANTENIMIENTO PREVENTIVO AMBIENTE: Casa de máquinas MÁQUINA: Calderas SERIE / MODELO: MARCA: Cleaver Brooks CODIGO: FRECUENCIA OPERACIONES DE MANTENIEMINTO D S Q M T X Birlos y pernos. Vea el estado físico de ellos. Empaques. Revise su estado. Fugas. Vea que no las haya. Tapón fusible. Sistema de combustible X Fugas de combustible verifique que no existan Filtro de la tubería. Vea la presión del manómetro. Filtro de la bomba. Vea que lo hayan limpiado. X X Bomba de transmisión. Verifique su estado y tensión. Alineación de la bomba. Verifique y revise su anclaje. X Válvulas de solenoides. Vea que al apagarse el quemador corte súbitamente y que al arrancar no salga humo negro por la chimenea. Bomba de combustible. Vea que se desarmó y se reparó. Sistema de aire Malla de ventilador. Verifique su limpieza. Alineación del ventilador. Verifíquela y revise su anclaje. X Temperatura de baleros. Verifique temperatura, ruidos extraños y lubricación. X Lubricación del ventilador. Verifique el programa de lubricación. X Cambio de baleros. Vea que se hayan cambiado. Bandas de transmisión del ventilador. Verifique su estado y tensión. Tanque de condensado Tubería de ventilación. Revise que no este obstruido. Válvulas de flotador. Compruebe que cierren al nivel específico. Limpieza del tanque. Inspecciones al interior. Material aislante. Revise su estado. X Controles eléctricos. Limpieza. Verifique que los gabinetes estén cerrados. Programador. Con un cronómetro verifíquela. X Válvulas de seguridad. Opérelas manualmente. X X Manómetros y termómetros. Revise la calidad de los mismos. Válvulas. Vea que se hayan desarmado y limpiado. Limpieza exterior de calderas y accesorios. Verifíquela. X Pintura. Vea su estado en la caldera y sus accesorios. X Q: QUINCENAL T: TRIMESTRAL A: ANUAL D: DIARIO S: SEMANAL M: MENSUAL S: SEMESTRAL

INSTITUTO SALVADOREÑO DEL SEGURO SOCIAL (ISSS), HOSPITAL GENERAL **SAN SALVADOR** PROGRAMA DE MANTENIMIENTO PREVENTIVO AMBIENTE: Casa de máquinas MÁQUINA: Calderas SERIE / MODELO: MARCA: Cleaver Brooks CODIGO: **FRECUENCIA** OPERACIONES DE MANTENIEMINTO Q M T D Motor del ventilador Mediciones eléctricas. Mida el voltaje y amperaje. X Elementos térmicos. Verifique que son de la capacidad específica. X Arrancador. Verifique su estado físico y su limpieza. X Interruptor de seguridad. Verifique su estado físico y su limpieza. X Temperatura de cojinetes. Verifique su temperatura, ruidos extraños y lubricación. X Lubricación de cojinetes. Vea que se haya cambiado la grasa. X Motor. Verifique que lo lavaron, lo bañaron con barniz aislante y si cambiaron los baleros. Motor de la bomba de inyección de agua Mediciones eléctricas. Mida el voltaje y amperaje del motor. Elementos térmicos del arrancador. Verifique que son de la capacidad especificada. Arrancador. Verifique su estado físico y su limpieza. Temperatura de cojinetes. Verifique su temperatura, ruidos extraños y lubricación. X Lubricación de cojinetes. Vea que se haya cambiado la grasa. Motor. Verifique que lo lavaron, lo bañaron con barniz aislante y si cambiaron los baleros. D: DIARIO Q: QUINCENAL T: TRIMESTRAL A: ANUAL

S: SEMANAL

M: MENSUAL

S: SEMESTRAL

	I	NST	ITU	JTO	SAI	LV	AD(OR	ΕÑ	o i	DE:	LS	SEG	UR	O	so	CI	AL		ISS	SS					Ø.		-			Cald			
HOSPITAL GENERAL ISSS					PRO	OGF	RAN	ΊA	DF	Ξ Ν	/[A]	NT	ENI	MII	EN	ТО	PR	EVI	ENT	IVC)							_			ldera			
																																		quinas.
FECHA		ERO		EBR			RZ						AY(UNI			JLIC)	AG	OS'	TO	SE	TBI	RE	00	CTB	RE	NC	VBI	RE	DIC	CBRE
ACTIVIDAD	S S	S S	SS	SS	S S	5 S	S	4° 1 S S	3 Z	5 S	S	S.	$\frac{2^{\circ}}{S} \frac{5^{\circ}}{S}$	S	S	S S	S	S	$\frac{2^{\circ}}{S} \frac{3^{\circ}}{S}$	S	$\frac{1}{S}$ $\frac{2}{S}$	SS	S	S	$\frac{2^{\circ}}{S} \frac{S}{S}$	/ 4°	S	2° 3	5 4°	S	$\frac{2^{\circ}}{S} \frac{3^{\circ}}{S}$	4°	$\frac{1}{S}$ $\frac{1}{S}$	° 3° 4° S S S
CONJUNTO DEL QUEMADOR			1									~											Ť	_		Ť			T-	_				+~ +~
Quemador. Revise su estado	X		X		2	X		7	X			X			X		T	X			X			X			X			X		2	ζ .	
Electrodos del quemador. Revise el estado																																		\top
de la porcelana	X		X		2	X		2	X			X			X			X			X			X			X			X		2	ζ .	\top
Cable del transfromador. Vea su estado																										Т								
y apriételos	X		X		2	X		2	X			X			X			X			X			X			X			X		2	ζ	
Quemador de gas. Verifique la presión de gas	X		X		2	X		2	X			X			X			X			X			X		Т	X			X		2	ζ .	
Limpieza de foto celda. Limpiela al igual que																																		
su conducto y haga la prueba de falla de flama	X		X		2	X		2	X			X			X			X			X			X			X			X		2	ζ	
Combustión. Analice que los gases de																																		
combustión sean los % de CO2 a % de O2																																		
Temperatura máxima de gases de chimenea.																																		
470 °F.	X		X		2	X			X			X			X			X			X			X			X			X		2	ζ	
CONTROL DE NIVEL							+	_									+									+								++
Cristal de nivel. Corrija cualquier fuga	X		X			X			X			X			X	\vdash		X			\mathbf{x}^{\dagger}			X		+	X			X		7	ζ	++
Niveles de operación. Compruebe niveles																																		+
de operación	X		X		1	X		1	X			X			X			X			X			X		+	X			X		7	ζ	+
Grifo del cristal	X		X		1	X		1	X			X			X			X			X			X			X			X		2	ζ .	+
Electrodos. Vea que estén limpios	X		X		2	X		1	X			X			X			X			X			X		T	X			X		2	ζ .	\top
Diafragma del flotador. Revise su estado.	X							2	X									X									X							\top
Columna de nivel. Verifique su limpieza																																		
interior	X		X		2	X	П		X			X			X		I	X			X			X			X			X		2	ζ .	
BOMBA DE AGUA			+		H	+	+	+	+		+		+				+	+			\dashv		+	\vdash	+	+			+	\vdash	+		+	++
Temperatura de cojinetes.	X				$\dagger \dagger$		+		X									X								T	X					\vdash		+
Lubricación de cojinetes. Revisar que se haya	X	X	X	X		X	X	_	X	X		X	X		X	X		X	X		X	X		X	X	+	X	X		X	X	7	ζ	X
cambiado la grasa	X	+	╁		+					+								X				+				+						H		++

		INS	Τľ	TU	то	SA	L	AD	OI	RE	ÑO	DE	L S	SEG	UR	0	soc	IA	L	I	SSS	5				\$	M	ÁQU	INA	A: C	alde	era.		
HOSPITAL GENERAL ISSS						PR	ROC	GRA]	MA	4 I	DE I	MА	NT	ENI	MII	EN	ТО Р	RE	VEN	ITI	VO						- 1	QUIP MBII				a / M	ágni	nas
ACTIVIDAD FECHA	El 1° 2 S	NER 2° 3° S S	O 4° S	Fl 1°	EBR 2° 3' S S	O ° 4°	M 1° Z	ARZ 2° 3° S S	ZO 4° S	A 1°	BRI 2° 3' S S	L 9 4° 5 S	No.	1AY 2° 3° S S	O ' 4° S	JU 1° S	JNIO 2° 3° S S	4° 1 S S	JUL ° 2° S S	JO 3° S	A 4° 1° S S	GOS 2° S	STC 3° 4° S S) SI 1° 5 S	ETB1 2° 3' S S	RE ° 4°	O	CTBI	REI	VOV	VBF	REL	DICB	RE
Prensaestopas. Vea que se hayan cambiado																																		\top
todos los empaques	X									X								2	X								X							T
Flecha. Vea si no esta rallada.	X									X								2	X								X							
Alineación. Compruebe su alineación con																													\Box					\top
el motor.	X			X			X			X			X			X		Σ	ζ .	П	X			X			X		2	K		X		\top
Cuerpo de la bomba. Con la bomba desarmada																																		\top
vea que no esta incrustada	X																	2	X															I
CUERPO DE CALDERA																					+						+		\vdash		+			+
Limpieza por el lado del agua. Inspeccione						\top														П														+
el interior.	X																	2	X															+
Conecciones y tuberías. Verifique su limpieza			\top			\top	Ħ		\vdash				\top					\top		П	\top			\top							\top			+
interior.	X																	7	X															+
Fugas en los fluxes. Vea que no existan.	X																	2	X															+
Limpieza de fluves. Vea que no estén			\top			\top	H		\vdash				\top					\top		П	\top			\top							\top			+
hollinados.	X																	2	X															+
Material refractario. Inspección.	X						H												X	H									\Box					+
Birlos y pernos. Vea el estado físico de ellos	X					\top												7	X	П														+
Empaques. Revise su estado.	X																	2	X															+
Fugas. Vea que no las haya.	X			X			X			X			X			X		3	X		X			X			X		7	X		X		+
Tapón fusible. Vea que se cambió.	X																	2	X										I					+
SISTEMA DE COMBUSTIBLE.												+								H	+						+		+		+			+
Fugas de combustible. Verifíque que no existar	X	XX	X	X	XX	X	X	XX	X	X	ХХ	X	X	XX	X	X	XX	X	XX	X	XX	XX	XX	X	XX	X	X	XX	X :	XX	X	XX	XX	X
Filtro de la tubería. Vea la presión del							H		†				+					+		+									H					+
Manómetro.	X	X		X	X		X	X	†	X	X		X	X		X	X	>	ζ	X	X		K	X	X	-	X	X	7	K	X	X	X	+
Filtro de la bomba. Vea que lo hayan limpiado	X	X		X	X		X	X		X	X		X	X		X	X	2		X	X		X	X	X		X	X		X	X	X		
-	\vdash	+	+	\vdash	+	+	\forall	+	+	Ť		+	+			\vdash		Ŧ		+	+	+	+	Ť			+	H-	H	+	+	+		+

		INS	TI	TU	то	SA	LV	AD	OF	REÑ	ЙO	DE	LS	SEC	SUF	RO	SC	C	IAL		ISS	SS					92	M	ÁQU	JIN.	A: (Cald	era.			
HOSPITAL GENERAL ISSS						PR	OG	RAN	MA	D	Εľ	MА	NT.	EN	IMI	EN	OTI	PR	EV.	ENT	IVC)							_			ldera Cas		Má	quin	as.
FECHA ACTIVIDAD	1°	NER 2° 3°	40	1°	EBR 2° 3°	4°	1° 2	ARZ 2° 3° S S	4°	1° .	2° 3°	9 4°	1°	1AY 2° 3	° 4°	19	UNI 2° 2°	° 4	° 1°	ULIC 2° 3° S S	4°	1° 2	2° 3°	4°	1° 2	2° 3°	9 4°	1°	2° 3°	4°	1° 2	VBI 2° 3°	4°	1°2	2° 3°	4°
Banda de transmisión. Verifíque su estado					5 5													,							5	5 5		5	5 5			5 5	5	5 1	5 5	
y tensión.	X	X		X	X		X	X		X	X		X	2	ζ .	X	2	X	X	X		X	X		X	X		X	X		X	X		X	X	Г
Alineación de la bomba. Verifíque y revise su			T	П								T																								
anclaje.	X	X		X	X		X	X		X	X		X	2	ζ	X		X	X	X		X	X		X	X		X	X		X	X		X	X	
Valvulas de solenoides. Vea que al apagar																																				T
el quemador corte súbitamente y que al				П																\vdash																
arrancar no salga humo negro	X	X		X	X		X	X		X	X		X	2	ζ .	X		X	X	X		X	X		X	X		X	X		X	X		X	X	
Bomba de combustible. Vea que se desarmó y																																				
se reparó	X																		X																	
SISTEMA DE AIRE																			+				+											+		
Malla de ventilador. Verifíque su limpieza.	X	X		X	X		X	X		X	X		X	2	ζ .	X		X	X	X		X	X		X	X	:	X	X		X	X		X	X	
Alineación del ventilador. Verifíque y revise																																				
su anclaje.	X	X		X	X		X	X		X	X		X	2	ζ	X	2	X	X	X		X	X		X	X		X	X		X	X		X	X	
Temperatura de los baleros. Verifíque			T	П								T																								Т
temperatura, ruidos extraños y lubricación.	X	X		X	X		X	X		X	X		X	2	ζ .	X		X	X	X		X	X		X	X		X	X		X	X		X	X	
Lubricación del ventilador. Verifíque el																																				Г
programa de lubricación.	X	X		X	X		X	X		X	X		X	2	ζ	X		X	X	X		X	X		X	X		X	X		X	X		X	X	
Cambio de baleros. Vea que se hayan cambiado	X		T	П								\top							X																	Т
Bandas de transmisión del ventilador																																				
Verifique su estado y tensión.	X			X			X			X			X			X			X			X			X			X			X			X		
TANQUE DE CONDENSADO																			+															+		\vdash
Tubería de ventilación. Revise que no este				П										\Box				Ť															П			Т
obstruida.	X			X			X			X			X	\Box		X			X			X			X			X			X			X		
Valvulas de flotador. Compruebe que cierren										П																							П			
al nivel específico.	X			X			X			X			X	\Box		X			X			X	\top		X			X			X		\Box	X		Т
Limpieza del tanque. Inspección al interior.	X			П						X				\vdash					X									X					\Box			Т

		IN	STI	ΤU	то	S	AL'	VAI	00	RE	ÑC	D	ΕI	S	EG	UR	0	SC	CI	AL	1	IS	SS					N	ИÁ(QUIN	IA:	Cald	era.		
HOSPITAL GENERAL ISSS						DI	200		1.1						¬			то	DD			TT 74						F	EQU	IPO	Ca	ldera	١.		
HOSPITAL GENERAL 1555						PI	KU	JKA	IVIZ	A	DE	M	AN	111	ZNII	VIII	EIN	10	PK	EV	ENT	100)					A	4Ml	BIEN	TE:	: Cas	a / N	Лáс	quina
FECHA		NEI			EBF			1AR							AY(UNI		J	ULI														CBRI
ACTIVIDAD	l°	2° 3	° 4°	1°	2° 3	3° 4'	⁹ 1°	2° 3	9 4°	1°	2°	3° /	4°]	1° 2	2° 3°	4°	l°	2° 3	° 4	° 1°	2° 3	° 4°	l°	2° 3°	4°]	1° 2'	° 3°	4° 1	°2°	3° 4°	1°	2° 3°	4°	1°2	° 3° 4
Material aislante. Revise su estado.	X	5	, 3	3	3,	3 3	3	3 3	3	5	5	5	3	,	3 3	3	3	5	, .	X	-	, 5	3	3 3	3 ,	3 13	, 5	3 3	, 3	3 3	3	3 3	3 .	9 2	, 3 ,
																																			+
CONTROLES ELÉCTRICOS																																			+
Limpieza. Verifíque los gabinetes esten																																			+
cerrados.	X			X			X			X				X			X			X			X		1	X		X	ζ		X		7	ζ	++
Programador. Con un cronómetro veifíquelo	X			X			X	\vdash		X				X			X			X			X			X		Х	ζ		X		7	ζ	+
Valvulas de seguridad. Opérelas manualmente	X			X			X			X			1	X			X			X			X			X		У	ζ		X		7	ζ	++
Manómetros y termómetros. Revise la calidad				+		+		\vdash	+			\vdash		+					+																++
de los mismos.	X									X										X								Х	ζ						++
Valvulas. Vea que se hayan desarmado y																																			+
limpiado.	X																			X															$\pm \pm$
Limpieza exterior de calderas y accesorios.																																			+
Verifíquela.	X	X	XΧ	X	XX	XΧ	X	ΧУ	X	X	X	X	X	X Z	XX	X	X	X	X X	ΧX	XX	X	X	XX	X	XΧ	X	ΧХ	X	XX	X	XX	X	X	XXX
Pintura. Vea su estado en la caldera y sus				\top		\top			\top					\top																					+
accesorios.	X									X										X								X							\top
MOTOR DEL VENTILADOR																																			
Medisiones eléctricas. Mida el voltaje																																			
y amperaje	X	>		X	X		X	X		X		X	2	X	X		X	2	ζ .	X	X		X	X	2	X	X	X		X	X	X	>	ζ .	X
Elementos térmicos. Verifíque que son de																																			\top
la capacidad espesífica.	X									X										X								X	ζ .						\top
Arrancador. Verifíque su estado físico y																																			\top
su limpieza.	X			X			X			X	-		2	X			X			X			X		2	X		X			X		2	ζ .	
Interruptor de seguridad. Verifíque estado													\top																						\top
físico y su limpieza.	X			X	\sqcap		X			X		\Box	7	X			X			X			X			X		X	ζ .		X		7	ζ .	\top
Temperatura de cojinetes. Verifique su																																			\top
temperatura, ruidos extraños y lubricación.	X	>		X	×		X	X		X		X		X	X		X	2	K	X	X		X	X		X	X	X	ζ	X	X	X	>	(X
																																			\Box

		IN	ISI	ГIЛ	r u T	ГО	SA	LV	AD	OI	REÍ	ŎŎ	DE	EL S	SEC	SUF	RO	so	CIA	AL]	ISS	S				(de		N	ΛÁ	QU	 ЛN	A: (Cald	lera	a.		
HOSPITAL GENERAL ISSS							PR	OG	RA	M.A	Y D	E :	MA	NT	EN	IMI	EN	то	PRE	EVE	ENTI	VC)											ldera : Cas		/ M:	águ	nas.
FECHA	E	NE	ERC)	FE	BR	О	M	ARZ	ZO	A	BR:	IL	M	ΙΑΥ	O	JI	UNI	О	JU	JLIO		AG	OS'	ГО	SE	тв	RE	3 (ЭC	TBI	RE	NC	OVB	RF	E D	ICE	BRE
ACTIVIDAD	1° S	2° S	3° 4 S	1° :	1° 2 S	2° 3°	9 4°	1° 2	2° 3°	4° S	1°	2° 3	° 4°	1°	2° 3	° 4°	1°	2° 3	9 4°	1° 2 S	2° 3° S S	4° S	1° 2 S 9	2° 3°	4° S	1°	2° 3	3° 4 S	° 1	°2	2° 3°	4° S	1° 2	2° 3°	² 4°	1°	2° 3	° 4°
Lubricación de cojinetes. Vea que se haya	1			_			Ť												1								<u> </u>			+		+			+			
cambiado la grasa.	X		X	7	X	X		X	X		X	3	ζ	X	2	ζ .	X	X		X	X		X	X		X	2	X	Σ	ζ .	X	T	X	X		X	>	ζ .
Motor. Verifíque que lo lavaron, lo bañaron																														\top		T				T		\top
con barniz aislante y si cambiarón los baleros	X					1														X										1	_	I		\perp	Ŧ	I		#
MOTOR DE LA BOMBA DE INYECCIÓN	+			+	+	+		H			H	+	+				+							+	+		H		+	+	+	+	\vdash	+	+	+	\vdash	+
DE AGUA																																						
Medisiones eléctricas. Mida el voltaje																																						
y amperaje	X		X	2	X	X		X	X		X	7	(X	2	ζ .	X	X		X	X		X	X		X	2	X	Х		X		X	X		X	Σ	(
Elementos térmicos del arracador. Verifíque																																						
que son de la capacidad espesífica.	X										X									X									Σ	ζ								\top
Arrancador. Verifíque su estado físico y																																						\top
su limpieza.	X				X			X			X			X			X			X			X			X	П		3	X		Т	X			X		\top
Interruptor de seguridad. Verifíque estado																														T		T			1	1		\top
físico y su limpieza.	X			-	X			X			X			X			X			X			X			X			Σ	K		T	X			X		
Temperatura de cojinetes. Verifique su																														\top		T				T		
temperatura, ruidos extraños y lubricación.	X		X		X	X		X	X		X	2	ζ .	X	2	X	X	3	(X	X		X	X		X	2	X	2	<	X		X	X		X	2	X
Lubricación de cojinetes. Vea que se haya																																						
cambiado la grasa.	X		X		X	X		X	X		X	2	ζ .	X	2	X	X)		X	X		X	X		X	2	X	2	ζ .	X		X	X	-	X	2	K
Motor. Verifíque que lo lavaron, lo bañaron																																						
con barniz aislante y si cambiarón los baleros	X																			X										1		L		1	I			I
																+		\vdash												+	+	\vdash		+	+	+	\vdash	+
	+			\dashv	+	+	+	\vdash			\forall	+	+		+	+	+			H			+		+		\vdash			+	+	+	\forall	+	+	+	\forall	+
						\perp																								I				\perp	I			#
	+			_	_	_	-			1	\sqcup	_	_	\perp			1	\vdash	-	\sqcup			_		1		\sqcup	_	_	\perp	_	\perp	\vdash	+	\perp	\perp	\vdash	+
	+				+	+	-	\vdash	+	\perp	\vdash	+	+	+		+	+	\vdash	+	\vdash			+	+	+		\vdash	+	+	+	+	+	\vdash	+	+	+	\vdash	+
																	1					Ш			1					\perp	\perp	Щ	ш		丄	Щ	ш	

INSTITUTO SALVADOREÑO DEL SEGURO SOCIAL (ISSS), HOSPITAL GENERAL SAN SALVADOR							
PROGRAMA DE MANTENIMIENTO PREVENTIVO							
AMBIENTE: Generales							
MÁQUINA: Instalación en general							
SERIE / MODELO:							
MARCA:							
CODIGO:							
OPERACIONES DE MANTENIEMINTO	D	FR	Q		CIA T	S	A
Revisar toda la instalación de fugas.			X				
Revisar estado del aislante de la tubería.				X			
Revisar soportería					X		
Revisar estaciones de trampeo.							
Trampa # 1						X	
Trampa # 2						X	
Trampa # 3						X	
Trampa # 4						X	
Trampa # 5						X	
	1						
	1						
D: DIARIO Q: QUINCENAL T: TRIMESTRAL A: ANUAL			1	I			

S: SEMESTRAL

S: SEMANAL M: MENSUAL

		IN	STI	TU	то	S	AL	VAI	00	REÍ	ŎΟ	DE	L S	EG	UR	20	so	CL	AL		ISS	SS					8	MA	ÁQU	INA	A: Iı	nst. e	en g	ene	ral	
HOSPITAL GENERAL ISSS						DI	200	2D A	ъл.	Λ F	NT 1	Νπλ	NITI	ENII	N/III	ENT	то і	ומכ	7371	ENT	N/C							ΕÇ	UIP	O:]	Inst	. en	gene	eral	ι.	
HOSFITAL GENERAL 1995																													MBIE							
FECHA	El	NEI	RO	F	EBI	RO	M	AR	ZC	A	BRI	L	M	AY	O	JU	JNIC)	JU	JLIC)	AC	3OS	ГО	SE	TBF	RE	OC	TBF	E I	NO.	VBF	RE I	DIC	BR	E
ACTIVIDAD	1°	2° 3	° 4°	1°	2° 3	3° 4'	° 1°	2° 3	° 4°	1°	2° 3	° 4°	1° 2	2° 3°	' 4°	1°	2° 3°	4°	l°.	2° 3°	4°	1° .	2° 3°	4°	1°	2° 3°	4°	1°2	TBF 2° 3° S S	4°	1° 2	° 3°	4° 1	°2°	' 3°	4°
	-5	5 5	5 5	3	5	5 5	5	2 5	> 2	5	5 5	5 5	5	5 5	12	S	5 5	12	5	5 5	2	5	5 5	3	5	5 5	S	5	5 5	5	8 8	SS	SS	S	+5	<u>S</u>
Revisar toda la instalación de fugas	X	>		X	>	ζ .	X	<u> </u>	ζ	X	Σ	ζ	X	X		X	X		X	X	\vdash	X	X		X	X		X	X	7	X	X	X		X	_
Revisar estado del aislante de la tubería.	X		+	X		1	X	<u> </u>	_	X		+	X			X			X	1	1 1	X			X	7.		X			X	+-	X		+	_
Revisar sopertes estructurales.	X			1						X			-	+					X						1			X			+	+			+	_
Revisar estaciones de trampeo.	11									11			\vdash	_					1									-				+			+	_
Trampa # 1	X	+		1		+	+	+	+	+	+		\vdash	+	+	\vdash			X		+				+		+	\dashv		\dashv	+	+			++	_
Trampa # 2	-	X		1	\vdash	+	+	+	+	+			+	+	+	+		+		X	+			+	+		+	\dashv		+	+	+	+		+	_
Trampa # 3	+	21		-	\vdash	+	+	+	+	+		+	\vdash	+	+	\vdash		+	+	X	+			+	+		+	\dashv		+	+	+			++	_
Trampa # 4			X	-		+			+				\vdash		+			+	\Box		X			-							+				++	_
Trampa # 5	+		+-	X										_								X													++	_
Trampa # 5	+	-+	+	121	\vdash	+	+	+	+	+		+	+	+	+			+		_				+		_		\dashv	-	\vdash	+	+	+		++	_
	+		+			+			+	+			\vdash	_	-			-										-			+	+			++	
	+					+			-																							+			++	
						+							Н																						++	
															-				H																++	_
										+			Н	-																		+			++	_
			+	-		+		_	+	-		+	+	_	+			+						+				-			+		_		++	_
	+	_	+	+		+	+	_	+	+		+	Н	+	+			+	\vdash	_				+		_		-	-		+	+			++	_
	+		-			\perp			-	+				_	-			-		_				-		_			_		-	+	_		+	_
									-					_	-																				++	
					\vdash	_	+		-	+			\vdash	_	-			-	+		+				+		+					+			++	
	+					\perp	+	_	\perp	+	_		\sqcup	\perp	-			-							\sqcup			\dashv			\perp	+	_		+	
	\perp						\perp		_	\perp			\sqcup		-			-																	+	
	\perp			1		\perp	\sqcup	_	\perp	\perp	_		\sqcup		-			_										_			_				$\perp \perp$	_
			\perp	1		\perp	\sqcup	_	\perp	\perp		\perp	\sqcup	\perp	_			_						1				4		\Box	4	\perp	_		$\perp \perp$	_
	\perp		_	1	\sqcup	\perp	\perp	_	_	\perp		_	\sqcup	_	_	Ш		_	\sqcup					1	\sqcup			4			_	\perp	_		$\perp \perp$	_
	$\perp \perp$			1	\sqcup	\perp	\perp	_	\perp	\perp		_	\sqcup	_	1			-	\square					1						\Box		\perp		1	$\perp \perp$	_
	$\perp \perp$									\perp			Ш					_											\perp						$\perp \perp$	
	⊥.					\perp																														

INSTITUTO SALVADOREÑO DEL SEGURO SOCIAL (ISSS), HOSPITAL GENERAL SAN SALVADOR PROGRAMA DE MANTENIMIENTO PREVENTIVO AMBIENTE: Lavandería MÁQUINA: Lavadora extractora. SERIE / MODELO: MARCA: Braun CODIGO: FRECUENCIA OPERACIONES DE MANTENIEMINTO D S Q M T S A X Limpieza empaque de puerta. X Limpieza dosificador. Verificar bloqueo de puerta. X Verificar paro de emergencia. X Verificar estanqueidad de retenes. X Verificar estanqueidad de desagües. X Limpieza filtro entrada de agua. X Limpieza filtro entrada de vapor. X Verificar estanqueidad de puerta. X X Verificar tuercas de anclaje. Verificar seguridad de eléctrica. Verificar programador. X Verificar control de temperatura. X X Verificar elementos de mando. X Verificar consumos de motor X Verificar consumo de calefacción eléctrica. X Verificar protecciones del motor. Efectuar limpieza colector, entrada de agua. X Efectuar limpieza de presostato. X X Efectuar limpieza conducción desagüe. X Verificar estanquidad de tubos. Verificar estanquidad de envolventes. X X Revisión tensada de correas. Revisión general de apriete de tornillos. X Revisión general de estructura. X D: DIARIO Q: QUINCENAL T: TRIMESTRAL A: ANUAL

S: SEMANAL

M: MENSUAL

S: SEMESTRAL

		IN	ST	IT	UT	O	SA	L	VA	DC	R	ΕÑ	О	DE	EL	SE	EG	UR	o	S	OC	IA	L		ISS	SS				6]	ΜĀ	ÁQU	JIN	A:	La	ıva	dor	a.		
HOSPITAL GENERAL ISSS							DE	200	ZD.	Λ λ /	ſΛ	_	D 1		N.T.	TT:	NTTN	411	7 N T'	то	DI	2 173	VI.	NT	1376								ΕQ	UII	O:	La	ava	dor	a.			
HOSFITAL GENERAL 1555							ГГ	·OC	JK	- XIV	IA.	D	E I	VI P	XIN.	LE	INII	VIII	217	10	Pr	Œ	٧E	IN I	VC	,						Ī	ΑN	ИВΙ	EN	TE	E: L	ava	and	lerí	a.	
FECHA	E	NE	RO	Π.	FE	BR	o	N	IAI	RZC	С	ΑI	BRI	L	I	MΑ	Y)	JU	JN	Ю	Т	JU	LIC)	AC	SOG	TC	SI	ETI	3RI	3 (OC	ТВ	RE	NO	ΟV	BF	RE	DI	CB	RE
ACTIVIDAD	1°	2° [3° 4	° 1	° 2	° 3°	⁹ 4°	1°	2° (3° 4	1°]	1° 2	° 3°	° 4°	' 1°	² °	3°	4°	1°	2°	3° ∤	₽° 1	l° 2	° 3°	4°	1° 2	2° 3	° 4°	' 1°	2°	3° 4	1º	1°2	2° 3° S S	' 4°	1°	2°	3°	4°	1°2	2° 3'	^o 4°
TIETTIBLE	S	S	SS	SS	SS	SS	S	S	S	S	S	S	$S \mid S$	S	S	S	S	S	S	S	S	SS	SS	$S \mid S$	S	S	$S \mid S$	SS	S	S	S	\mathbf{S}	S	$S \mid S$	S	S	S	S	S	S	$S \mid S$	S
																																			┸							
Limpieza de empaque de puerta.	X	X	XX	()	X	X	X	X	X	X	X	\mathbf{X}	XX	X	X	\mathbf{X}	X	X	$ \mathbf{X} $	X	\mathbf{X}	X Z	XΣ	X	X	X	XX	X	X	X	\mathbf{X}	X	$\mathbf{X} \mid \mathbf{X}$	ΧX	X	X	X	X	X Z	XΣ	XX	X
Limpieza dosificador.	X	X	XΧ	7	X	X	X	X	X	X	X	X	XX	X	X	X	X	X	X	X	X	X Z	XΣ	XΧ	X	X	XΧ	X	X	X	X	X 2	X	ΧX	X	X	X	X	X Z	X >	XX	X
Verificar bloqueo de puerta.	X	X	XΧ	()	X	X	X	X	X	X	X	X	XX	X	X	X	X	X	X	X	X	X Z	XΣ	XΧ	X	X	ΧX	X	X	X	X	X :	X Z	ΧX	X	X	X	X	X Z	X	XX	X
Verificar paro de emergencia.	X	X	XX	()	X	X	X	X	X	X Z	X	X	XX	X	X	X	X	X	X	X	X	X Z	X X	XΧ	X	X	ΧX	X	X	X	X	X 2	X Z	ΧX	X	X	X	X	X Z	X X	XX	X
Verificar estanqueidad de retenes.																																		ΧX								
Verificar estanqueidad de desagües.	X											1									1	_	X			\Box						7			+	+				\top	+	+
Limpieza del filtro entrada de agua.	X											\top	\top	\top	+	\top	\top	\vdash			\dashv	1	X		\vdash			\top				\dashv		_	+	\vdash				\top	\top	+
Limpieza del filtro entrada de vapor.	X																					1	X											_	+	+				-	+	+
Verificar estanqueidad de puertas.	X														+							2	X											+	+	+				+	+	+
Verificar tuercas de anclaje.	X		+	+								\dashv	+	+	+	+	+	+			\dashv		x		\vdash		+	+	+			+		_	+	+				+	+	+
Verificar seguridad eléctrica.												\dashv		+	+	+	+				\dashv	+	+	+	\vdash			+	+			+		_	+	+				X	+	+
Verificar programador.												\dashv			+		+				_	\dashv						+				+		+	+	+				X	+	+
Verificar control de temperatura.																						+												+	+	+				X	+	+
Verificar elementos de mando.																						+										+		+	+	+				X	+	+
Verificar consumo de motor.															+			\vdash			1	+			\vdash			+							+	+				X		+
Verificar consumo de calefacción eléctrica														+	+		+	\vdash			_	+	+		\vdash			+				\dashv			+	+				X	+	+
Verificar protección del motor.																						+										1		+	+	+				X	+	+
Efectuar limpieza colector, entrada de agua.						+						+			+	+	+				\dashv	+	+		\vdash			+				+		+	+	+				X	+	+
Efectuar limpieza de presostato.														+	+		+	\vdash				+			\vdash			+						+	+	+				X	+	+
Efectuar limpieza conducción desagüe.															+							+						+				+	+	+	+	+				X	+	+
Verificar estanqueidad de tubos.															$^{+}$							\top										1			+	+				X	+	+
Verificar estanqueidad de envolventes.										1									Н	H	\dashv	1										7			+	+				X	+	+
Revisión tensado de correas										T					T				П	П	\dashv	1	\top									\dagger	1							X		\top
Revisión general de apriete de tornillos.		H								1					†				П		\dashv	\top				H						\top	1		+	1		H		X	\top	\top
Revisión general de estructura.																																			T	1				X	+	\top
		П		T						T		\top	\top	T	T				П		\top	\top	\top			П		\top	T			1	T		\top	T				\top		\top
		H															1				\dashv	\top				П						\dashv	1		+	†		H		\top	\top	\top

INSTITUTO SALVADOREÑO DEL SEGURO SOCIAL (ISSS), HOSPITAL GENERAL SAN SALVADOR PROGRAMA DE MANTENIMIENTO PREVENTIVO AMBIENTE: Lavandería MÁQUINA: Secadora rotativa. SERIE / MODELO: MARCA: Braun. CODIGO: FRECUENCIA OPERACIONES DE MANTENIEMINTO D S Q M T S A X Limpieza de trampas de mota. Revisión de resistencias calentadoras. X Revisión de serpentines a vapor. X Verificación de balanceo de tómbola. X Verificar estado y seguridad de la puerta. Revisión de faja y polea X Revisión y limpieza de ventilador Revisión y limpieza de motor eléctrico Revisión de sistema eléctrico. Limpieza de cubiertas exteriores. X D: DIARIO Q: QUINCENAL T: TRIMESTRAL A: ANUAL SEMANAL

M: MENSUAL

S: SEMESTRAL

		INS	TI	ΓU	го	SA	L	VAL	OI	RE	ÑO	D	EL	S	EG	UR	0	SC	C	IAI]	SS	S				(in.	N	ЛÁ	QU	INA	1: S	eca	ıdor	a ro	otat	iva.
HOSPITAL GENERAL ISSS						PR	200	ŝRΑ	MA	\ I	DΕ	M	AN	ITE	ENI	MII	ΞN	то	PF	REV	/EN	ITI	VO							- 1	_		O: S						ι.
																														- 1			ENT						
FECHA	El	NER	O	FE	EBR	O	M	AR	ZO	A	BR			M	AY ()	JI	UNI	O		IUL	OL	10	AG	OS	ГО	SE	TE	BRI	3 (C	ГВЬ	RE I	40,	VB	RE	D	ICE	RE
ACTIVIDAD	S	2° 3° S S	S	S	S S	5 45 5 S	S	S S	S	S	2° S	3° 4 S	S S	S S	5 S	S	S	2° 3	3° 4 3° 3	S S	S	S	5 S	S S	S S	S	S	2° 5	$\frac{3^{\circ}}{S}$	S S	5 S	S S	S :	S 5	3 S	S 3	S	$\frac{2^{6}}{S}$:	5 S
Limpieza de trampas de motor.	v	XX	v	V,	v v	v	Y	vv	v	V	v	V	<i>.</i>	v 1	/ V	v	v	v	v 1	v v	v	V	v ·	V V	v v	v	Y	v	V 1	7 3	7 V	V	V	v v	, V	V	V	V	<i>y</i> v
Revisar de resistencias calentador.	X	$\frac{\Lambda}{\Lambda}$	$\overline{}$	X	$\Lambda \Lambda$	^	-	ΛΛ	1	_	_	$\Delta \mid \Delta$	-		^	^	-	1	`	_	_	1	\rightarrow		`^	r	_	^ /	^ /	_	_	· / `	_	_	1	_	-	7	\sim
				X			X		+	X				X	-		X			X				X	-	-	X		4	Y		+		X	+	┿	X	\dashv	+
Revisar de serpentin a vapor.	X		1 1				X		_								X			Х				X			X			Σ		_		X	\perp	┷	X	_	_
Verificación de balanceo de tombola	X			X			X			X			2	X			X			X	- 1			X			X			Σ	<u> </u>	\perp		X			X	\perp	
Verificación estado y seguridad de la puerta.	X																			Х																			
Revisión de faja y polea.		X											\Box								X		\neg						\top										
Revisión y limpieza de ventilador.		X	П						T			\neg	\exists	T							T	X	\neg			\top			\top		\top	\top		\top	\top	\top		\top	
Revisión y limpieza de motor eléctrico.			X																				X								I		П	士				\pm	
Revisión de sistema eléctrico.				X																			- 1	X															
Limpieza de cubierta exterior.	X	ΧX	X	X	ΧX	X	X	XX	X	X	X	X	X Z	XX	X	X	X	X	X	XX	X	X	X Z	XΣ	ΚX	X	X	X	X >	X	X	X	ΧŽ	ΚX	: X	X	X	X >	ζX
																																1			T				
																													\top			\top		\top	\top			\top	
			П						\top					T							\top		\neg			\top			\top			\top		\top	\top		П	丁	
																															\top	+	П	\top	\top	+		\top	
									1																							\top		\top	\top	\top		\top	
																															\top	\top		\top	\top		П	\top	\top
																															+	\top		\top	\top	+	П	\exists	+
																															\top	+	Ħ	\top	\top	+	П	\top	
																													\top		1	1	П	\top				\top	
													Ť	\top					1	\top			T		\top				1		\top		Ħ	\top	\top			\top	\top
	\top												1																1				H	\top		1		\top	
																							T						1		T	T	П	T	T			\top	
													T																\top			T	П	\top				\top	
																													1			T	П	T	T			\top	
																																T				1			

INSTITUTO SALVADOREÑO DEL SEGURO SOCIAL (ISSS), HOSPITAL GENERAL SAN SALVADOR PROGRAMA DE MANTENIMIENTO PREVENTIVO AMBIENTE: Lavandería MÁQUINA: Secadora de rodillo. SERIE / MODELO: MARCA: Braun. CODIGO: FRECUENCIA OPERACIONES DE MANTENIEMINTO D S Q M T S A X Revisar fugas de cualquier tipo. Revisar funcionamiento de válvulas y trampas de vapor. \mathbf{X} Revisar forros de los rodillos. X Revisar bandas alimentadoras y lonas. X X Revisar buen funcionamiento de la máquina en general. Comprobar que exista una correcta lubricación. X Comprobar funcionamiento suave. X Revisar una completa limpieza interna. X Revisar las conexiones de suministro de vapor y recolección de condensado, revisar las trampas. X X Revisión y limpieza del motor. X Revisión eléctrica en general. Revisión, limpieza y ajuste del sistema de movimiento: cadenas y engranajes X X Embrague. Revisión de lonas, rodillos y guías. X Revisión de fijeza de toda la máquina. Revisión y ajuste general. D: DIARIO Q: QUINCENAL T: TRIMESTRAL A: ANUAL

S: SEMANAL

M: MENSUAL

S: SEMESTRAL

	Τ	IN	ST	ΊΤ	'U'	го	S	4L	VA	DO	R	ΕÑ	Ю	DF	EL	SE	EGU	UR	20	S	OC	IA	L		IS	SS						<u> </u>	M	ΙÁÇ		IN/	A : \$	Seco	dra	. de	rod	lillo
HOSPITAL GENERAL ISSS							PI	RO	GR.	AM	ĺΑ	D	Εľ	MA	N	ΓE	NII	MII	EN	TC) PI	RE	VE	ENT	ΊV	0								_						e ro	dille ía)
FECHA		NE											BRI				Y			UN				ILI																		BRE
ACTIVIDAD	1° S	2° 3	3° 4 S \$	° 1	S 2	2° 3 S S	° 4°	l° S	2° S	3° 4 S 3	.° 1 S S	l° 2 S	2° 3' S S	9 4°	° 1° S S	2°	3°	4° S	1° S	2° S	3° 4 S	1° S	1° 2 S 3	2° 3 S S	9 4°	l° S	2° : S	S	s S	° 2	° 3°	y 4° S	1°	2° S	3° S	4° S	1° 2 S	2° 3' S S	° 4°	' 1°	2° 3	3° 4° S S
Paris of the state	V	v	V	7	V ,	V V	- V	37	v	37 3	7 7		17 T	7 32	7 37	37	17	37	37	37	37.3	VZ .	¥7 X			17	37		7 1	7 32	7 37	37	37	37	7.7	37		7 37		177		7 77
Revisar fugas de cualquier tipo. Revisar funcionamiento de válvulas y trampas	A	A.	X 2	X /	X /	X A	A	. X	Λ	X 2	X /	Χ.	$X \mid X$	X	X	X	. X	X	X	X	X	X /	X 2	X X	X	X	X.	X	XX	X	X	X	X	X	X	$\stackrel{\mathbf{X}}{\vdash}$	X)	XΧ	. X	. X	X	ΧX
J 1	37	37	X / X	7 3		7 3	* **	-	7.7	¥7. ¥	7 3					7.7	1	<u> </u>								7.7							L						1		Щ	\perp
de vapor.																																										X
Revisar forros de los rodillos.	_	-	-	-	\rightarrow	_	_		-		\rightarrow	_	_	_	_			_		_	-	\rightarrow	-		_		-	_		_	_			_	_	\rightarrow	$\overline{}$	_		_		ΥX
Revisar bandas alimentadoras y lonas.		\mathbf{X}	XΣ	()	X Z	X	X	X	X	XΣ	()	X Z	X X	X	X	X	X	X	X	X	X X	X X	ΧÞ	XΧ	X	X	X	X >	XΧ	X	X	X	X	X	X	X	ΧÞ	ζX	X	X	ΧÞ	XΧ
Revisar buen funcionamiento de la máquina en																																				il						
general.	X	X	XΣ	X 2	X Z	X X	X	X	X	XΣ	X 2	X	XX	X	X	X	X	X	X	X	X	X Z	ΧÞ	X X	X	X	X	X >	ΧX	X	X	X	X	X	X	X :	X >	ΧX	X	X	X	ΧX
Comprobar que exista una correcta lubricación.	·X			2	X			X			2	X			X				X			2	X			X			X				X				X			X		
Comprobar funcionamiento suave.	X			2	X			X			2	X			X				X			7	X			X		\neg	X		\top		X				X			X	П	\top
Revisar una completa limpieza interna	X			2	X			X			7	X			X				X			2	X			X			X				X		П		X			X		
Revisar las conexiones de suministro de vapor				+	\top			\top			1				\top	\top			Т			\top			\top		П	\top			\top	\top					\top		\top	\top		\top
y recolección de condensado, revisar																												_							Н		+			+	\vdash	+
las trampas.	X			7	X			X			٦,	X			X				X			٠,	X		+	X		\dashv	X	-	+	+	X		\vdash	1	X		+	X		+
Revisar limpieza del motor.	X	\vdash	+		X	+	+	X		\dashv	_	X	+	+	X		+	+	X			_	X		+	X	\vdash	\dashv	X	_	+	+	X	\vdash	\vdash	\rightarrow	X		+	X	\forall	+
Revisión eléctrica general.	X				X			X			-	X			X				X			$\overline{}$	X			X		+	X	_			X		\Box	_	X			X	\vdash	+
Revisión, limpieza y ajuste del sistema de				-	+			+*			Ť	-					+	+	2.			1	+		+	+		\dashv	- 2	╁	+	+	2 1		\vdash	H	+		+	1	\vdash	+
movimiento, cadena y engranajes.	X		+	7	X	+		X		+	+	X	+	+	X		+	+	X			+	X		+	X	\vdash	+	X	-	+	+	X		\vdash	1	X		+	X	\vdash	+
Embragues.	X				X			X			_	X			X	- 1			X				X			X		_	X	_			X		Н		X			X	\vdash	+
Revisión de lonas, rodillos y guías.	X		_		X			X				X	-	-	X		+	+	X			\rightarrow	X		+	X	\vdash	\dashv	X	_	+	+	X	\vdash	\vdash	\rightarrow	X		+	X	\vdash	+
Revisión de fijesa de toda la máquina.	X	\vdash	+	-	^	+	+	1		+	\rightarrow	X	+	+	-	+	+	+	^			\rightarrow	X	_	+	$^{\wedge}$	\vdash	+	_^	+	+	+	X	\vdash	\vdash	H	$\stackrel{\Delta}{+}$	_	+	^	\vdash	+
Revisión y ajuste general.	X			+	+						- 4	^	+		+	+	+					- 1	^		+			+		+	+	-	^		\vdash	Н	+		+	+	-	+
Kevision y ajuste general.	^	\vdash	+	+	+	+	+	+		+	+		+	+	+	+	+	+	\vdash	\vdash	\vdash	\dashv	\dashv	+	+	+	$\vdash \vdash$	\dashv	+	+	+	+	+	\vdash	\vdash	\dashv	+	+	+	+	\vdash	+
		\square		4	\dashv		-	+		\perp	+	_	_	+		\perp	+	-	\vdash			\dashv	_		\perp	\perp	\square	\dashv		\perp	\perp	1	\perp	\vdash	\square	\vdash	\dashv			+	\vdash	+
	1				_		-	-		_				-	-		1					_	\dashv		+	-	\sqcup	\perp			_	1	-		Н	\vdash	\dashv		\perp	+	\sqcup	+
		\sqcup	4	4	\perp		_	\perp		\perp	4		4	_	\perp	+	_	1		-		\dashv	\rightarrow		\perp	\perp	\square	\dashv		4	\perp	\perp	\perp	\perp	\square	\vdash	\dashv		4	\perp	\sqcup	+
					\perp			\perp			4														\perp	\perp	Ш				\perp		\perp		Ш	\sqcup	\perp			4	Ш	\perp
		Ш			\perp						4			1	1								\perp		\perp		Ш	\perp							Ш	Ш				\perp	Ш	\perp
I																																				ıl						

4.11.1.1. Costos de equipos y accesorios.

Para determinar a cuanto asciende esta cantidad monetaria se hace la contabilización de equipos y accesorios, necesarios.

A continuación se presenta el detalle de elementos y sus precios en el mercado nacional.

Tabla. 37. Costos de accesorios para sistema de distribución de vapor

Elemento	Dimensión Pulgadas ⁶⁴	Cantidad	Precio unitario \$	Precio total
	3/4	44	1.12	49.28
Codo 90°	1	7	1.42	9.94
C000 90	2	19	2.84	53.96
	4	5	10.89	54.45
	3/4	19	3.22	61.18
Tee	1	5	3.57	17.85
100	2	5	7.14	35.70
	4	11	17.50	192.50
Válvula de	3/4	26	56.50	1,469.00
compuerta	2	9	142.38	1,281.42
Compacita	4	2	249.50	499.02
Válvula de	3/4	7	131.08	917.56
seguridad	1	1	158.20	158.20
seguridad	2	1	316.40	316.40
Manómetros	Conexión de	3	8.25	24.75
0 – 160 psi	1/4	3	6.23	24.73
Filtro tipo Y	3/4	7	19.37	135.59
Trampas de	3/4	2	302.95	605.90
vapor	3/4	4	302.95	1,211.80
Reductores	4-2	6	15.74	94.44

⁶⁴ Ver anexos 2, tabla 18.

_

concéntricos	$4 - \frac{3}{4}$	2	9.83	19.66
	$4 - \frac{1}{4}$	2	9.83	19.66
	$1 - \frac{3}{4}$	6	0.77	4.62
	$2 - \frac{3}{4}$	7	1.54	10.78
	$1 - \frac{1}{4}$	1	1.54	1.54

Elemento	Dimensión	Cantidad	Precio unitario \$	Precio total \$
Unión	3/4	4	7.33	29.32
universales	1	13	8.67	112.71
universales	4	9	10.89	98.04
Tubería acero	3/4	137.65=41.96	17.73 / 21	116.22
al carbón	1	242.42=73.89	25.09 / 21	289.63
cedula 40	2	219.8 2=67.00	68.36 / 21	715.57
cedula 40	4	253.31=77.21	148.85 / 21	1,795.52
	3/4	137.65=41.96	5.14 / 1	215.67
Aislamiento	1	242.42=73.89	5.14 / 1	379.80
térmico	2	219.8 2=67.00	10.28 / 1	688.76
	4	253.31=77.21	18.93 / 1	1,461.60
Juntas de	1	1	135.60	135.60
expansión	3	1	410.67	410.67
	To	otal		13,694.30

4.12.1.1. Costo de equipo.

El equipo considerado a instalar se detalla a continuación.

Tabla. 38. Costos de equipos de lavandería

Equipo	Marca	Cantidad	Precio \$
Lavadora	G.A Braun	3	432,000
Secadora rotativa	G.A Braun	4	298,667
Planchador de rodillo	G.A Braun	1	
	Total		730,667

Tabla. 39. Costos de equipos de distribución de vapor

Equipo	Marca	Cantidad	Precio \$
Caldera de 150 BHP		1	
Tanque de			
condensado de 200	Cleaver Brucks	1	82,000
gal sistema duplex			
Separador de purga		1	
75 lts.		1	
Tanque de diario de		1	5,000
diesel 3,000 lts		1	3,000
Tanque de reserva		2	16,000
diesel de 10,000 lts.		2	10,000
Equipo suavizador			
sistema dual de 16		1	30,000
pies³			
Tanque de			
calentamiento de		1	16,000
agua 1500 gal			
	Total		149,000

Conclusiones

- En las instalaciones de lavandería, específicamente en las áreas de secado-entrega de ropa y casa de máquinas, se tienen áreas subutilizadas de espacio; en secadoentrega de ropa existen una serie de equipos antiguos de lavandería que ya están fuera de servicio.
- El sistema de distribución de vapor se encuentra en condiciones aceptables de operación, con excepción de algunos equipos en cuarto de máquinas que poseen algunas fugas, incluyendo una tubería que sale del múltiple.
- Las instalaciones de lavandería cuentan con espacios suficientes, para el ingreso de equipos nuevos.
- Las condiciones de ventilación, cuenta con áreas amplias de ventilación aparte de un sistema de extracciones de pelusas y de gases.
- El sistema de iluminación no cuenta con las luminarias necesarias, ya que se observaron un número considerable de dispositivos que se encuentran fuera de servicio o no están completos.
- La capacidad de la subestación esta al limite según información proporcionada por la institución.
- La falta de manuales técnicos dentro de las instalaciones del hospital general ISSS dificulta la obtención de datos precisos de consumo de vapor.
- En la tubería de agua potable, proveniente de la red principal del sistema de bombeo, no se cuenta con un flujo metro, lo cual no permite tener un dato de consumo de agua para las instalaciones de lavandería.
- La subestación de las instalaciones de lavandería presenta un desbalance de carga en la fase C.

- En el sistema de alimentación de aire comprimido, uno de los compresores se mantiene en funcionamiento permanente durante lo observado.
- Algunos de los equipos, que son parte de la capacidad instalada, se encuentran fuera de servicio en algunas de los departamentos.
- Las instalaciones propuestas son parte del área de cocina actualmente por lo que se deberá hacer un reordenamiento de la actual infraestructura.
- Se le realizaran algunas modificaciones al sistema de distribución de vapor en le área de casas de máquinas ya que existen un numero considerable de tuberías las cuales se cruzan con las de la propuesta estas se plantean en le plano de las nuevas instalaciones.
- Para mejorar la calidad del servicio de vapor habrá que instalar un acumulador de vapor para que este mantenga la presión necesaria en los equipos y no se den problemas de arrastre.
- Los elementos de un sistema de distribución de vapor deben ser inspeccionados periódicamente siguiendo los lineamientos de un plan de mantenimiento pues de eso depende el buen funcionamiento de dichos elementos.
- Es importante contar con normas de bioseguridad en este tipo de instalaciones pues se manipulan productos infecciosos con los que están en contacto los obreros y a demás inspeccionar que estas normas se cumplan.

Recomendaciones

- Revisar el sistema de distribución
- de vapor en búsqueda de fugas tanto en bridas, acoples, válvulas y soldaduras.
- Mejorar las condiciones de iluminación en lavandería.
- Considerar la introducción de aire acondicionado en el área de lavandería, ya que según normas debe estar contemplado en las instalaciones con su respectiva

- presurización en el área limpia para que no se permita el ingreso de flujo contaminado.
- Enfibrar y enchaquetar aquellas tuberías que tengan riesgo de quemaduras para evitar perdidas de calor, lo cual se traduce en perdidas de dinero.
- Considerar la utilización de un pozo de limpieza en la chimenea para efectos de mantenimiento.
- Realizar una revisión de la capacidad instalada de la subestación que alimenta estas instalaciones puesto que se encuentra a su total capacidad y presenta desbalance en una de las fases.
- Contar con un registro de información de equipos e instalaciones en casas de máquinas y lavandería.
- Revisar el correcto funcionamiento de las estaciones de trampeo, ya que la temperatura en el tanque de condensado es muy elevada, lo cual repercute en el funcionamiento de las bombas de este sistema, pues quedan propensas a la cavitación.
- Considerar un sistema de chequeo de trampas para la verificación de su apertura

Bibliografía

1. Libros:

- 1.1. FEPADE, <u>Sistema Mecánico Y Eléctrico De Las Calderas</u>, San Salvador, Junio de 1994.
- 1.2. Crane Co, Flujo de fluidos, Mc. Graw-Hill. 1989.

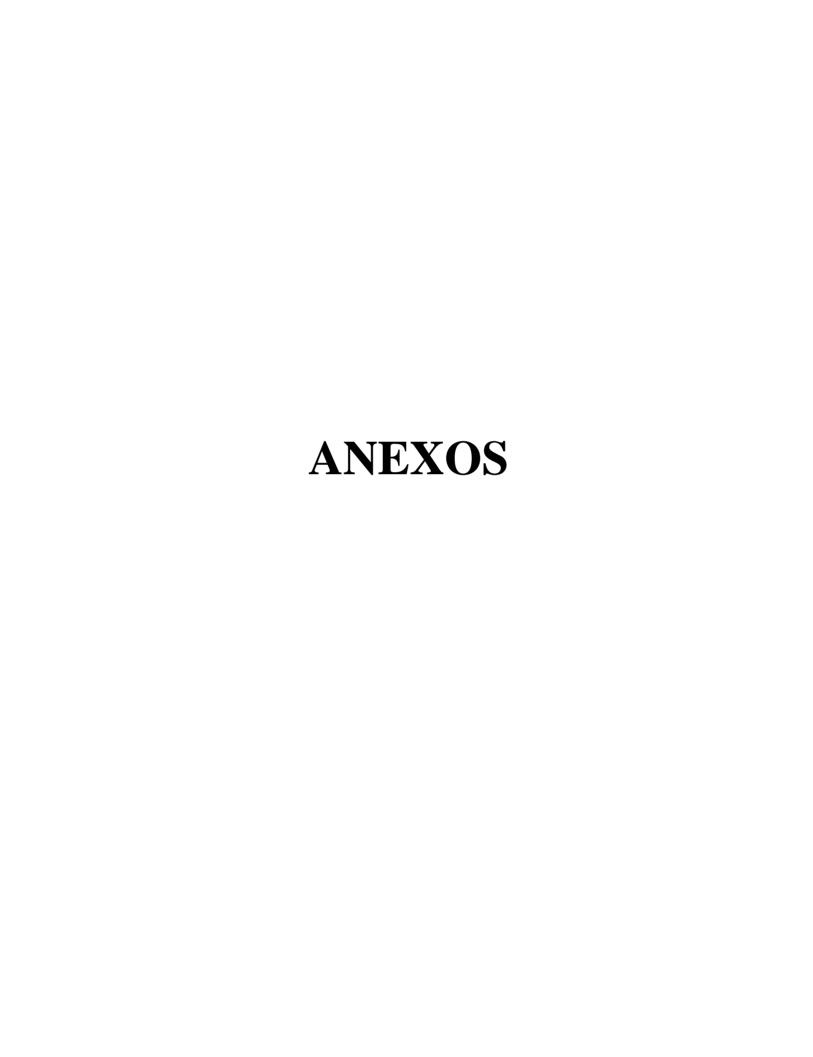
2. Tesis:

- 2.1. Fuentes Palma, José Luís y Franco Santos, Francisco, <u>Análisis De La Instalación General De Vapor Del Hospital Rosales Y Propuesta De</u> Mejoramiento Del Sistema, Universidad de El Salvador, Octubre de 1993.
- 2.2. Nombres, Análisis <u>de las Instalaciones Generales de Vapor del Hospital</u> <u>Rosales y Propuesta de Mejoramiento del Sistema.</u>, Universidad Don Bosco, Mes de 2006.

3. Manuales:

- 3.1. Neumática Básica
- 2.2. Sistemas de vapor
- 3.3. BRAUN, Operation & Maintenance of Washer Extractor, 1995
- 3.4. ICAITI, Ahorro de Energía en Sistemas de Vapor
- 3.5. Marks. L.S., Manual del Ingeniero Mecánico, Uthea. México.
- 3.6. Spirax Sarco, Manual de Productos, México.
- 3.7. Manual de Normas Mexicanas para el Dimensionamiento de Hospitales IMSS.
- 3.8. Manual de Carrier.
- 3.9. Crane Co. Flujo de fluidos.

4. Catálogos:


- Catalogo de equipos eclipse look out copamy Manufactures Rd. E Compress. St Chattanooga. Tenséis 37405.
- 4.2. Catalogo de Trampas y Válvulas Spirax Sarco. México.

5. Entrevistas:

- 5.1. Ingeniero. Reynaldo Gonzáles, Jefe de Mantenimiento del Hospital General del ISSS.
- 5.2. Ingeniero. Melvin Argueta, Encargado del área de vapor del Hospital General del ISSS.
- 5.3. Ingeniero Edwin Romeo Zepeda
- 5.4. Ingeniero Romagoza.

7. Internet:

- 7.1 www.consolidated.com
- 7.2. www.ingersold-rand.com
- 7.3. www.saylor-beall.com

ANEXOS 2

Tabla 1.

Perpendencia of the Property	DEPARTAMENT	DEPARTAMENTO DE SERVICIOS GENERALES				SEC	SECCION CONTABILIDAD PATRIMONIAL	LIDAD PATRI	MONIAL	
MES REPORTADO: DEL CI AL 31 DE MARZO DE 2007 FECHA DE ELABORACION: 12 DE ABRIL DE 2007 Z20-3012-6022-6011 300-pp RES 25,4569 S2,4569 S2,456		DEPENDENCIA QUE REPORTA:	COMPLEJO H	DSPITAL GENER	ΑL	COD. CENTR	TO DE COSTOS:			
007 Z.20-302-6-025-0011 300HP R85 CA-156 S.24-456 S.24-169 St 007 Z.20-302-6-025-0011 300HP R84 S.24-456 S.24-169 St 007 Z.20-302-6-025-0011 300HP R84 S.24-456 S.24-169 St 007 Z.20-302-6-025-0011 300HP R85 S.24-456 S.24-169 St 007 Z.20-302-6-025-0011 300HP R85 S.24-456 S.24-66 S.21-66 St 007 Z.20-302-6-025-0011 300HP R85 S.24-69 S.21-66 St S.21-66 St 007 Z.20-302-6-025-0011 300HP R85 S.24-69 S.21-69 S.21-69 007 Z.20-302-6-025-0011 300HP R85 S.24-69 S.21-69 S.21-69 007 Z.20-302-6-025-0011 300HP R85 S.2-69 S.21-69 S.21-69 007 Z.20-302-6-025-0011 300HP R85 S.2-69 S.21-69 S.21-69 007 Z.20-302-6-025-0011 300HP R85 S.2-69<		MES REPORTADO:	DEL 01 AL 31	DE MARZO DE 21	200	FECHA DE E	ELABORACION:		L DE 2007	1
MO NAME CARGOLIAN CALSON SEA SEA GOLIAN DIESTIL CALSON SEA GOLIAN CALSON SEA GOLIAN DIESTIL CALSON CALSON SEA GOLIA CALSON	FECHA DE			PLANTA DE	CANTIDAD DE	GALONES	COSTO POR	GALON	COSTOS T	OTALES
0077 220-302-6-02-5-0011 300HP 882 \$2.489 0077 220-302-6-02-5-0011 300HP 786-5 \$2.489 0077 220-302-6-02-5-0011 300HP 8845 \$2.489 007 220-302-6-02-5-0011 300HP 8845 \$2.489 007 220-302-6-02-0011 300HP 849 \$2.489 007 220-302-6-02-0011 300HP 849 \$2.489 007 220-302-6-02-0011 300HP 88.5 \$2.489 007 220-302-6-02-0011 300HP 7715 \$2.589 007 220-302-6-02-0011 300HP 7715 \$2.589 007 220-302-6-02-0011 300HP 771 \$2.589 007 220-302-6-02-0011 300HP 771 \$2.589 007 220-302-6-02-0011 300HP 778 \$2.589 007 220-302-6-02-0011 300HP 87.5 \$2.589 007 220-302-6-02-0011 300HP 87.5 \$2.590 0	CONSUMO	NUMERO DE INVENTARIO	CALDERAS*	EMERGENCIA*	DIESEL	GASOLINA	DIESEL	GASOLINA	DIESEL	GASOLI
0077 220-302-6-02-6-0011 300HP 854 \$2.469 0077 220-302-6-02-6-0011 300HP 885 \$2.469 0077 220-302-6-02-6-0011 300HP 885 \$2.469 0077 220-302-6-02-6-0011 300HP 849 \$2.469 0077 220-302-6-02-6-0011 300HP 8745 \$2.489 0077 220-302-6-02-0011 300HP 773 \$2.489 0077 220-302-6-02-0011 300HP 773 \$2.589 0077 220-302-6-02-0011 300HP 773 \$2.590 0077 220-302-6-02-0011 300HP 87.5 \$2.500 0077 220-302-6-02-0011 300HP 87.5 \$2.4719 0077 220-302-6-02-0011 300HP 885 \$2.4719	01/03/2007	220-302-06-025-0011	300HP		882		\$2.4369		\$2,149.35	
0077 220-302-66-25-0011 300HP 788-5 \$2.489 0077 220-302-66-25-0011 300HP 849 \$2.489 0077 220-302-66-25-0011 300HP 849 \$2.489 0077 220-302-66-25-0011 300HP 849 \$2.489 0077 220-302-66-25-0011 300HP 874.5 \$2.489 0077 220-302-66-25-0011 300HP 875.5 \$2.489 0077 220-302-66-25-0011 300HP 875.5 \$2.489 0077 220-302-66-25-0011 300HP 885.5 \$2.589 0077 220-302-66-25-0011 300HP 773 \$2.589 0077 220-302-66-25-0011 300HP 778 \$2.589 0077 220-302-66-25-0011 300HP 778 \$2.589 0077 220-302-66-25-0011 300HP 877.5 \$2.589 0077 220-302-66-25-0011 300HP 877.5 \$2.590 0077 220-302-66-25-0011 300HP 872.5 \$2.479 <td>02/03/2007</td> <td>220-302-06-025-0011</td> <td>300HP</td> <td></td> <td>854</td> <td></td> <td>\$2.4369</td> <td></td> <td>\$2,081,11</td> <td></td>	02/03/2007	220-302-06-025-0011	300HP		854		\$2.4369		\$2,081,11	
0077 220,302-6-025-0011 300HP 865 \$2,4366 0077 220,302-6-025-0011 300HP 849 \$2,4366 0077 220,302-6-025-0011 300HP 874.5 \$2,4366 0077 220,302-6-025-0011 300HP 779 \$2,4366 0077 220,302-6-025-0011 300HP 779 \$2,4366 0077 220,302-6-025-0011 300HP 779 \$2,5289 0077 220,302-6-025-0011 300HP 7716 \$2,5289 0077 220,302-6-025-0011 300HP 7716 \$2,5289 0077 220,302-6-025-0011 300HP 739 \$2,280 0077 220,302-6-025-0011 300HP 82,586 \$2,289 0077 220,302-6-025-0011 300HP 82,500 \$2,280 0077 220,302-6-025-0011 300HP 82,500 \$2,280 0077 220,302-6-025-0011 300HP 862 \$2,419 0077 220,302-6-025-0011 300HP 862 \$2,419	03/03/2007	220-302-06-025-0011	300HP		798.5		\$2.4369		\$1,945.86	
0077 222 302 6-025-0011 300HP 888 5 \$2.4569 0077 220 302 6-025-0011 300HP 874.5 \$2.4569 0077 220 302 6-025-0011 300HP 771.5 \$2.4369 0077 220 302 6-025-0011 300HP 771.5 \$2.4369 0077 220 302 6-025-0011 300HP 771.6 \$2.2889 0077 220 302 6-025-0011 300HP 865.5 \$2.2889 0077 220 302 6-025-0011 300HP 778 \$2.2889 0070 220 302 6-025-0011 300HP 82.85 \$2.2899 0070 220 302 6-025-0011 300HP 82.85 \$2.500 0071 220 302 6-025-0011 300HP 82.85 \$2.500 0077 220 302 6-025-0011 300HP 87.5 \$2.500 0077 220 302 6-025-0011 300HP 869 \$2.200 0077 220 302 6-025-0011 300HP 869 \$2.200 0077 220 302 6-025-0011 300HP 865 \$2.200 <td>04/03/2007</td> <td>220-302-06-025-0011</td> <td>300HP</td> <td></td> <td>855</td> <td></td> <td>\$2.4369</td> <td></td> <td>\$2,083.55</td> <td></td>	04/03/2007	220-302-06-025-0011	300HP		855		\$2.4369		\$2,083.55	
0077 220-302-46-025-0011 300HP 849 \$2,4369 0077 220-302-46-025-0011 300HP 7775 \$2,4369 0077 220-302-46-025-0011 300HP 7775 \$2,5289 0077 220-302-46-025-0011 300HP 7775 \$2,5289 0077 220-302-46-025-0011 300HP 771 \$2,5289 0077 220-302-46-025-0011 300HP 771 \$2,5289 007 220-302-46-025-0011 300HP 771 \$2,5289 007 220-302-46-025-0011 300HP 778 \$2,5289 007 220-302-46-025-0011 300HP 778 \$2,500 007 220-302-46-025-0011 300HP 87.5 \$2,500 007 220-302-46-025-0011 300HP 87.5 \$2,500 007 220-302-46-025-0011 300HP 882 \$2,500 007 220-302-46-025-0011 300HP 885 \$2,4219 007 220-302-46-025-0011 300HP 885 \$2,4219	05/03/2007	220-302-06-025-0011	300HP		888.5		\$2.4369		\$2,165.19	
0077 220-302-06-025-0011 300HP 67.45 \$2.4369 0077 220-302-06-205-0011 300HP 7715 \$2.5289 0077 220-302-06-025-0011 300HP 771 \$2.5289 0077 220-302-06-025-0011 300HP 885.5 \$2.5289 0077 220-302-06-025-0011 300HP 788 \$2.5289 0077 220-302-06-025-0011 300HP 788 \$2.5289 0077 220-302-06-025-0011 300HP 788 \$2.5289 0077 220-302-06-025-0011 300HP 872 \$2.500 0077 220-302-06-025-0011 300HP 872 \$2.500 0077 220-302-06-025-0011 300HP 869 \$2.500 0077 220-302-06-025-0011 300HP 885 \$2.4219 0077 220-302-06-025-0011 300HP 889 \$2.4219 0077 220-302-06-025-0011 300HP 889 \$2.4219 007 220-302-06-025-0011 300HP 889 \$2.4219<	06/03/2007	220-302-06-025-0011	300HP		849		\$2.4369		\$2.068.93	
007 220-302-06-025-0011 300HP 7715 \$2-436 007 220-302-06-025-0011 300HP 773 \$2-236 007 220-302-06-025-0011 300HP 711 \$2-236 007 220-302-06-025-0011 300HP 716 \$2-236 007 220-302-06-025-0011 300HP 739 \$2-236 007 220-302-06-025-0011 300HP 739 \$2-236 007 220-302-06-025-0011 300HP 739 \$2-236 007 220-302-06-025-0011 300HP 87.5 \$2-200 007 220-302-06-025-0011 300HP 87.5 \$2-200 007 220-302-06-025-0011 300HP 87.5 \$2-300 007 220-302-06-025-0011 300HP 885 \$2-319 007 220-302-06-025-0011 300HP 885 \$2-319 007 220-302-06-025-0011 300HP 885 \$2-419 007 220-302-06-025-0011 300HP 885 \$2-419	07/03/2007	220-302-06-025-0011	300HP		874.5		\$2.4369		\$2,131.07	
0077 220-302-06-025-0011 300HP 779 \$2.5289 0077 220-302-06-025-0011 300HP 719 \$2.5289 0077 220-302-06-025-0011 300HP 711 \$2.5289 007 220-302-06-025-0011 300HP 739 \$2.5289 007 220-302-06-025-0011 300HP 739 \$2.5289 007 220-302-06-025-0011 300HP 739 \$2.5289 007 220-302-06-025-0011 300HP 826.5 \$2.500 007 220-302-06-025-0011 300HP 87.5 \$2.500 007 220-302-06-025-0011 300HP 882 \$2.500 007 220-302-06-025-0011 300HP 883 \$2.500 007 220-302-06-025-0011 300HP 883 \$2.4219 007 220-302-06-025-0011 300HP 883 \$2.4219 007 220-302-06-025-0011 300HP 882 \$2.4219 007 220-302-06-025-0011 300HP 883 \$2.4219 <td>08/03/2007</td> <td>220-302-06-025-0011</td> <td>300HP</td> <td></td> <td>771.5</td> <td></td> <td>\$2.4369</td> <td></td> <td>\$1,880.07</td> <td></td>	08/03/2007	220-302-06-025-0011	300HP		771.5		\$2.4369		\$1,880.07	
007 220-302-06-025-0011 300HP 886.5 \$25.289 \$25.280 \$25.289 \$25.289 \$25.280 \$25.280 \$25.289 \$25.280	09/03/2007	220-302-06-025-0011	300HP		779		\$2.5289		\$1,970.01	
0077 220-302-06-025-0011 300HP 711 \$5.5289 0077 220-302-06-025-0011 300HP 789 \$2.5289 0077 220-302-06-025-0011 300HP 739 \$2.5289 0077 220-302-06-025-0011 300HP 739 \$2.5289 0077 220-302-06-025-0011 300HP 877.5 \$2.5000 007 220-302-06-025-0011 300HP 915.5 \$2.5000 007 220-302-06-025-0011 300HP 985 \$2.5000 007 220-302-06-025-0011 300HP 889 \$2.5000 007 220-302-06-025-0011 300HP 885 \$2.4219	10/03/2007	220-302-06-025-0011	300HP		885.5		\$2.5289		\$2 239 34	
0077 220-302-06-025-0011 300HP 816 \$2,5289 0077 220-302-06-025-0011 300HP 738 \$2,5289 0077 220-302-06-025-0011 300HP 739 \$2,5289 0077 220-302-06-025-0011 300HP 826.5 \$2,5000 0077 220-302-06-025-0011 300HP 875.5 \$2,5000 007 220-302-06-025-0011 300HP 885 \$2,5000 007 220-302-06-025-0011 300HP 889 \$2,5000 007 220-302-06-025-0011 300HP 885 \$2,4219 007 220-302-06-025-0011 300HP 882 \$2,4219	11/03/2007	220-302-06-025-0011	300HP		711		\$2.5289		\$1,798.05	
0077 220-302-06-025-0011 300HP 788 \$2,5289 0077 220-302-06-025-0011 300HP 828.5 0077 220-302-06-025-0011 300HP 87.5 0077 220-302-06-025-0011 300HP 888 0077 220-302-06-025-0011 300HP 888 0077 220-302-06-025-0011 300HP 889 0077 220-302-06-025-0011 300HP 885 0078 220-302-06-025-0011 300HP 885 0079 220-302-06-025-0011 300HP 885 0070 220-302-06-02	12/03/2007	220-302-06-025-0011	300HP		816		\$2.5289		\$2,063.58	
0077 220-302-06-025-0011 300HP 739 \$2.5299 0077 220-302-06-025-0011 300HP 87.55 \$2.5000 0077 220-302-06-025-0011 300HP 915.5 \$2.5000 0077 220-302-06-025-0011 300HP 965 \$2.5000 0077 220-302-06-025-0011 300HP 968 \$2.5000 007 220-302-06-025-0011 300HP 869 \$2.5000 007 220-302-06-025-0011 300HP 889 \$2.5000 007 220-302-06-025-0011 300HP 885 \$2.4219 007 220-302-06-025-0011 300HP 87.5 \$2.4219	13/03/2007	220-302-06-025-0011	300HP		788		\$2.5289		\$1,992.77	
0077 220-302-06-025-0011 300HP 872 500 0077 220-302-06-025-0011 300HP 872 500 007 220-302-06-025-0011 300HP 852 \$2.5000 007 220-302-06-025-0011 300HP 882 \$2.5000 007 220-302-06-025-0011 300HP 889 \$2.5000 007 220-302-06-025-0011 300HP 886 \$2.5000 007 220-302-06-025-0011 300HP 886 \$2.5000 007 220-302-06-025-0011 300HP 885 \$2.4219 007 220-302-06-025-0011 300HP 885 \$2.4219 007 220-302-06-025-0011 300HP 885 \$2.4219 007 220-302-06-025-0011 300HP 882 \$2.4219 007 220-302-06-025-0011 300HP 875.5 \$2.4219 007 220-302-06-025-0011 300HP 875.5 \$2.4219 007 220-302-06-025-0011 300HP 875.5 \$2.4219 007	14/03/2007	220-302-06-025-0011	300HP		739		\$2.5289		\$1,868.86	
0077 220-302-06-025-0011 300HP 877.5 \$2.5000 0077 220-302-06-025-0011 300HP 898 \$2.5000 0077 220-302-06-025-0011 300HP 898 \$2.5000 0077 220-302-06-025-0011 300HP 889 \$2.5000 0077 220-302-06-025-0011 300HP 889 \$2.5000 007 220-302-06-025-0011 300HP 889 \$2.4219 007 220-302-06-025-0011 300HP 885 \$2.4219 007 220-302-06-025-0011 300HP 882 \$2.4219 007 220-302-06-025-0011 300HP 882 \$2.4219 007 220-302-06-025-0011 300HP 882 \$2.4219 007 220-302-06-025-0011 300HP 862 \$2.4219 007 220-302-06-025-0011 300HP 862 \$2.4219 007 220-302-06-025-0011 300HP 862 \$2.4219 007 220-302-06-025-0014 300HP 862 \$2.4219	15/03/2007	220-302-06-025-0011	300HP		828.5		\$2.5000		\$2.071.25	
0077 220-302-06-025-0011 300HP 915.5 \$2.5000 0077 220-302-06-025-0011 300HP 652 \$2.5000 0077 220-302-06-025-0011 300HP 809 \$2.5000 0077 220-302-06-025-0011 300HP 889 \$2.5000 0077 220-302-06-025-0011 300HP 889 \$2.5000 007 220-302-06-025-0011 300HP 885 \$2.4219 007 220-302-06-025-0011 300HP 87.5 \$2.4219 007 220-302-06-025-0011 300HP 87.5 \$2.4219 007 220-302-06-025-0014 300HP 87.5 \$2.4219 007 220-302-06-025-0014 300HP 87.5 \$2.4219	16/03/2007	220-302-06-025-0011	300HP		877.5		\$2.5000		\$2,193.75	
0077 220-302-06-025-0011 300HP 852 82-5000 0077 220-302-06-025-0011 300HP 968 82-5000 0077 220-302-06-025-0011 300HP 869 82-5000 0077 220-302-06-025-0011 300HP 869 82-5000 0077 220-302-06-025-0011 300HP 805 82-4219 0077 220-302-06-025-0011 300HP 805 82-4219 0077 220-302-06-025-0011 300HP 822 82-4219 0077 220-302-06-025-0011 300HP 822 82-4219 0077 220-302-06-025-0011 300HP 875.5 82-4219 0077 220-302-06-025-0011 300HP 875.5 82-4219 0077 220-302-06-025-0011 300HP 875.5 82-4219 0077 220-302-06-025-0013 300HP 867.5 82-4219 0077 220-302-06-025-0013 300HP 867.5 82-4219 0077 220-302-06-025-0013 300HP 867.5 <	17/03/2007	220-302-06-025-0011	300HP		915.5		\$2.5000		\$2,288.75	
0077 220-302-06-025-0011 300HP 968 \$2,5000 3077 220-302-06-025-0011 300HP 869 \$2,5000 0077 220-302-06-025-0011 300HP 869 \$2,5000 0077 220-302-06-025-0011 300HP 865 \$2,4219 0077 220-302-06-025-0011 300HP 862 \$2,4219 007 220-302-06-025-0011 300HP 865 \$2,4219 007 220-302-06-025-0012 300HP 865 \$2,4219 007 220-302-06-025-0014 300HP 865 \$2,4219 007 220-302-06-025-0014 300HP 867.5 \$2,4219 007 220-302-06-025-0014 300HP 867.5 \$2,4219 007 220-302-06-025-0014 300HP 823.25 \$2,4219 <td>18/03/2007</td> <td>220-302-06-025-0011</td> <td>300HP</td> <td></td> <td>852</td> <td></td> <td>\$2.5000</td> <td></td> <td>\$2,130.00</td> <td></td>	18/03/2007	220-302-06-025-0011	300HP		852		\$2.5000		\$2,130.00	
0077 220-302-06-025-0011 300HP 809 \$25.000 0077 220-302-06-025-0011 300HP 809 \$25.000 0077 220-302-06-025-0011 300HP 885 \$2.4219 0077 220-302-06-025-0011 300HP 885 \$2.4219 0077 220-302-06-025-0011 300HP 822 \$2.4219 0077 220-302-06-025-0011 300HP 845 \$2.4219 0077 220-302-06-025-0011 300HP 845 \$2.4219 0077 220-302-06-025-0011 300HP 875.5 \$2.4219 0077 220-302-06-025-0011 300HP 875.5 \$2.4219 0077 220-302-06-025-0014 300HP 875.5 \$2.4219 0077 220-302-06-025-0014 300HP 875.5 \$2.4219 0077 220-302-06-025-0014 300HP 875.5 \$2.4219 007 220-302-06-025-0014 300HP 875.5 \$2.4219 007 220-302-06-025-0014 300HP \$2.325	19/03/2007	220-302-06-025-0011	300HP		896		\$2.5000		\$2,420.00	
097 220-302-06-025-0011 300HP 869 \$25000 007 220-302-06-025-0011 300HP 885 \$2.4219 007 220-302-06-025-0011 300HP 885 \$2.4219 007 220-302-06-025-0011 300HP 862 \$2.4219 007 220-302-06-025-0011 300HP 862 \$2.4219 007 220-302-06-025-0011 300HP 846.5 \$2.4219 007 220-302-06-025-0012 300HP 846.5 \$2.4219 007 220-302-06-025-0013 300HP 867.5 \$2.4219 007 220-302-06-025-0013 300HP 867.5 \$2.4219 007 220-302-06-025-0014 300HP 867.5 \$2.4219	20/03/2007	220-302-06-025-0011	300HP		809		\$2.5000		\$2,022.50	
0077 220-302-06-025-0011 300HP 912.5 \$2.4219 0077 220-302-06-025-0011 300HP 885 \$2.4219 0077 220-302-06-025-0011 300HP 682 \$2.4219 0077 220-302-06-025-0011 300HP 882 \$2.4219 0077 220-302-06-025-0012 300HP 862 \$2.4219 007 220-302-06-025-0012 300HP 86.5 \$2.4219 007 220-302-06-025-0014 300HP 86.5 \$2.4219 007 220-302-06-025-0014 300HP 86.7 \$2.4219 007 220-302-06-025-0014 300HP 86.7 \$2.4219 007 220-302-06-025-0014 300HP 86.7 \$2.4219 007 220-302-06-025-0016 300HP 86.7 \$2.4219 AUTORIZADO FIRMANIA FIRMA:	21/03/2007	220-302-06-025-0011	300HP		869		\$2.5000		\$2,172.50	
0077 220-302-06-025-0011 300HP 885 \$2,4219 0077 220-302-06-025-0011 300HP 682 \$2,4219 0077 220-302-06-025-0011 300HP 682 \$2,4219 0077 220-302-06-025-0011 300HP 845 \$2,4219 0077 220-302-06-025-0012 300HP 770.5 \$2,4219 007 220-302-06-025-0013 300HP 87.5 \$2,4219 007 220-302-06-025-0014 300HP 87.5 \$2,4219 107 220-302-06-025-0014 300HP 87.5 \$2,4219 107 220-302-06-025-0014 300HP 87.5 \$2,4219 108 109 109 109 109 109 109 109 109 109 109 109 <td>22/03/2007</td> <td>220-302-06-025-0011</td> <td>300HP</td> <td></td> <td>912.5</td> <td></td> <td>\$2.4219</td> <td></td> <td>\$2,209.98</td> <td></td>	22/03/2007	220-302-06-025-0011	300HP		912.5		\$2.4219		\$2,209.98	
0077 220-302-66-025-0011 300HP 796.5 \$2.4219 0077 220-302-66-025-0011 300HP 882 \$2.4219 0077 220-302-66-025-0011 300HP 846.5 \$2.4219 0077 220-302-6-025-0012 300HP 846.5 \$2.4219 0077 220-302-6-025-0013 300HP 867.5 \$2.4219 0077 220-302-6-025-0014 300HP 867.5 \$2.4219 007 220-302-6-025-0014 300HP 867.5 \$2.4219 007 220-302-6-025-0016 300HP 867.5 \$2.4219 007 220-302-00-025-0016 300HP 867.5 \$2.4219 NOMBRE TOTAL MENSUAL 25,886 AUTORIZADO FIRMA:	23/03/2007	220-302-06-025-0011	300HP		885		\$2.4219		\$2,143.38	
0077 220-302-66-025-0011 300HP 682 82-4219 0077 220-302-66-025-0011 300HP 622 \$2-4219 0077 220-302-66-025-0012 300HP 846.5 \$2-4219 0077 220-302-66-025-0013 300HP 87.55 \$2-4219 007 220-302-06-025-0014 300HP 867.5 \$2.4219 007 220-302-06-025-0015 300HP 867.5 \$2.4219 007 220-302-06-025-0016 300HP 867.5 \$2.4219 007 220-302-06-025-0016 300HP 867.5 \$2.4219 007 220-302-06-025-0016 300HP 867.5 \$2.4219 AUTORIZADO FIRMA:	24/03/2007	220-302-06-025-0011	300HP		790.5		\$2.4219		\$1,914.51	
0077 220-302-64-025-0011 300HP 882 \$2,4219 0077 220-302-64-025-0011 300HP 846.5 \$2,4219 0077 220-302-64-025-0013 300HP 770.5 \$2,4219 0077 220-302-64-025-0014 300HP 875.5 \$2,4219 0077 220-302-06-025-0016 300HP 875.5 \$2,4219 007 220-302-06-025-0016 300HP 823.25 \$2,4219 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25/03/2007	220-302-06-025-0011	300HP		682		\$2.4219		\$1,651.74	
007	26/03/2007	220-302-06-025-0011	300HP		822		\$2.4219		\$1,990.80	
007	27/03/2007	220-302-06-025-0011	300HP		846.5		\$2.4219		\$2,050.14	
007	28/03/2007	220-302-06-025-0012	300HP		770.5		\$2,4219		\$1,866.07	
007 220-302-06-025-0014 300HP 867.5 \$2.4219 007 220-302-06-025-0015 300HP 867.5 \$2.4219 TOTAL MENSUAL 25,886 NOMBRE NOMBRE	29/03/2007	220-302-06-025-0013	300HP		875.5		\$2.4219		\$2,120.37	
007 220-302-06-025-0016 823.25 82.3.25 82.4.219 TOTAL MENSUAL 25,886 AUTORIZADO NOMBRE FIRMA:	30/03/2007	220-302-06-025-0014	300HP		867.5		\$2.4219		\$2,101.00	
TOTAL MENSUAL 25,886 AUTORIZADO NOMBRE: FIRMA:	31/03/2007	220-302-06-025-0015	300HP		823.25		\$2.4219		\$1,993.83	
TOTAL MENSUAL 25,886 AUTORIZADO NOMBRE: FIRMA:										200
				TOTAL MENSUAL	25,886				\$63,778.32	
	ABORO:					AUTORIZADO				
	OMBRE					NOMBRE				
			1							
	RMA:									

Tabla 2.

CONTROL DE CONSUMO Y COSTO DE COMBUSTIBLES PARA CALDERAS Y PLANTAS DE EMERGENCIA
COMPLEJO HOSPITAL GENERAL
DEL 01 AL 28 DE FEBRERO DE 2007
300HP
300HP
300HP
300HP
3000
300HP
30041
SOUTH
300HD
300HP
PHOOS
SUUH

Tabla 3.

SECCIÓN ALIMENTACIÓN Y DIETAS-DEPÁRTAMENTO SERVICIOS DE APOYO INFORME MENSUAL DE RACIONES SERVIDAS A PERSONAL Y PACIENTES MES DE MARZO 2007

PRODUCCIÓN PROMEDIO DÍA	A
RACIONES P / PACIENTE	
RACIONES P / PERSONAL	
REFRIGERIOS P / PERSONAL Y CAPACI	TACIONES
DIETA NORMAL PREPARADA	Λ
DIETA ESPECIAL PREPARADA	A
REFRIGERIOS	
PACIENTES	38 %
PERSONAL	49 %
REFRIGERIOS	13 %
TOTAL DE RACIONES:	138,539

Tabla 4. Factores de presión para tuberías

Vacuum Cut Vills	Ins of	Volume	Pressure	Premure	Volume	Pressure	Pressure	Volume	Pressure
24 1180 9 49 68 3130 117 3-4 172800 22 91-0 15 50 6-7 3225 118 3-4 112890 20 74-8 72 51 66 3125 112 3-4 113180 18 62-0 31 57 65 3475 120 3-4 113180 18 62-0 31 57 65 3475 120 3-4 113180 18 62-0 31 57 65 3475 120 3-4 113180 19 36-1 36-1 36-1 36-7 36-7 36-7 10 39-0 63 56 66 3125 122 3-3 13540 10 39-0 63 56 66 13875 124 3-3 14140 9 36-8 92 57 66 38-7 38-7 8 35-3 100 58 60 4045 126 3-2 14540 8 35-3 100 58 60 4045 126 3-2 14540 6 37-8 120 66 5-7 48-8 120 3-2 14540 6 37-8 120 66 5-7 48-8 120 3-2 14540 6 37-8 120 66 5-7 48-8 120 3-2 14540 6 37-8 120 66 5-7 48-8 120 3-1 15550 3 29-3 150 63 5-6 4500 131 3-1 15550 2 28-2 150 64 5-6 4500 131 3-1 15550 2 28-2 150 64 5-6 4500 131 3-1 15550 2 28-7 150 65 5-5 4840 133 3-1 15560 2 28-7 150 66 5-6 4650 134 3-1 15570 3 29-7 150 66 5-6 4650 134 3-1 15570 4 27-7 150 66 5-6 4650 134 3-1 15570 5 27-7 150 66 5-7 48-96 134 3-1 15570 6 5-7 48-96 134 3-1 15980 7 1 27-3 170 65 5-7 48-96 134 3-1 15980 7 1 27-3 170 65 5-7 48-96 134 3-1 15980 7 1 27-1 150 68 5-7 48-96 134 3-1 15980 7 1 27-1 150 69 5-7 5-7 6-7		cu tVIb							
222 91-0 15 50 6-7 2225 118 3-4 12990									
20									
18									
16									
14									
12									
10 390 83 56 6-1 3825 124 3-3 14140 8 3-5-3 100 58 6-0 4045 126 3-2 14540 8 3-5-3 100 58 6-0 4045 126 3-2 14540 6 3-2 3-2 14540 6 3-2 3-				55					
8 353 100 58 60 4045 126 3·2 14540 6 328 120 60 5.8 4765 127 3·2 14940 6 328 120 60 5.8 4765 128 3·2 14940 5 316 130 61 5.8 4370 129 3·2 15140 4 304 140 62 5.7 4485 130 3·1 15550 2 22 160 64 5.6 4720 132 3·1 15750 1 2.20 176 65 5.5 4840 133 3·1 1589 5 2.20 176 65 5.4 4950 134 3·1 1580 6 3.2 183 8 3·3 500 135 3·3 1640 7 183 8 8 3·3 500 135 3·3	10	39-0	83	56	6-1	3825			14140
7 34-0 110 59 5-9 4155 127 3-2 14940 5 31-6 32-8 120 60 5-8 4765 128 3-2 14940 5 31-6 130 61 5-8 4765 128 3-2 14940 5 31-6 130 61 5-8 4370 129 3-2 15140 6 3 2-7 3 150 63 5-6 4500 131 3-1 15350 3 29-3 150 63 5-6 4500 131 3-1 15570 1 27-3 170 65 5-5 48-0 133 3-1 15570 1 27-3 170 65 5-5 48-0 133 3-1 15570 1 27-3 170 65 5-5 48-0 133 3-1 15570 1 27-3 170 65 5-5 48-0 133 3-1 16190 6-5 27-0 176 6-6 5-4 4960 134 3-1 16190 6-5 27-0 176 6-6 5-4 4960 134 3-1 16190 6-6 1 2-5 1 2-10 6-6 5-5 4 4960 134 3-1 16190 6-6 1 2-5 1 2-10 6-6 5-5 4 4960 134 3-1 16190 6-6 1 2-5 1 2-10 6-6 5-5 4 5-6 1 135 3-0 16400 13 1 2-5 1 2-10 6-6 5-5 4 5-6 1 135 3-0 16520 1 1 2-5 1 2-10 6-6 5-5 2 5320 13-7 3-0 16840 1 1 2-5 1 2-10 6-7 5-4 5-6 1 1 2-5 1 2-10 6-7 5-2 6-40 138 3-0 16960 1 1 2-5 1 2-10 6-7 5-2 6-40 138 3-0 16960 1 1 2-5 1 2-10 6-7 5-2 6-40 138 3-0 16960 1 1 2-5 1 2-10 6-7 5-2 6-40 138 3-0 16960 1 1 2-5 1 2-10 6-7 5-2 6-40 138 3-0 16960 1 1 2-7 1 2	9	36-8	92				125	3.3	14340
6 32-8 120 60 5-8 4765 128 3-2 15140 4 30-4 140 62 5-7 4485 130 3-1 15560 3 3 6-6 4600 131 3-1 15560 2 2 88-2 160 64 5-6 4720 132 3-1 1570 1 273 170 65 5-5 4840 133 3-1 15980 5-5 27-0 176 66 5-4 4960 134 3-1 15590 6 2 5-7 488 6 5-5 4840 133 3-1 15980 6 6 6 5-4 4960 134 3-1 15590 6 6 6 5-4 4960 134 3-1 15980 6 6 6 5-4 4960 134 3-1 15980 6 6 6 5-4 4960 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 134 3-1 15980 6 7 5-4 5080 138 3-0 16620 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
S 31-6 130 61 5-8 4370 129 3-2 15140 4 30-4 140 62 5-7 4485 130 3-1 15350 3 29-3 150 63 5-6 4600 131 3-1 15550 1 27-3 170 65 5-5 4840 133 3-1 15970 1 27-3 170 65 5-5 4840 133 3-1 15970 5 27-0 176 66 5-4 4960 134 3-1 15980 6 7 5-4 5080 135 3-0 16400 7 1 27-1 210 69 5-2 5320 135 3-0 16620 1 25-1 210 69 5-2 5320 137 3-0 16840 2 23-7 235 70 5-2 6440 138 3-0 16960 3 22-4 265 71 5-1 5560 139 3-0 17180 4 21-3 295 72 5-1 5560 139 3-0 17180 5 20-3 325 73 5-0 5820 141 2-9 17680 6 19-4 355 74 5-0 5950 142 2-9 17910 7 186 390 75 4-9 6080 143 2-9 18130 9 17-1 450 77 4-8 6350 145 2-8 18580 10 16-5 500 78 4-8 6490 144 2-9 18360 11 15-9 5-40 79 4-7 6530 147 2-8 19220 12 15-3 580 80 4-7 6770 148 2-8 19250 13 14-8 625 81 4-6 6910 149 2-8 19250 14 14-3 670 62 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7190 151 2-8 19250 16 13-5 780 84 4-7 790 153 2-7 20180 17 13-1 810 85 4-5 7470 153 2-7 20180 18 12-7 860 86 4-4 7610 154 2-7 20550 19 12-4 910 87 4-8 6360 157 2-7 21380 10 12-1 965 88 4-4 7760 155 2-7 21380 11 13-5 91 14-4 910 87 4-8 8560 160 2-7 21380 13 14-8 625 81 4-6 6910 149 2-8 19250 15 13-9 715 83 4-6 7190 155 2-7 20180 15 13-9 715 83 4-6 7190 155 2-7 20180 16 13-5 780 84 4-7 7610 155 2-7 20180 17 13-1 810 85 4-5 7470 153 2-7 20180 18 12-7 860 86 4-4 7610 155 2-7 21380 29 9-7 1525 97 4-0 9300 165 2-6 22350 20 12-1 965 88 4-4									
4 30.4 140 62 5-7 4485 130 3-1 15550 2 2.82 150 63 5-6 4600 131 3-1 15550 2 2.82 150 64 5-6 4720 132 3-1 15970 5-5 27.0 176 65 5-5 4840 133 3-1 15980 5-5 27.0 176 66 5-5 4840 133 3-1 15980 5-5 27.0 176 66 5-4 4960 134 3-1 151980 0 26-7 183 68 5-3 5200 136 3-0 16400 12 2-2 3-7 183 68 5-3 5200 136 3-0 16620 12 2-2 3-7 235 70 5-2 6440 138 3-0 17680 134 3-1 16190 12 2-2 3-7 235 70 5-2 6440 138 3-0 17680 13 3 3-1 15980 13 4 3-1 16190 14 2-2 23-7 235 70 5-2 6440 138 3-0 17980 14 2-2 3-7 235 70 5-2 6440 138 3-0 17980 14 2-9 17470 15 15 5-5 15									
3 29-3 150 63 5-6 4600 131 3-1 15550 1 22 28-2 160 64 5-6 4720 132 3-1 15770 1 27-3 170 65 5-5 4840 133 3-1 15980 5-5 27-0 176 65 5-5 4840 133 3-1 15980 0 26-7 183 6-6 7-5-4 5080 135 3-0 16400 1 25-1 210 69 5-2 5320 136 3-0 16620 1 25-1 210 69 5-2 5320 137 3-0 16840 1 22 23-7 235 70 5-2 6-440 138 3-0 16950 1 22 23-7 235 70 5-2 6-440 138 3-0 16950 1 22 23-7 235 70 5-2 6-440 138 3-0 16950 1 22 23-7 235 70 5-2 6-440 138 3-0 16950 1 22 23-7 235 70 5-2 5-1 5-550 1 39 3-0 17180 1 29 17470 1 5-1 5-500 1 39 3-0 17180 1 29 17470 1 5-1 5-500 1 39 3-0 17180 1 29 17470 1 5-1 5-500 1 39 3-0 17180 1 29 17470 1 5-1 5-500 1 39 3-0 17180 1 29 17470 1 5-1 5-500 1 39 3-0 17180 1 29 17470 1 5-1 5-500 1 39 3-0 17180 1 29 17470 1 5-1 5-500 1 39 3-0 17180 1 29 17470 1 3-1 1									
2 28.2 160 64 5.6 4720 132 3.1 15770 5 1 1 273 170 65 5.5 4840 133 3.1 15980 5 2 2 2 2 1 1 6 66 5.4 4960 134 3.1 16190 6 2 6 6 5.4 4960 134 3.1 16190 1 2 6 6 6 5.4 4960 134 3.1 16190 1 2 6 6 6 5.4 4960 134 3.1 16190 1 2 6 7 183 68 5.3 5200 136 3.0 16400 1 2 5 1 2 5 1 2 10 69 5.2 5320 136 3.0 16620 1 2 2 23.7 23.5 70 5.2 6440 13.8 3.0 16960 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
1 27-3 170 65 5-5 4840 133 3-1 15980 5 27-0 176 656 5-5 48508 135 3-0 16400 0 26-7 183 68 5-3 5700 136 3-0 16520 1 25-1 210 69 5-2 5320 137 3-0 16840 2 23-7 235 70 5-2 6440 138 3-0 16960 3 22-4 265 71 5-1 5560 139 3-0 17180 5 20-3 325 72 5-1 5-5 60 139 3-0 17180 5 20-3 325 73 5-0 5820 141 2-9 17680 6 19-4 355 74 5-0 5820 141 2-9 17680 7 186 390 75 4-9 6080 143 2-9 17910 8 17-8 4-9 6080 143 2-9 18360 9 17-1 460 77 4-8 6350 145 2-9 18360 10 16-5 500 78 4-8 6350 145 2-9 18360 10 16-5 500 78 4-8 6350 145 2-9 18360 11 1 15-9 540 79 4-7 6630 147 2-8 18590 11 1 15-9 540 79 4-7 6630 147 2-8 18590 12 15-3 580 80 4-7 6630 149 2-8 1920 13 14-8 625 81 4-6 6910 149 2-8 1920 14 14-3 1-9 1930 15 13-9 715 83 4-6 7050 150 2-8 19710 16 13-5 760 84 4-5 7330 152 2-7 20180 16 13-5 760 86 4-4 7610 154 2-7 20510 18 12-7 860 86 4-4 7610 154 2-7 20510 19 12-4 910 85 4-5 7330 152 2-7 20180 19 12-4 910 85 4-5 7330 152 2-7 20180 19 12-4 910 86 4-4 7610 154 2-7 20510 18 12-7 860 86 4-4 7610 154 2-7 20510 19 12-4 910 87 4-4 780 155 2-7 20890 20 12-1 965 88 4-4 7700 155 2-7 20890 20 12-1 1965 88 4-4 7910 156 2-7 21130 22 11-4 1075 90 4-3 820 162 2-6 22150 23 11-1 1135 94 4-1 8820 162 2-6 22150 24 10-8 1195 92 4-2 8510 160 2-6 22150 25 10-6 1255 93 4-9 990 166 2-5 23350 30 9-5 1595 98 4-0 9460 166 2-5 23350 30 9-5 1595 98 4-0 9460 166 2-5 23350 30 9-5 1595 98 4-0 9460 166 2-5 23350 30 9-5 1595 98 4-0 9460 166 2-5 23350 30 9-5 1595 98 4-0 9460 166 2-5 23350 30 9-5 1595 98 4-0 9460 166 2-5 23350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 166 2-5 24350 30 9-5 1595 98 4-0 9460 177 2-5 24850 30 9-7 175 2-7 20850 30 9-7 175 2-7 20850 30 9-7 175 2-7 20850 30 9-7 175									
FORTILITY PRINCIPLE AND PRINCIPLE AS A STATE OF THE PRINCI				and the same of th					
Prissure paig				-					
0 26-7 183 68 5-3 5200 136 3-0 16620 1 25-1 210 69 5-2 5320 137 3-0 16840 2 23-7 235 70 5-2 6440 138 3-0 16960 3 3 22-4 265 71 5-1 5560 139 3-0 17180 4 21:3 295 72 5-1 5560 139 3-0 17180 6 194 355 73 5-0 5820 141 2-9 17470 6 194 355 74 5-0 5950 142 2-9 17910 7 186 390 75 4-9 6080 142 2-9 17910 8 17-8 425 76 4-9 6080 142 2-9 18130 18 17-8 425 76 4-9 6210 144 2-9 18130 10 16-5 500 78 4-8 6390 145 2-8 18580 110 16-5 500 78 4-8 6390 146 2-8 18580 111 15-9 540 79 4-7 6630 147 2-8 19020 12 15-3 580 80 4-7 6770 148 2-8 19020 13 14-8 625 81 4-6 6910 149 2-8 19480 14 14 3 670 82 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7190 151 2-8 19950 16 13-5 760 84 4-5 7330 152 7-7 20180 17 13-1 810 85 4-5 7470 153 2-7 20510 18 12-7 860 86 4-4 7760 155 2-7 20890 20 12-1 965 88 4-4 7760 155 2-7 20890 21 11-7 1020 89 4-3 8060 157 2-7 21380 22 11-1 1135 99 14-2 8360 159 2-6 21850 23 11-1 1135 99 14-2 8360 150 2-7 20180 24 10 8 1195 99 4-3 8060 157 2-7 20180 25 10-6 1255 93 4-9 8360 157 2-7 21380 27 11-1 135 99 14-2 8360 159 2-6 21850 28 199 9-7 1525 99 4-9 8060 160 2-6 22550 29 9-7 1525 99 4-1 8980 163 2-6 22550 30 9-5 1595 99 4-0 9300 165 2-6 22550 30 9-5 1595 99 4-0 9400 170 2-5 24820 30 9-5 1595 99 4-0 9400 170 2-5 24820 30 9-5 1595 99 4-0 9400 170 2-5 24820 30 9-5 1595 99 4-0 9400 170 2-5 24820 30 9-5 1595 99 4-0 9400 170 2-5 24620 30 9-7 1525 99 4-0 9400 170 2-5 24620 30 9-7 1525 99 4-0 9400 170 2-5 24620 30 9-7 1525 99 4-0 9400 170 2-5 24620 30 9-7 1525 99 4-0 9400 160 2-5 23500 30 9-5 1595 98 4-0 9460 166 2-5 23500 30 9-5 1595 98 4-0 9460 170 2-5 24620 31 9-1 1735 100 3-9 9790 168 2-5 24520 32 9-1 1735 100 3-9 9790 168 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100 3-9 9960 169 2-5 24520 34 8-7 1875 100									
1 25-1 210 69 5-2 5320 137 3-0 16880 2 23-7 235 70 5-2 6440 138 3-0 16980 3 22-4 265 71 5-1 5560 139 3-0 17180 4 21-3 295 72 5-1 5590 140 2-9 17470 5 20-3 325 73 5-0 5820 141 2-9 17680 6 194 355 74 5-0 5950 142 2-9 17910 7 186 390 75 4-9 6080 143 2-9 18130 8 17-8 425 76 68 6350 144 2-9 18360 10 16-5 500 78 4-8 6350 145 2-8 18580 110 16-5 500 78 4-8 6490 146 2-8 18790 111 15-9 540 79 4-7 6530 147 2-8 19250 121 15-3 580 80 4-7 6770 148 2-8 18790 13 14-8 625 81 4-6 6910 149 2-8 19250 14 14-3 670 82 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7190 151 2-8 19710 16 13-5 760 84 4-5 7330 152 2-7 20180 17 13-1 810 85 4-5 7470 153 2-7 20550 18 12-7 860 86 4-4 7610 154 2-7 20650 19 12-4 990 88 4-4 7610 154 2-7 20650 20 12-1 965 88 4-4 7610 154 2-7 20650 21 11-7 1020 89 4-3 8210 156 2-7 21130 22 11-4 1075 90 4-3 8210 156 2-7 21130 23 11-1 135 91 4-2 8360 159 2-6 2-7 21130 24 10-8 1135 99 4-3 8660 159 2-6 2-7 21130 25 10-6 1255 93 4-2 8560 161 2-6 2-7 21130 25 10-6 1255 93 4-2 8560 161 2-6 2-7 21130 25 10-6 1255 93 4-2 8560 161 2-6 2-7 21130 26 10-1 1385 95 4-1 8980 163 2-6 22550 27 10-1 1385 95 4-1 8980 163 2-6 22550 28 9-7 1525 97 4-0 9300 165 2-6 21550 29 9-7 1525 97 4-0 9300 165 2-6 23550 30 9-5 1595 98 4-0 9600 165 2-6 23550 30 9-5 1595 98 4-0 9600 165 2-6 23550 30 9-5 1595 98 4-0 9600 165 2-6 23550 30 9-5 1595 98 4-0 9600 165 2-6 23550 30 9-5 1595 98 4-0 9600 165 2-6 23550 30 9-5 1595 98 4-0 9600 165 2-6 23550 30 8-4 2000 105 3-8 10470 172 2-5 2480 31 9-3 1665 99 4-0 9600 165 2-6 23550 31 9-3 1665 99 4-0 9600 165 2-6 23550 31 9-3 1665 99 4-0 9600 165 2-6 23550 31 9-3 1665 99 4-0 9600 165 2-6 23550 31 9-3 1665 99 4-0 9600 165 2-6 23550 31 9-3 1665 99 4-0 9600 167 2-5 24620 32 9-7 1525 97 4-0 9300 167 2-5 24620 33 8-9 1805 101 3-9 9960 165 2-6 23550 34 8-7 1875 100 3-8 100 3-8 100 30 171 2-5 2480 34 8-7 1875 100 3-8 100 3-8 100 30 171 2-5 2480 34 8-7 1875 100 3-8 100 3-8 100 30 171 2-5 2480 34 8-7 1875 100 3-8 100 3-8 100 30 171 2-5 2480 34 8-7 1875 100 3-8 100 3-8 100 30 171 2-5 2480 34 8-7 1875 100 3-8 100 3-8 100 3-8	0	26.7	183	68	5-3	5200			
3 224 265 71 5-1 5560 139 3-0 17180 4 213 225 72 5-1 5560 140 29 17470 5 203 325 73 5-0 5820 141 2-9 17680 6 194 325 74 5-0 5820 141 2-9 17680 6 194 325 74 5-0 5820 141 2-9 17680 6 194 325 74 5-0 5820 141 2-9 18130 18 17-8 425 76 4-9 6080 143 2-9 18130 8 17-8 425 76 4-9 6080 143 2-9 18130 18 17-8 425 76 4-9 6080 144 2-9 18130 19 17-1 460 77 4-8 6350 145 2-8 18580 10 16-5 500 78 4-8 6490 146 2-8 18580 11 15-5 500 78 4-8 6490 146 2-8 18590 11 15-9 540 79 4-7 6630 147 2-8 19920 12 15-3 580 80 4-7 6770 148 2-8 19920 12 15-3 580 80 4-7 6770 148 2-8 19920 14 14 14-3 670 82 4-6 7050 150 2-8 19110 15 13-9 715 83 4-6 7050 150 2-8 19110 15 13-9 715 83 4-6 7050 150 2-8 19950 16 13-5 760 84 4-5 7330 152 2-7 20180 17 13-1 810 85 4-5 7330 152 2-7 20510 18 12-7 860 86 4-4 7610 154 2-7 20650 19 12-4 910 87 4-4 7610 155 2-7 20650 19 12-4 910 87 4-4 7610 155 2-7 20650 19 12-4 910 87 4-4 7610 155 2-7 20650 19 12-4 910 87 4-4 7610 155 2-7 20650 19 12-4 910 87 4-4 7610 155 2-7 20650 19 12-4 910 87 4-4 7610 155 2-7 20650 19 12-4 910 87 4-4 7610 155 2-7 20650 19 12-4 910 87 4-4 7610 155 2-7 207 207 207 11-1 11-7 1020 89 4-3 8210 158 2-7 71130 2-7 20650 2-7 206								3-0	
4 21.3 295 72 5-1 55920 140 2-9 17470 5 20.3 325 73 5-0 5820 141 2-9 1780 6 19-4 355 74 5-0 5950 142 2-9 17910 7 18-6 390 75 4-9 6210 144 2-9 18360 9 17-1 460 77 4-8 6350 145 2-8 18360 10 16-5 500 78 4-8 6490 146 2-8 18790 11 15-9 540 79 4-7 6630 147 2-8 19250 12 15-3 580 80 4-7 6670 148 2-8 19750 13 14-8 62-8 81 4-6 6910 149 2-8 19710 15 13-9 715 83 4-6 7190 150			The second secon						16960
5 20.3 325 73 5.0 5820 141 2.9 17580 6 194 355 74 5.0 5950 142 2.9 17910 7 186 390 75 4.9 6080 143 2.9 18130 8 1.78 4.25 76 4.9 6080 143 2.9 18130 9 1.71 460 77 4.8 6350 145 2.8 18580 10 16.5 500 78 4.8 6490 146 2.8 18290 11 15.9 540 79 4.7 6630 147 2.8 19920 12 15.3 580 80 4.7 6770 148 2.8 19720 13 14.8 625 81 4.6 6910 149 2.8 19480 14 14.3 3.9 715 8.3 4.6 7950									
6 194 355 74 5.0 5950 142 2.9 17910 8 143 2.9 18130 8 17.8 425 76 4.9 6080 143 2.9 18130 9 75 4.9 6080 143 2.9 18130 8 17.8 425 76 4.9 6210 144 2.9 18360 10 16.5 500 78 4.8 6350 145 2.8 18580 10 16.5 500 78 4.8 6490 146 2.8 18790 11 15.9 540 79 4.7 6630 147 2.8 19920 12 15.3 580 80 4.7 6770 148 2.8 19920 12 15.3 580 80 4.7 6770 148 2.8 19950 14 14.8 625 81 4.6 6910 149 2.8 19480 14 14.3 670 82 4.6 7950 150 2.8 19910 15 13.9 715 83 4.6 7190 151 2.8 19950 16 13.5 760 84 4.5 7330 151 2.7 20510 18 12.7 20510 18 12.7 20510 18 12.7 20510 18 12.4 910 85 4.5 7470 153 2.7 20510 18 12.4 910 87 4.4 7760 155 2.7 20890 20 12.1 965 88 4.4 7760 155 2.7 20890 20 12.1 965 88 4.4 7910 155 2.7 20890 20 12.1 965 88 4.4 7910 155 2.7 20890 21 11.7 1020 89 4.3 8060 157 2.7 211380 22 11.4 1075 90 4.3 8210 158 2.7 21610 23 11.1 1135 91 4.2 8360 159 2.6 21850 24 10.8 1195 29 4.2 8510 160 2.6 22110 25 10.6 1255 93 4.2 8560 161 2.6 22590 26 10.4 1315 99 4.1 8820 162 2.6 22590 27 10.1 1385 95 4.1 8820 162 2.6 22590 29 9.7 1525 99 4.0 9660 161 2.6 22590 31 9.9 1445 96 4.1 9140 163 2.6 22590 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1655 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 9.5 1595 98 4.0 9660 169 2.5 24550 31 31 9.3 1665 99 4.0 9660 166 2.5 23500 31 3.9 3 1665 9									
7 18-6 390 75 4-9 6080 143 2-9 18130 8 17-8 425 76 4-9 6210 144 2-9 18360 9 17-1 460 77 4-8 6350 144 2-9 18360 10 16-5 500 78 4-8 6350 146 2-8 18580 110 16-5 500 78 4-8 6350 147 2-8 19020 12 15-3 580 80 4-7 6570 148 2-8 19250 13 14-8 625 81 4-6 6910 149 2-8 19250 14 14-3 670 82 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7050 150 2-8 19710 16 13-5 760 84 4-5 7330 152 2-7 20180 17 13-1 810 85 4-5 7470 153 2-7 20510 18 12-7 860 86 4-4 7610 154 2-7 20650 19 12-4 910 87 4-4 7760 155 2-7 70890 20 12-1 965 88 4-4 7910 156 2-7 21130 21 11-7 1020 89 4-3 8060 157 2-7 21380 22 11-4 1075 90 4-3 8210 158 2-7 21610 23 11-1 1135 91 4-2 8360 159 2-6 21850 24 10-8 1195 92 4-2 8510 160 2-6 22110 25 10-6 1255 93 4-2 8560 161 2-6 22550 26 10-4 1315 96 4-1 8980 163 2-6 22850 27 10-1 1385 95 4-1 8980 163 2-6 22850 28 9-9 1445 96 4-1 9140 164 2-6 23150 30 9-5 1595 98 4-0 9460 166 2-5 23550 30 9-5 1595 98 4-0 9460 166 2-5 23500 31 9-8 2-6 1945 1735 100 3-9 9790 168 2-5 24800 32 9-1 1735 100 3-9 9790 168 2-5 24800 33 8-9 1805 101 3-9 9960 167 2-5 23800 34 8-7 1875 102 3-9 10130 170 2-5 24850 35 8-6 1945 103 3-8 10300 171 2-5 24850 36 8-4 2020 104 3-8 10300 171 2-5 24850 37 8-2 2100 105 3-8 10540 172 2-5 25140 38 8-1 280 106 3-7 11335 177 2-4 26550 39 8-0 2260 107 3-7 10880 175 2-7 24380 30 9-5 1595 99 4-0 9650 166 2-5 23600 31 7-7 2520 104 3-8 10335 177 2-4 26540 32 9-1 1735 100 3-9 9790 168 2-5 24350 33 8-9 1805 101 3-9 9960 177 2-5 24850 34 8-7 1875 102 3-9 10130 170 2-5 24850 35 8-6 1945 103 3-8 10300 171 2-5 24850 36 8-4 2020 104 3-8 10400 172 2-5 25140 37 8-2 2100 105 3-8 10540 172 2-5 25140 38 8-1 2180 106 3-7 11355 176 2-4 25570 39 8-0 2260 107 3-7 10880 175 2-4 25570 40 7-8 2340 108 3-7 1155 178 2-4 25570 41 7-7 2420 109 3-6 11875 180 2-4 27540 42 7-6 2500 110 3-6 11875 180 2-4 27540 43 7-1 2860 114 3-5 12055 181 2-4 27540 44 7-3 2680 112 3-6 11875 180 2-4 27540 45 7-1 2770 113 3-5 12055 181 2-4 27540	CONTRACTOR OF THE PARTY OF THE								
8 17.8 425 76 4.9 6210 144 2.9 18360 9 17:1 460 77 4.8 6350 145 2.8 18580 10 16:5 500 78 4.8 6490 146 2.8 18790 11 15:9 540 79 4.7 6630 147 2.8 19250 12 15:3 580 80 4.7 6770 148 2.8 19250 13 14.8 625 81 4.6 6910 149 2.8 19480 14 14.3 670 82 4.6 6910 150 2.8 19480 15 13.9 715 83 4.6 7190 151 2.8 19950 16 13.5 760 84 4.5 7330 152 2.7 20180 17 13:1 810 85 4.5 7470 153									
9 17-1 480 77 48 6350 145 28 18580 10 165 500 78 4-8 6490 146 2.8 18790 111 15-9 540 79 4-7 6630 147 2.8 19020 12 15-3 580 80 4-7 6770 148 2-8 19250 13 14-8 625 81 4-6 6910 149 2.8 19480 144 14-3 670 82 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7050 150 2-8 19710 16 13-5 760 84 4-5 7330 152 7-7 20180 17 13-1 810 85 4-5 7470 153 2-7 20650 19 12-4 910 86 4-4 7610 154 2-7 20650 19 12-4 910 86 4-4 7760 155 2-7 70890 19 12-4 910 87 4-4 7760 155 2-7 70890 19 12-4 910 87 4-4 7760 155 2-7 71130 21 11-7 1020 89 4-3 8200 157 2-7 21380 22 11-4 1075 90 4-3 8210 158 2-7 21610 23 11-1 1135 91 4-2 8360 159 2-6 21850 26 10-4 1315 94 4-1 8820 162 2-6 2250 26 10-4 1315 94 4-1 8820 162 2-6 2250 29 9-7 1525 93 4-2 8660 161 2-6 2250 29 9-7 1525 97 4-0 9300 165 2-6 22350 30 9-5 1595 98 4-0 9460 166 2-5 23550 30 9-5 1595 98 4-0 9460 166 2-5 23550 30 9-5 1595 98 4-0 9460 166 2-5 23350 30 9-5 1595 98 4-0 9460 170 2-5 24880 30 40 9460 170 2-5 24880 30 40 9460 170 2-5 24880 30 40 9460 170 2-5 2									
10									
111 15-9 540 79 4-7 6630 147 2-8 19020 12 15-3 580 80 4-7 6770 148 2-8 19250 13 14-8 625 81 4-6 6910 149 2-8 19480 14 14-3 670 82 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7190 151 2-8 19950 16 13-5 760 84 4-5 7330 152 2-7 20180 17 13-1 810 85 4-5 7470 153 2-7 20180 18 12-7 860 86 4-4 7610 155 2-7 20650 19 12-4 910 87 4-4 7760 155 2-7 20650 20 12-1 965 88 4-4 7910 156 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
12 15-3 580 80 4-7 6770 148 2-8 19250 13 14-8 625 81 4-6 6910 149 2-8 19480 14 14-3 670 82 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7190 151 2-8 19950 16 13-5 760 84 4-5 7330 152 2-7 20180 17 13-1 810 85 4-5 7470 153 2-7 20510 18 12-7 860 86 4-4 7610 154 2-7 20650 19 12-4 910 87 4-4 7760 155 2-7 20180 20 12-1 965 88 4-4 7910 156 2-7 21130 21 11-1 1020 89 4-3 8210 158 <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	11								
13 14-8 625 81 4-6 6910 149 2-8 19480 14 14-3 670 82 4-6 7050 150 2-8 19710 15 13-9 715 83 4-6 7190 151 2-8 19950 16 13-5 760 84 4-5 7330 152 2-7 20180 17 13-1 810 85 4-5 7330 152 2-7 20180 18 12-7 860 86 4-4 7610 154 2-7 20650 19 12-4 910 87 4-4 77610 156 2-7 20130 20 12-1 965 88 4-4 7910 156 2-7 20130 21 11-7 1020 89 4-3 8060 157 2-7 21380 22 11-4 1075 90 4-3 8060 157<	12	15.3	580	80	4-7	6770			
15 13.9 715 83 4-6 7190 151 2-8 19950 16 13.5 760 84 4-5 7330 152 2-7 20180 17 13-1 810 85 4-5 7330 153 2-7 20510 18 12-7 860 86 4-4 7610 154 2-7 20650 19 12-4 910 87 4-4 7760 155 2-7 20130 20 12-1 965 88 4-4 7910 156 2-7 21130 21 11-7 1020 89 4-3 8060 157 2-7 21380 22 11-4 1075 90 4-3 8210 158 2-7 21130 23 11-1 1135 91 4-2 8510 150 2-6 21850 24 10.8 1195 92 4-2 8510 160			625	81	4-6				
16 13.5 760 84 4.5 7330 152 2.7 20180 17 13.1 810 85 4.5 7470 153 2.7 20510 18 12.7 860 86 4.4 7610 154 2.7 20650 19 12.4 910 87 4.4 7760 155 2.7 20890 20 12.1 965 88 4.4 7790 156 2.7 21130 21 11.7 1020 89 4.3 8210 158 2.7 21380 22 11.4 1075 90 4.3 8210 158 2.7 21610 23 11.1 1135 91 4.2 8560 159 2-6 21850 24 10.8 1195 92 4.2 8510 160 2-6 22150 25 10.6 1255 93 4.2 8660 16							150		
17 13.1 810 85 4.5 7470 153 2.7 20510 18 12.7 860 86 4.4 7610 154 2.7 20650 19 12.4 910 87 4.4 7760 155 2.7 20890 20 12.1 965 88 4.4 7910 156 2.7 21130 21 11.7 1020 89 4.3 8060 157 2.7 21380 22 11.4 1075 90 4.3 8210 158 2.7 21610 23 11.1 1135 91 4.2 8360 159 2-6 21850 24 10.8 1195 92 4.2 8510 160 2-6 221850 24 10.8 1195 92 4.2 8510 161 2-6 222590 25 10.6 1255 93 4.1 8820 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
18 12-7 860 86 4-4 7610 154 2-7 20650 19 12-4 910 87 4-4 7760 155 2-7 20890 20 12-1 965 88 4-4 7910 156 2-7 21130 21 11-7 1020 89 4-3 8060 157 2-7 21380 22 11-4 1075 90 4-3 8210 158 2-7 21610 23 11-1 1135 91 4-2 8360 159 2-6 21850 24 10-8 1195 92 4-2 8510 160 2-6 21850 24 10-8 1195 92 4-2 8510 160 2-6 22150 25 10-6 1255 93 4-2 8660 161 2-6 22350 26 10-4 1315 94 4-1 8880									
19 12-4 910 87 4-4 7760 155 2-7 20890 20 12-1 965 88 4-4 7910 156 2-7 21130 21 11-7 1020 89 4-3 8060 157 2-7 21380 22 11-4 1075 90 4-3 8210 158 2-7 21610 23 11-1 1135 91 4-2 8360 159 2-6 21850 24 10.8 1195 92 2-2 8510 160 2-6 22150 25 10-6 1255 93 4-2 8660 161 2-6 22550 26 10-4 1315 94 4-1 8820 162 2-6 22590 27 10-1 1385 95 4-1 8980 163 2-6 22350 28 9-9 1445 96 4-1 9140									
20 12·1 965 88 4-4 7910 156 2·7 20130 21 11·7 1020 89 4·3 8060 157 2·7 21380 22 11·4 1075 90 4·3 8210 158 2·7 21610 23 11·1 1135 91 4·2 8360 159 2·6 21850 24 10·8 1195 92 4·2 8510 160 2·6 22110 25 10·6 1255 93 4·2 8660 161 2·6 22590 26 10·4 1315 94 4·1 8820 162 2·6 22590 27 10·1 1385 95 4·1 8980 163 2·6 22850 28 9·9 1445 96 4·1 9140 164 2·6 23150 29 9·7 1525 97 4·0 9300									
21 11·7 1020 89 4·3 8060 157 2·7 21380 22 11·4 1075 90 4·3 8210 158 2·7 21610 23 11·1 1135 91 4·2 8360 159 2·6 21850 24 10.8 1195 92 4·2 8510 160 2·6 22110 25 10.6 1255 93 4·2 8660 161 2·6 22350 26 10·4 1315 94 4·1 8820 162 2·6 22590 27 10·1 1385 95 4·1 8980 163 2·6 22850 28 9·9 1445 96 4·1 8980 163 2·6 23150 29 9·7 1525 97 4·0 9300 165 2·6 23350 30 9·5 1595 98 4·0 9460									
22 11-4 1075 90 4-3 8210 158 2-7 21610 23 11-1 1135 91 4-2 8360 159 2-6 21850 24 10-8 1195 92 4-2 8560 160 2-6 22110 25 10-6 1255 93 4-2 8660 161 2-6 22250 26 10-4 -1315 94 4-1 8820 162 2-6 22250 27 10-1 1385 95 4-1 8980 163 2-6 22850 28 9-9 1445 96 4-1 9140 164 2-6 23150 29 9-7 1525 97 4-0 9300 165 2-6 23350 30 9-5 1595 98 4-0 9460 166 2-5 23600 31 9-3 1665 99 4-0 9620									
23 11·1 1135 91 4·2 8360 159 2-6 21850 24 10·8 1195 92 4·2 8510 160 2-6 22110 25 10·6 1255 93 4·2 8660 161 2-6 2250 26 10·4 1315 94 4·1 8820 162 2-6 22590 27 10·1 1385 95 4·1 8980 163 2-6 22850 28 9·9 1445 96 4·1 9140 164 2-6 23150 29 9·7 1525 97 4·0 9300 165 2-6 23350 30 9·5 1595 98 4·0 9460 166 2·5 23600 31 9·3 1665 99 4·0 9620 167 2·5 23840 32 9·1 1735 100 3·9 9790 16				Market Street,					
24 10-8 1195 92 4-2 8510 160 2-6 22110 25 10-6 1255 93 4-2 8660 161 2-6 22250 26 10-4 1315 94 4-1 8820 162 2-6 22590 27 10-1 1385 95 4-1 8980 163 2-6 22850 28 9-9 1445 96 4-1 9140 164 2-6 23150 29 9-7 1525 97 4-0 9300 165 2-6 23350 30 9-5 1595 98 4-0 9460 166 2-5 23600 31 9-3 1665 99 4-0 9620 167 2-5 23840 32 9-1 1735 100 3-9 9790 168 2-5 24110 33 8-9 1805 101 3-9 10130		11-1							
25 10-6 1255 93 4·2 8660 161 2-6 22350 26 10-4 .1315 94 4·1 8820 162 2-6 22590 27 10-1 1385 95 4·1 8980 163 2-6 22850 28 9·9 1445 96 4·1 8980 163 2-6 22850 29 9·7 1525 97 4·0 9300 165 2-6 23350 30 9·5 1595 98 4·0 9460 166 2·5 23600 31 9·3 1665 99 4·0 9620 167 2·5 23840 32 9·1 1735 100 3·9 9790 168 2·5 24110 33 8·9 1805 101 3·9 9960 169 2·5 24350 34 8·7 1875 102 3·9 10130 <td< td=""><td>24</td><td>10.8</td><td>1195</td><td>92</td><td></td><td></td><td></td><td></td><td></td></td<>	24	10.8	1195	92					
26 10-4 .1315 94 4-1 8820 162 2-6 22590 27 10-1 1385 95 4-1 8980 163 2-6 22850 28 9-9 1445 96 4-1 9140 164 2-6 23150 29 9-7 1525 97 4-0 9300 165 2-6 23350 30 9-5 1595 98 4-0 9460 166 2-5 23600 31 9-3 1665 99 4-0 9620 167 2-5 23840 32 9-1 1735 100 3-9 9790 168 2-5 24110 33 8-9 1805 101 3-9 9960 169 2-5 24350 34 8-7 1875 102 3-9 10130 170 2-5 24520 35 8-6 1945 103 3-8 10300 <t< td=""><td></td><td></td><td>1255</td><td></td><td>4-2</td><td></td><td></td><td></td><td></td></t<>			1255		4-2				
27 10-1 1385 95 4-1 8980 163 2-6 22850 28 9-9 1445 96 4-1 9140 164 2-6 23150 29 9-7 1525 97 4-0 9300 165 2-6 23350 30 9-5 1595 98 4-0 9460 166 2-5 23600 31 9-3 1665 99 4-0 9620 167 2-5 23840 32 9-1 1735 100 3-9 9790 168 2-5 24110 33 8-9 1805 101 3-9 9960 169 2-5 24350 34 8-7 1875 102 3-9 10130 170 2-5 24250 35 8-6 1945 103 3-8 10300 171 2-5 24880 36 8-4 2020 104 3-8 10470 <t< td=""><td></td><td></td><td></td><td></td><td>4-1</td><td>8820</td><td></td><td></td><td></td></t<>					4-1	8820			
28 9·9 1445 96 4·1 9140 164 2·6 23150 29 9·7 1525 97 4·0 9300 165 2·6 23350 30 9·5 1595 98 4·0 9460 166 2·5 23600 31 9·3 1665 99 4·0 9620 167 2·5 23840 32 9·1 1735 100 3·9 9790 168 2·5 24110 33 8·9 1805 101 3·9 9960 169 2·5 24350 34 8·7 1875 102 3·9 10130 170 2·5 24880 35 8·6 1945 103 3·8 10300 171 2·5 24880 36 8·4 2020 104 3·8 10470 172 2·5 25140 37 8·2 2100 105 3·8 10640 <	the state of the s						163	2-6	
30 9.5 1595 98 4-0 9460 166 2.5 23600 31 9.3 1665 99 4-0 9620 167 2.5 23840 32 9.1 1735 100 3.9 9790 168 2.5 24110 33 8-9 1805 101 3.9 9960 169 2.5 24350 34 8.7 1875 102 3.9 10130 170 2.5 24620 35 8-6 1945 103 3.8 10300 171 2.5 24880 36 8-4 2020 104 3.8 10470 172 2.5 25140 37 8-2 2100 105 3.8 10640 173 2.5 25400 38 8-1 2180 106 3.7 10810 174 2-4 25670 39 8-0 2260 107 3.7 10810 174 2-4 25670 40 7.8 2340 108 3.7 11155 176 2-4 26200 41 7.7 2420 109 3.6 11335 177 2-4 26450 42 7-6 2500 110 3.6 11515 178 2-4 26730 43 7-4 2590 111 3.6 11695 179 2-4 27780 44 7.3 2680 112 3-6 11875 180 2-4 27580 45 7.2 2770 113 3-5 12235 181 2-4 27540 46 7.1 2860 114 3.5 12235 182 2.3 27830								2-6	
31 9·3 1665 99 4·0 9620 167 2·5 23840 32 9·1 1735 100 3·9 9790 168 2·5 24110 33 8·9 1805 101 3·9 9960 169 2·5 24350 34 8·7 1875 102 3·9 10130 170 2·5 24620 35 8·6 1945 103 3·8 10300 171 2·5 24880 36 8·4 2020 104 3·8 10470 172 2·5 25140 37 8·2 2100 105 3·8 10470 172 2·5 25140 38 8·1 2180 106 3·7 10810 174 2·4 25670 39 8·0 2260 107 3·7 10980 175 2·4 25930 40 7·8 2340 108 3·7 11155				Miles and the second se					23350
32 9·1 1735 100 3·9 9790 168 2·5 24110 33 8·9 1805 101 3·9 9960 169 2·5 24350 34 8·7 1875 102 3·9 10130 170 2·5 24620 35 8·6 1945 103 3·8 10300 171 2·5 24880 36 8·4 2020 104 3·8 10470 172 2·5 25140 37 8·2 2100 105 3·8 10640 173 2·5 25400 38 8·1 2180 106 3·7 10810 174 2·4 25670 39 8·0 2260 107 3·7 10980 175 2·4 25930 40 7·8 2340 108 3·7 11155 176 2·4 26200 41 7·7 2420 109 3·6 11335									23600
33 8.9 1805 101 3.9 9960 169 2.5 24350 34 8.7 1875 102 3.9 10130 170 2.5 24620 35 8.6 1945 103 3.8 10300 171 2.5 24880 36 8.4 2020 104 3.8 10470 172 2.5 25140 37 8.2 2100 105 3.8 10640 173 2.5 25400 38 8.1 2180 106 3.7 10810 174 2.4 25670 39 8.0 2260 107 3.7 10980 175 2.4 25930 40 7.8 2340 108 3.7 11155 176 2.4 26200 41 7.7 2420 109 3.6 11335 177 2.4 26450 42 7.6 2500 110 3.6 11515	The second secon								23840
34 8·7 1875 102 3·9 10130 170 2·5 24350 35 8·6 1945 103 3·8 10300 171 2·5 24880 36 8·4 2020 104 3·8 10470 172 2·5 25140 37 8·2 2100 105 3·8 10540 173 2·5 25400 38 8·1 2180 106 3·7 10810 174 2·4 25670 39 8·0 2260 107 3·7 10980 175 2·4 25930 40 7·8 2340 108 3·7 11155 176 2·4 26200 41 7·7 2420 109 3·6 11335 177 2·4 26450 42 7·6 2500 110 3·6 11515 178 2·4 26730 43 7·4 2590 111 3·6 11695									
35 8-6 1945 103 3-8 10300 171 2-5 24880 36 8-4 2020 104 3-8 10470 172 2-5 25140 37 8-2 2100 105 3-8 10640 173 2-5 25400 38 8-1 2180 106 3-7 10810 174 2-4 25670 39 8-0 2260 107 3-7 10810 175 2-4 25930 40 7-8 2340 108 3-7 11155 176 2-4 26200 41 7-7 2420 109 3-6 11335 177 2-4 26450 42 7-6 2500 110 3-6 11515 178 2-4 26730 43 7-4 2590 111 3-6 11695 179 2-4 27010 44 7-3 2680 112 3-6 11875									
36 8-4 2020 104 3-8 10470 172 2-5 25140 37 8-2 2100 105 3-8 10640 173 2-5 25400 38 8-1 2180 106 3-7 10810 174 2-4 25670 39 8-0 2260 107 3-7 10980 175 2-4 25930 40 7-8 2340 108 3-7 11155 176 2-4 26200 41 7-7 2420 109 3-6 11335 177 2-4 26450 42 7-6 2500 110 3-6 11515 178 2-4 26730 43 7-4 2590 111 3-6 11695 179 2-4 27010 44 7-3 2680 112 3-6 11875 180 2-4 27540 45 7-2 2770 113 3-5 12055	Committee of the last of the l								
37 8·2 2100 105 3·8 10640 173 2·5 25400 38 8·1 2180 106 3·7 10810 174 2·4 25670 39 8·0 2260 107 3·7 10980 175 2·4 25930 40 7·8 2340 108 3·7 11155 176 7·4 26200 41 7·7 2420 109 3·6 11335 177 2·4 26450 42 7·6 2500 110 3·6 11515 178 2·4 26730 43 7·4 2590 111 3·6 11695 179 2·4 27010 44 7·3 2680 112 3·6 11875 180 2·4 27540 45 7·2 2770 113 3·5 12055 181 2·4 27540 46 7·1 2860 114 3·5 12235									
38 8·1 2180 106 3·7 10810 174 2·4 25670 39 8·0 2260 107 3·7 10980 175 2·4 25930 40 7·8 2340 108 3·7 11155 176 2·4 26200 41 7·7 2420 109 3·6 11335 177 2·4 26450 42 7·6 2500 110 3·6 11515 178 2·4 26730 43 7·4 2590 111 3·6 11695 179 2·4 27010 44 7·3 2680 112 3·6 11875 180 2·4 27780 45 7·2 2770 113 3·5 12055 181 2·4 27540 46 7·1 2860 114 3·5 12235 182 2·3 27830	37	8.2							
39 8-0 2260 107 3-7 10980 175 2-4 25930 40 7-8 2340 108 3-7 11155 176 2-4 26200 41 7-7 2420 109 3-6 11335 177 2-4 26450 42 7-6 2500 110 3-6 11515 178 2-4 26730 43 7-4 2590 111 3-6 11695 179 2-4 27010 44 7-3 2680 112 3-6 11875 180 2-4 27280 45 7-2 2770 113 3-5 12055 181 2-4 27540 46 7-1 2860 114 3-5 12235 182 2-3 27830	38								
40 7-8 2340 108 3-7 11155 176 2-4 26200 41 7-7 2420 109 3-6 11335 177 2-4 26450 42 7-6 2500 110 3-6 11515 178 2-4 26730 43 7-4 2590 111 3-6 11695 179 2-4 27010 44 7-3 2680 112 3-6 11875 180 2-4 27280 45 7-2 2770 113 3-5 12055 181 2-4 27540 46 7-1 2860 114 3-5 12235 182 2-3 27830							Commence of the Commence of th		
41 7-7 2420 109 3-6 11335 177 2-4 26450 42 7-6 2500 110 3-6 11515 178 2-4 26730 43 7-4 2590 111 3-6 11695 179 2-4 27010 44 7-3 2680 112 3-6 11875 180 2-4 27280 45 7-2 2770 113 3-5 12055 181 2-4 27540 46 7-1 2860 114 3-5 12235 182 2-3 27830									
42 7-6 2500 110 3-6 11515 178 2-4 26730 43 7-4 2590 111 3-6 11695 179 2-4 27010 44 7-3 2680 112 3-6 11875 180 2-4 27280 45 7-2 2770 113 3-5 12055 181 2-4 27540 46 7-1 2860 114 3-5 12235 182 2-3 27830				-					
43 7-4 2590 111 3-6 11695 179 2-4 27010 44 7-3 2680 112 3-6 11875 180 2-4 27780 45 7-2 2770 113 3-5 12055 181 2-4 27540 46 7-1 2860 114 3-5 12235 182 2-3 27830									
44 7-3 2680 112 3-6 11875 180 2-4 27780 45 7-2 2770 113 3-5 12055 181 2-4 27540 46 7-1 2860 114 3-5 12235 182 2-3 27830		The second second		the same of the sa					
45 7.2 2770 113 3.5 12055 181 2-4 27540 46 7.1 2860 114 3.5 12235 182 2.3 27830	-	Commence of the second second second			3.6	11875			
46 7-1 2860 114 3·5 12235 182 2·3 27830									
7.0 2950 115 3.5 12420							182	2.3	
	9/	7-0	2950	115	3.5	12420			

Tabla 5. Capacidad de tubería y factores de caída de presión

									Pipe Sizes								
P	% -	%"	1-	1%-	1%"	~	206"	3-	4"	8"	6-	7-	8"	9-	10"	6150	7750
0.008 "				T	T	62	113	185	406	735	1220	1815	2600 20	3580 23	4750 23	26	28
0-008 y					33	70	128	210	12 460	830	1350	2050	2930	4010	5350	6930	8720
0010	'				8	8	10	12	14	18	20	22	23	26	26	8000	10000
0-013 X				23	38	81	147	240	530 16	955	1560	2350	3560 26	4630	6160	33	36
0-013 A				26	42	91	165	270	590	1070	1750	2630	3770	5200	6900	9000	11200
0-016				8	10	11	14	16	18	22	24	26	30 4250	5820	7800	10000	12600
0-020 "			16	29 10	10	102	187	303 18	665	1210	1970	2980 30	33	35	40	42	45
- y		8.2	18	33	53	115	210	342	755	1370	2220	3350	4800	6600	8800	11300	14200
0-025 y		8-0	10	11	12	14	18 231	380	830	26 1500	30 2450	35 3700	36 5300	7300	9650	12500	15700
0-030 M		9-0 8-0	20	36	59 14	127	19	22	26	30	33	40	40	42	48	52	56
0-035 *		9-8	21	39	64	137	250	410	900	1625	2650 36	4000	5700 45	7900 45	10500	13600 57	17000
0.002	_	8-0 10-6	10	13	69	18	20	442	970	1750	2860	4300	6170	8500	11250	14500	18200
0-040	- 1	10-0	12	14	16	20	23	26	31	36	40	46 4900	50 6900	9600	12700	16500	20500
0-050 ^R	4-0	11-9	26	48	78 18	167	303	500 28	1100 34	1975	3220 45	50	55	56		70	73
Y Y	8-0	10-0	14	16 52	81	184	336	560	1220	2090	3560	5400	7650	10500		18100	22500 80
0-060 °	8-8	12-0	14	17	20	23	28 365	30 5 0 8	1320	2370	3880	5810	8300	11500		19700	24300
0-070	4-8 9-6	14-3	31	57 18	93	200	30	33	40	47	55	60	65	68	76	83	87
0-090 ^N	5-2	16-0	33	61	100	215	390	842	1420	2550	4150 60	6300 65	8900 70	12250		21100 90	26100 93
Y	10-4 5-8	14-0	18 38	20 69	115	27 241	33 440	36 725	1600	50 2960	4700	7100	10000	13800	18300	23800	30500
0-10 ×	11-6	16-0	20	23	26	30	36	40	50	60	70	70	80 11500	16000		27700	109 35000
0-13 ×	6-7	20-1	23	79 26	130	280 36	510	830 45	1870	3300 70	5400 80	8100 80	90	95		115	125
¥	13-4 7-5	18-0 22-5	49	88	145	312	570	935	2050	3700	6020	9100	13200	18000		31000 130	39200 140
0-16 y	15-0	20-0	26	30	33	40 353	45 640	1050	2300	80 4160	90 6790	10300	100	20200		35000	44100
0-20	8 5 17-0	25-5 23-0	56 30	33	165	45	50	60	75	90	100	100	115	120	135	145	158 49900
0-25 H	9-6	28-8	62	112	184	400	722	1180	2600	4700	7600	11700	16700	135		39200 163	178
_ Y	19-2	26-0 32-0	73	123	202	50 440	800	1320	2880	97 5200	110 8460	12800	18500	25300	33600	43300	56000
0-30 ×	21-4	30-0	36	41	45	58	65	74	90	105	120	130	145 20000	27400		180 47000	196 59500
0-35 "	11-5	34-8	74 36	133 45	220 50	478 60	840 70	1420	3110 100	5630 115	9180 130	14000	160	165		195	212
- Y	12-4	30-0 37-4	80	143	237	513	930	1530	3360	6070	9950	15000	21500	29400		50500 210	64000 228
0-40 y	24-8	33-0	40	47	54	65 579	1050	90 1725	110 3800	125 6800	11200	17000	175	33200		57000	72000
0-50 ×	14-0	42·1 36·0	90 45	162	266 66	70	90	100	120	140	155	170	190	200	220	237	257
0-60 ×	15-4	46-6	99	177	292	638	1150	1900	4180	7600	12200 170	18700	26800 210	36700		62800	79500
V	30-8 16-8	40-0 50-7	108	59 185	70 320	80 690	95 1250	105 2060	130 4530	155 8220	13400	20200	29000	39800	52700	67900	86300
0-70 ×	33-6	45-0	54	62	70	90	100	120	140	165	185	200	230 31000	42600		73000	92700
0-80 ×	18-0 36-0	54-4 50-0	116	208 70	342 80	744 95	1350	130	4850 160	8800 180	14400 200	21800 220	260	260		305	331
А А	20-0	61-5	130	234	386	840	1550	2500	5500	10000	16300	24500	35000	48000		82200 342	103000
1-00 y	40-0	60-0	70 150	79 270	90 445	100 975	1770	140 2900	180 6300	200 11500	18700	28200	280 41U00	55900		94500	120000
1-3 ×	23-3	71-0 60-0	80	90	100	120	140	160	200	230	260	285	330	360		394	136000
1-6	26-1	80-0	168	300	500	1090	2000	3220	7100	12900 260	21300 300	31500 320	45500 360	62200		105000	487
7 ×	52·2 29·5	90-0	190	100 345	120 570	1225	160 2230	180 3650	8000	14500	23 700	35600	51500	70500		118000	153000
2-0 y	59-0	80-0	100	115	125	160	180	200	260	300 16400	330 26600	360 39500	58000	80000		134000	174000
2·8 "	33.5 67-0	101-0	213 100	390 130	140	1380	2510	4120 230	9000	330	360	400	445	479	5 525	560	618
30 ×	37-0	108-0	236	430	700	1530	2800	4550	9900	18000	29300	43400	64000 495	88000 520			
30 Y	74-0	100-0	120	143	160 765	195 1660	3000	260 4920	10700	360 19500	31800	46800	69500	96000	0	_	
3-5 ×	80-0	100-0	140	156	180	205	255	290	350	400	455	470 50000	74500	56	5		
40 "	43-0 86-0	127-0	275 140	500 167	820 180	1780	3250 265	5300 310	11600 380	20900 435	34000 490	500	575				
Y Y	49-0	120-0	310	565	930	2000	3680	6000	13100	23 500	38500	56000		= 1			
50 y	98-0	140-0	160	188 625	1020	260	300 4050	6600	14500	490 25900	42500	560	J				
8-0 ×	53-0 106-0	158-0	180	208	230	290	330	360	430	540	610						
7-0 H	67-6	171-0	371	680	1120	2400	4400	7200 400	15700 500	28100							
- Y	115-2	183-0	200 400	721	1200	300 2600	360 4700	7600	16900	360	1						
8-0 y	124-0	160-0	200	242	280	330	400	435	540	-							
10-0	70-0	208-0 180-0	450 230	820 273	1350	2910 360	5300 425	8600 490	19000 610								
120 #	80-0	239-0	520	950	1560	3320	6100	9900	1	-							
13-0 y	160-0	200-0	260 580	1060	1750	3720	6800	11000	-								
16-0 H	180-0	230-0	300	353	400	465	540	630					X	=	capac	idad.	1b/h
20-0 "	101-1	300-0	660	1200	1960	4200	7600	1					Υ		veloc		
- Y	114-0	340-0	740	1360	2220	525 4720	610	1					1	-			
28-0 y	228-0	300-0	400	453	500	590									un vo	lumen	de
30-0	127-0	378-0 330-0	820 410	1500 500	2450 560											3	
20.0 8	137-0	410-0	890	1630	2660	1									10 p	ies /	lb,
38-0 y	147-0	380-0	450 950	543 1750	600	1									pies/	2	19.00 E
40-0 H	294-0	440-0	480	583											pics/	2	
-	1 188 8	ANKA	1	1	-												

Tabla 6. Capacidades de la línea de retorno en lb/h con una caída de presión en psi para 100 pies de tubería a velocidad de 5,000 pies/min. Tubería de acero, cedula 40

Pres Sum.	L210	5		15		30			6	60 100					9	
Pres Ret.	PSIG	0	0	5	0	5	10	0	5	10	20	0	5	10	20	30
	1.2	1425 4 0	590 4 0	1335 5 3	360 4 0	640 5.3	1055 6.5	235 4 0	370 5 3	535 6 5	1010	180	270 5 3	370 6.5	615	955
	3,4	2495 2 35	1035 2 35	2340 3 14	635 2 35	1125 3 14	1855 3 88	415 2 35	650 3 14	940 3 88	1770 5 32	310 2 35	470 3 14	645 3 88	1085 5.32	1675 6 72
	,	4045 1 53	1680 1 53	3790 2 04	1030 1.53	1820 2 04	3005 2.51	670 1 53	1055 2 04	1520 2 51	2865 3 44	505 1 53	765 2.04	1045 2.51	1755 3 44	2715 4 36
	154	7000 95	2905 95	6565 1 26	1780 95	3150 1 26	5200 1.55	1155 95	1830 1.26	2635 1 55	4960 2 13	875 .95	1320 1.26	1810 1 55	3035 2 13	4695
	1 1/2	9530 73	3955 73	8935 97	2425 73	4290 97	7080 1.20	1575 73	2490 97	3585 1 20	6750 1 64	1190 73	1795 97	2465 1 20	4135 1 64	6395
	2	15710 48	6525 48	14725 64	3995 48	7070 64	11670 79	2595 48	4105 64	5910 79	11125	1965 48	2960 64	4060 79	6810	10540
	210	22415 36	9305 36	21005 48	5700 36	10085	16650 59	3705 36	5855 48	8430 59	15875	2800 36	4225 48	5795 59	9720 81	15035
	3	34610 26	14370 26	32435 34	8800 26	15570	25710 42	5720 26	9045	13020	24515 58	4325 26	6525 34	8950 42	15005	23220
	312	46285 21	19220 21	43380 27	11765 21	20825	34385	7650 21	12095	17410	32785 46	5785 21	8725 27	11970	29070 46	31050
	4	59595 17	24745 17	55855 :23	15150 17	26815	44275 2Ł	9850 17	15575	22415	42210 38	7450 .17	11235	15410 28	25840 38	39980
	5	93655 12	38890 12	87780 16	23810	42140 16	69580	15480	24475 16	35230 20	66335 05	11705	17660 16	24220	49610 05	62830
	6	135245 10	56160 10	126760 13	34385 10	60855	100480	22350 10	35345 13	50875	95795 05	16905	25500 13	34975 04	58645 05	90735
	8	234195 02	97245 02	219505 02	59540 02	105380	173995 01	38705 02	61205	88095	165880	29270	44160	60565	101550	157115

Tabla 7. Condensación de tuberías aisladas transportando vapor saturado en aire quieto a 70 °F. Eficiencia de aislamiento del 75 %.

Presi	ón, psig	15	30	60	125	180	250	450	600	900
Tam. tub.	pie ² /pie	1	b de	cond	ensado	0/ h-	pie		,	,
1"	344	.05	06	.07	.10	.12	.14	.186	.221	.289
11/4"	434	.06	.07	.09	.12	14	17	.231	273	359
11/2"	497	.07	.08	.10	.14	.16	.19	261	.310	406
2"	622	.08	.10	.13	.17	.20	.23	320	.379	498
21/2"	753	.10	12	.15	.20	.24	28	384	454	596
3"	916	12	.14	.18	24	.28	33	460	546	714
31/2"	1 047	13	.16	.20	.27	.32	.38	520	617	807
4"	1 178	15	18	.22	30	.36	43	578	686	897
5"	1 456	.18	. 22	.27	.37	.44	.51	698	826	1 078
5" 6"	1 735	.20	25	.32	44	.51	59	809	959	1 253
8"	2 260	27	32	.41	55	66	76	1.051	1 244	1 628
10"	2 810	32	.39	.51	.68	.80	94	1.301	1 542	2 019
12"	3 340	38	46	.58	.80	.92	1.11	1.539	1 821	2 393
14"	3 670	42	.51	65	.87	1.03	1.21	1 688	1 999	2 624
16"	4 200	47	57	.74	99	1.19	1.38	1 927	2.281	2 997
18"	4.710	53	64	.85	1.11	1.31	1 53	2.151	2 550	3 351
20"	5.250	.58	71	.91	1.23	1 45	1.70	2.387	2 830	3.725
24"	6 280	68	84	1.09	1.45	1.71	2.03	2.833	3 364	4 434

Tabla 8. Expansión térmica de tuberías en plgs. por 100 pies.

apor sat. racio enha ajo 2127 resion pig	temp.	hierro fundid	acero al car. bono	hierro forjad.	5-6% de cr. aceró aleado	18 cr- 8 ni. ocero inoxid	c obre
resion pig	-200 -180 -160 -140 -170	-1 058 -0 982 -0 891 -0 797 -0 697	-1 707 -1 176 -1 064 -0 948 -0 876	-1 289 -1 183 -1 073 -0 955 -0 833	-1 750 -1 150 -1 030 -0 970 -0 800	-2 030 -1 850 -1 670 -1 480 -1,300	-1 955 -1 782 -1 612 -1 428 -1 235
	- 100 - 80 - 40 - 40 - 20	-0 593 -0 481 -0 368 -0 748 -0 127	-0 698 -0 361 -0 478 -0 288 -0 145	-0 705 -0 570 -0 435 -0 295 -0 152	-0 700 -0 550 -0 430 -0 290 -0 145	-0 900 -0 880 -0 670 -0 450 -0.225	-1 040 -0 835 -0 630 -0 421 -0 210
79 39	0 20 37 40 60	8 128 0 209 6 270 0 410	0 0 148 0 230 - 0 300 6 448	0 100 0 200 0 350 0 540	0 140 0 234 0 280 0 430	0 0 773 0 354 0 446 0 669	0 738 0 366 0 451 0 684
28 89 27 99 26 48 24 04 20 27	80 100 120 140 160	0 550 0 680 0 830 0.970 1,110	0 580 0 753 0 910 1 064 1 200	0 710 8 887 1 058 1 240 1 420	0 500 0 650 0 800 0 950 1 100	0 892 1 115 1 338 1 545 1 784	8 896 1 134 1 366 1 590 1 804
14 63 6 45 0 7 5 10 3	180 200 217 220 240	1,400 1,480 1,480 1,530 1,670	1 360 1 570 1 610 1 680 1 840	1 580 1 750 1 870 1 940 7 170	1 250 1 400 1 500 1 550 1 770	2 000 2 230 2 361 2 460 2 680	7 05 1 2 796 2 478 7 516 2 756
20 / 34 5 52 3 74 9	260 280 300 320 340	1,870 1,970 2,130 2,268 2,430	2 020 2 180 2 350 2 530 2 700	2 300 2 470 2 670 2 850 3 040	1 880 2 050 2 700 2 370 2 530	2 970 3 150 3 390 3 615 3 840	7 985 3 718 3 461 3 696 3 941
- 138.3 180 9 737 4 293 7 366 1	360 380 400 470 440	2 590 2 750 2 910 3 090 3 250	- 2 880 3 060 3 2 30 1 4 2 1 3 5 9 5	3 2 30 3 4 2 5 3 6 2 0 3 8 2 0 4 0 2 0	2 700 7 860 3 010 3 180 3 350	4 f00 4 346 4 540 4 800 5 050	4 176 4 474 4 666 4 914 5 154
451 3 550 3 664 3 795 3	460 480 500 520 540	3 410 3 570 3 730 3 900 4 040	3 784 3 955 4 151 4 342 4 525	4 700 4 400 4 600 4 810 5 020	3 5 30 3 700 3 860 4 040 4 700	5 300 5 540 5 800 6 050 6 280	5 408 5 651 5 906 6 148 6 410
1115 1308 1575 1768 2041	560 580 600 620 640	4 750 4 4 30 4 600 4 790 4 370	4.730 4.930 5.130 5.130 5.130	5 220 5 430 5 620 5 840 6.050	4 400 4 560 4 750 4 920 5.100	6 520 6 780 7 020 7 270 7 520	6 646 6 919 7 184 7 432 7 689
2346 2705 3080	660 680 700 770 740	5 150 5 330 5 570 5 710 5 900	5 750 5 950 6 160 6 360 6 570	6 250 6 470 6 570 6 880 7 100	5 300 5 480 5 650 5 850 6 030	7 770 8 020 8 280 8 520 8 780	7 949 8 196 8 477 8 708 8 399
	760 780 800 820 840	6 090 6 780 6 470 6 660 6 850	6 790 7 000 7 230 7 450 7 660	7 320 7 530 7 730 7 960 8 180	6 270 6 410 6 610 6 800 7 000	9 050 9 300 9 580 9 820 10 100	9 256 9 532 9 788 10 068 10 308
	860 880 900 920 940	7 049 7 248 7 460 7 668 7 862	7 970 8 100 8 340 8 540 8 770	8 400 8 6 30 8 8 70 9 0 70 9 300	7 190 7 380 7 580 7 770 7.970	10 370 10 630 10 900 11 180 11 460	10 610 10 971 11 156 11 421 11 707
	960 980 1000 1020 1040	8 073 8 300 8 510		9 520 9 740 9 970	8 170 8 360 8 550 8 75 8 75	11 730 17 000 12 760 17 55 17 112	11 976 12 769 12 543
	1060 1080 1100 1120 1140		10 08 10 32 10 57 10 75 10 78		9 13 9 35 9 54 9 75 9 95	13 10 13 37 13 62 13 91 14 17	
•	1160 1180 1200 1270 1240		11 21 11 43 11 63 11 87 12 10		10 15 10 36 10 49 10 75 10 95	14 45 14 72 14 96 15 26 15 53	
	1260 1280 1300 1320 1340		12 33 12 55 12 75 12 90 13 21		11 15 11 35 11 35 11 75 11 75	15 81 16 06 16 34 16 62 16 90	

Tabla 9. Propiedades de tuberías de acero al carbón y acero inoxidable.

Medida	Diámetro		Identificació	n	Espesor	Diámetro	Área	Áre	interna	Momento	Peso	Peso de	Seperficie	Mindelo de
nominal	exterior		cero	Número	de pared	interior	métalica		insversal	de inercia	OF CASHINGS	agua .	ctions	Secrete Of
de la	D.E.	Medida Tuberia	Número	de cédula	3.1	d				1	tuberia		(nic	
tubería	1	de	de	en acero		1	Industria.		A		-	(libras por	cuadrades	(2 / DE
(pulgadas)	(pulgadas)	hierro	cédula	inoxi- dable	(pulgadas)	(pulgadas)	(pulgadas)	(pulgadas cuadradas)	(pies cuadrados	(pulgadas ⁴)	(libras por pie)	pic de tuberia)	por pie de tuberia)	(DE
	1	İ		 -		1	1		+	- One) por pac)	(docisi)	100030	
1/8	0.405	STD	10	105	.049	.307	.0548	.0740	.00051			.032	.106	.00437
1/0	0.403	XS	40 80	40S 80S	.068	.269	.0720	.0568	.00040		.24	.025	.106	.00523
-	-	-	60	_	.095	.215	.0925	.0364	.00025		.31	.016	.106	.00602
1/4	0.540	STD	40	10S 40S	.065	.410	.0970	.1320	.00091		.33	.057	.141	.01032
114	0.540	XS	80	805	.088	.364	.1250	.1041	.00072		.42	.045	.141	.01227
-				105	.065	.545	-	-	-	-	.54	.031	.141	.01395
3/8	0.675	STD	40	405	.003	.493	.1246	.2333	.00162		.42	.101	.178	.91 .30
	1 100	XS	80	805	.126	.423	.2173	.1405	.00098		.57	.083	.178	.02160
				55	.065	.710	.1583	.3959	.00275	.01197	.54	.172	.220	-
			0.000	105	.083	.674	.1974	.3568	.00248	.01431	.67	.155	.220	.02849
		STD	40	405	.109	.622	.2503	.3040	.00211	.01709	.85	.132	.220	.04069
1/2	0.840	XS	80	805	.147 .	.546.	.3200	.2340	.00163	.02008	1.09	.102	.220	.04780
7		vvc	160		.187	.466	.3836	.1706	.00118	.02212	1.31	.074	.220	.05267
		XXS			.294	.252	.5043	.050	.00035	.02424	1.71	.022	.220	.05772
				55	.065	.920	.2011	.6648	.00462	.02450	.69	.288	.275	.04667
		STD	10	105	.083	.884	.2521	.6138	.00426	.02969	.86	.266	.275	.05655
3/4	1.050	XS	¥0 80	105	.113	.824	.3326	.5330	.00371	.03704	1.13	.231	.275	.07055
314	1.050		160	805	.154	1742	.4335	.4330	.00300	.04479	1.47	.188	.275	.08531
		XXS			.219	.612	.5698	.2961	.00206	.05269	1.94	.128	.275	,10036
		.7.		5S	.065	1.185		-	-				.275	.11032
	1			105	.109	1.097	.2553	1.1029 .9452	.00766	.04999	.87	.478	.344	.07603
		STD	40	405	133	1.049	.4939	.8640	.00600	.07569	1.40	.409	.344	.11512
1,	1.315	XS	80	805	.179	,957	.6388	.7190	.00499	.1056	2.17	.312	.344	.1606
			160		.250	.815	.8365	.5217	.00362	.1251	2.84	.230	.344	.1903
		XXS			.358	.599	1.0760	.282	.00196	.1405	3.66	.122	.344	.2136
				58	.065	1.530	.3257	1.839	.01277	.1038	1.11	.797	.435	.1250
		COTTO	***	105	.109	1.442	.4717 ·	1.633	.01134	.1605	1.81	.708	.435	1934
11/4	1.660	STD	40	408	.140	1.380 .	.6685	1.495	.01040	.1947	2.27	.649	.435	23.46
	1.000	1S	80 160	808	.191	1.278	.8815	1.283	.00891	.2418	3.00	.555	435	.2913
	- Park	XXS			.250	1.160	1.1070 1.534	1.057	.00734	.2839	3.76	.458	.435	.3421
				***	-				.00438	.3411	5.21	.273	.435	.4110
			***	5S 10S	.065	1.770	.3747	2.461	.01709	.1579	1.28	1.066	.497	.1662
		STD	40	405	115	1.610	.6133	2.222 2.036	.01543	.2468	2.09	.963	.497	.2598
114	1.900	XS	80	805	200		1.068	1.767	.01414	3000	2.72	882	.497	.3262
	1		160		.281		1.429	1.406	.00976	.4824	3.63	.765	.497	.5078
	1	XXS			.400		1.885	.950	.00660	.5678	6.41	.42	.497	.5977
				5.5	.065	2.245	.4717	3.958	.02749	.3149	1.61	1.72	.622	2652
				108	.109	2.157		3.654	.02538	.4902	2.64	1.58	.622	.4204
2.	2 2	STD	10	408	.154	2.067	1.075	3.355	.02330	.6657	3.65	1.45	.622	5606
	2.375	X.S. I	80	808	218	1.939	1.477	2.953	.02050	9670	5.02	1.28	.622	- 110
		XXS	160	- 1	.344		2.190	2.241	.01556	1,162	7,46	.97	652	453
							-		.01232		9.03	.77	.622	1.101
12				5S 10S		2.709		5.764	.04002	.7100	2.48	2.50	.753 .	.4939
		STD	40	405				5.453	.03787	.9873	3.53	2.36	.753	.6868
21/2	2.875	XS	80	805				4.788 4.238	.03322	1.530	5.79	2.07	.753	1.064
			160					3.546		1.924 2.353	7.66	1.87	.753	1.339
		XXS						2.464		2.333	10.01	1.54	.753	1.638
	The Table			55		3.334	-	8.730	.06063					-
				108			and the same of th	8.347	.05796		3.03 4.33	3.78	.916	.7435 1.041
3	3.500	STD	40	405				7.393	.05130		7.58	3.20		1.724
	3.300	XS	80 -	805	.300	2.900	3.016	6.605		3.894	10.25	2.86	.916	2.225
	Ti Vi	XXS	160				1.205	5.408	.03755	5.032	14.32	2.35		2.876
-	- CO.	- nego			.600	2.300	5.466	4.155	.02885	5 993	18.58	1.80		3.424

Tabla 10. Conductividad térmica contra temperatura media para aislamiento de fibra de vidrio

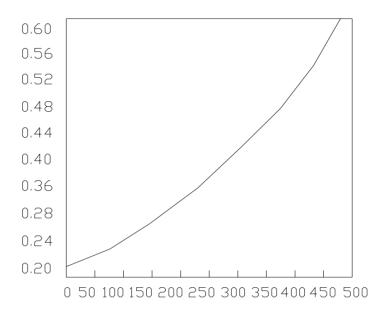
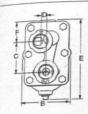
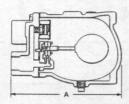


Tabla 11. Coeficientes de conductividad.

Coeficiente de conductivid	ad de pelicula	de aire -
	Btu .	
Superficie	h pie ² °F	W/m2°C
- A.		
Superficie vertical	1.46	8.29
Superficie horizontal Transmisión hacia abajo	1.08	6.13
Superficie horizontal Transmisión hacia arriba	1.63	9.26
Tubería	1,65	9.37


Todos los valores son para aire sin movimiento y no incluyen pérdidas por radiación. Son válidos para superficies que se encuentran en edificios y cerca de la temperatura ambiente. Para instalaciones exteriores, se pueden multiplicar los valores del cuadro por 3 para una estimación de f.


Tabla 12. Espesor recomendado (pulg.) por TIMA-ETI para aislamientos de fibra de vidrio.

N. / I I I No. I I I	Temperatu	ra de operac	ión (°F)			
Diámetro Nominal (pulgadas)	100-199	200-299	300-399	400-499	500-599	600-650
0.50	0.5	1.0	1.5	2.0	2.5	3.0
0.75	1.0	1.5	2.0	2.5	3.0	3.0
1.00	1.0	1.5	2.0	2.5	3.0	3.0
1.50	1.0	1.5	2.5	3.0	3.0	3.0
2.00	1.0	2.0	3.0	3.0	3.0	3.0
2.50	1.0	2.0	3.0	3.0	3.0	3.5
3.00	1,0	2.0	3.0	3.0	3.0	3.5
4.00	1.5	2.5	3.0	3.0	3.5	4.0
5.00	1.5	2.5	3.0	3.0	4.0	4.5
6.00	1.5	2.5	3.0	3.5	4.0	5.0
8,00	1.5	3.0	3.0	3.5	4.5	5.0
10.00	1.5	3.0	3.0	4.0	4.5	5.5
12.00	1.5	3.0	3.5	4.0	5.0	5.5
14.00	1.5	3.0	3.5	4.0	5.0	5.5
16.00	1.5	3.0	3.5	4.0	5.0	6.0
18.00	1.5	3.0	3.5	4.5	5.0	6.0
20.00	2.0	3.0	3.5	4.5	5.0	6.0
24.00	2.0	3.0	3.5	4.5	5.0	6.0
30.00	2.0	3.0	4.0	4.5	5.5	6.0
36.00	2.0	3.0	4.0	5.0	6.0	6.0
Plano	2.5	4.5	6.0	7.5	9.0	10.5

Tabla 13. Trampas de vapor de flotador y termostato.

Iron Float & Thermostatic Steam Traps FT-150, FT-200

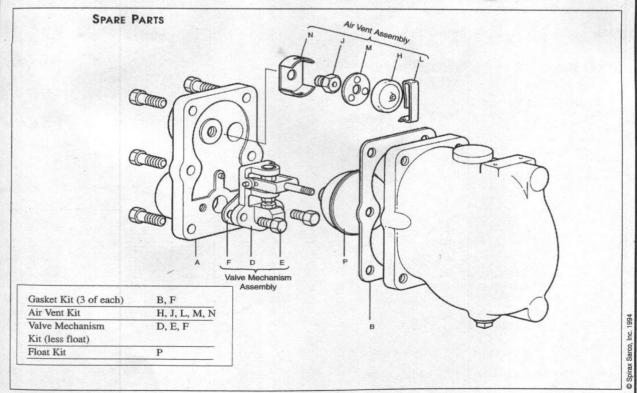
DIMENSIONS (NOMINAL) IN INCHES AND MILLIMETERS										
Size	A	В	C	D	E	F	Weight			
3/4", 1"	8.5 216	3.9 100	2.6 65	9.4	6.9 175	1.8 46	15 lb 6.8 kg			
1-1/4", 1-1/2"	10.75 273	5.75 146	3 76	0.6 14	9.1 232	2.5 64	30 lb 13.6 kg			

SAMPLE SPECIFICATION

Steam traps shall be of the mechanical ball float type having cast iron bodies, NPT connections, and stainless steel valve heads and seats. Incorporated into the trap body shall be a stainless steel balanced pressure thermostatic air vent capable of withstanding 45°F (25°C) of superheat and resisting waterhammer without sustaining damage. Internals of the trap shall be completely servicable without disturbing the piping.

INSTALLATION

A pipeline strainer should be installed ahead of any steam trap. Full port isolating valves should be placed to permit servicing. The trap should be installed below the drainage point of the equipment with a collecting leg before the trap, in a position so that the float arm is in a horizontal plane and the float rises and falls vertically, with the flow direction as indicated on the cover. Refer to IMI 2.300 for complete instructions.


MAINTENANCE

This product can be maintained without disturbing the piping connections. Complete isolation from both supply and return line is required before any servicing is performed.

The trap should be disassembled periodically for inspection and cleaning of the valve head and seat, operating mechanism and air vent.

Worn or damaged parts should be replaced using a complete valve mechanism assembly and/or air vent assembly

Complete installation and maintenance instructions are given in IMI 2.300, which accompanies the product.

TI-2-314-US 03.94

Tabla 14. Características técnicas para trampas de vapor de flotador y termostato.

Cast Iron Float & Thermostatic Steam Traps FT, FTI and FTB Capacities

Capacities in lb/h hot condensate

Differential Pressure		F	T-150				FT-	200	FTB-20	FTB-30	FTB-125	FT	B-175	FTB-175 FTB 200
psi bar	3/4"	1"	1-1/4"	1-1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	2"	2-1/2"	1-1/2"	2"	2-1/2"
1/4	170	170	275	275	120	120	250	250	6000	12000	19000	920	2600	7000
1/2	235	235	360	360	160	160	335	335	7500	15800	24000	1300	4000	12000
1 .07	315	315	470	470	210	210	450	450	9000	19000	29200	1850	5550	17000
2 .14	425	425	610	610	280	280	600	600	11500	24000	35000	2100	7100	21000
5 .34	650	650	920	920	400	400	870	870	15500	31500	44000	2600	9500	27000
10	810	810	1120	1120	520	520	1100	1100	19000	38000	52000	3200	11500	32000
15 1.0	940	940	1300	1300	600	600	1280	1280	22000	41500	57500	3750	13000	35500
20	1020	1020	1415	1415	660	660	1410	1410	25000	43500	61500	4200	14000	38500
30 2.1	1175	1175	1600	1600	770	770	1640	1640	-	45500	68500	5000	16000	42500
40 2.8	1310	1310	1770	1770	850	850	1800	1800	-	-	73500	5650	17500	46000
50 3.5	1410	1410	1935	1935	910	910	1910	1910	-	-	78000	6220	18500	48500
75 5.2	1625	1625	2210	2210	1050	1050	2200	2200	-	-	86000	7400	21000	54000
100 6.9	1755	1755	2360	2360	1175	1175	2410	2410		-	93000	8310	22500	58000
125 8.6	1900	1900	2600	2600	1260	1260	2610	2610		-	100000	9220	24000	61000
150 10.3	2025	2025	2750	2750	1370	1370	2825	2825	-	-	-	10150	25500	64000
175 12.1	-	-	-	-	1440	1440	2975	2975			1-	10950	27000	68000
200 13.8	-	-	-	-	1512	1512	3130	3130	-	-			-	69400*

For kg/h, multiply by .454

Orifice Diameter

								ALLEO AVADA						
in	.152	.152	.250	.250	.128	.128	.203	.203	.937	2.125*	2.125*	.375*	.750*	1.500*
mm	3.86	3.86	6.35	6.35	3.25	3.25	5.16	5.16	23.8	54.2*	54.0*	9.53*	19.05*	38.1*

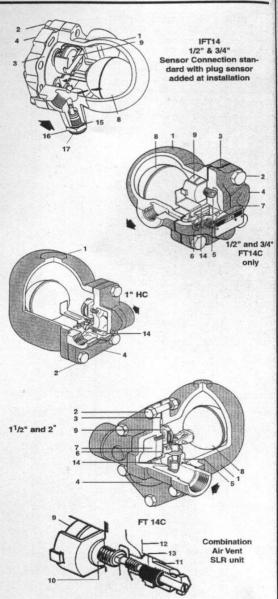
*each orifice of a double seated trap.

spirax /sarco

Cast/Ductile Iron Float & Thermostatic Steam Trap FT14, IFT14 and FT14C

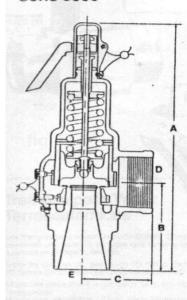
The trap contains a float valve mechanism which modulates to discharge condensate continuously at steam temperature, while noncondensible gases are released by a separate internal balanced pressure thermostatic air vent.

Model ⇔	IFT14-4.5 FT14-4.5	IFT14-10 FT14-10	IFT14-14 FT14-14
РМО	65 psig	145 psig	200 psig
Sizes		FT 1/2", 3/4", or 3/4", 1" HC, 1-	
Connections		NPT	
Construction	1-1/2	4", 1" HC: Ducti 2", 2": Cast Iron Stainless Steel In	Body
Options FT14 only		": Combination .R (steam lock	


No.	Part	Material	
1	Body 1/2", 3/4", 1"	Ductile (SG) Iron	DIN 1693 GGG 40
	1-1/2", 2"	Cast Iron	DIN 1691 GG 25
2	Cover Bolting	Steel	BS 3692 Gr. 8.8
3	Cover Gasket	Nickel Reinforced Exfolia	ated Graphite
4	Cover 1/2", 3/4", 1", 1-1/4"	Ductile (SG) Iron	DIN 1693 GGG 40
	1-1/2", 2"	Cast Iron	DIN 1691 GG 25
5	Valve Seat 1/2", 3/4"	Stainless Steel	BS 970 431 529
	Valve Seat 1"	Stainless Steel	ASTM A276Type 43
	Main Valve Assy 1-1/2", 2"	Stainless Steel	AISI 431
6	Valve Seat Gasket 1/2", 3/4" 1", 1-1/4	Stainless Steel	AISI 304
	Main Valve Assy Gasket 1-1/2", 2"	Reinforced Exofoliated Graphite	
7	Main Valve Assy Screws 1/2", 3/4"	Stainless Steel M4 x 6 mm	BS 6105 CI A2-70
	Pivot Frame Assy Set Screws 1", 1-1/4"	Stainless Steel M5 x 20 mm	ANSI B 18.6.3
	Main Valve Assy Bolts 1-1/2" Studs & Nuts 2"	Stainless Steel M6 x 20 mm M8 x 20 mm	BS 970 304 516 BS 6105 A4-80
8	Ball Float & Lever	Stainless Steel	AISI 304
9	Air Vent	Stainless Steel	
10	Air Vent Seat Gasket	Stainless Steel	BS1449 304 516
11	SLR	Stainless Steel	BS 970 303 S21
12	SLR Unit Gasket 1", 1-1/2", 2"	Mild Steel	BS1449 CS4
13	SLR Seal	Stainless Steel	ASTM A276 Type 43
14	Erosion Deflector	Stainless Steel	ASTM A276 Type 431
15	Sensor Gasket	Stainless Steel	BS1449 304 516
16	Sensor SSLI, WLSI optional	Stainless Steel	BS1449 304 516
17	Blanking Plug standard (not shown)	Steel	
18	inlet Baffle 1-1/2", 2" only) (baffle not shown)	Stainless Steel	BS1449 304 516

Typical Applications

All process equipment, particularly when controlled by modulating temperature control valves; also for unit heaters, air heating coils, heat exchangers and steam main drip stations


Capacities: see TIS 2.306

Local regulation may restrict the use of this product below the conditions quoted. Limiting conditions refer to standard connections only. TI-2-320-US 01.05 In the interests of development and improvement of the product, we reserve the right to change the specification.

Tabla 16. Características técnicas para trampas de vapor de flotador y termostato

Serie 6000

fiq.3.3

Valvulas de Seguridad Serie 6000

Para proteger el equipo contra una sobre-pre-surización, Spirax Sarco ofrece un amplio rango de válvulas de seguridad en bronce y hierro fundido para usar tanto en vapor como en agua y aire comprimido.

Tipos Disponibles:

MODELO 6010 Salida lateral; diseño de boquilla total; con internos de

Para' un funcionamiento excepcional de libre-fuga (se usa solamente en vapor).

MODELO 6030
Igual que el Modelo 6010, excepto que los internos son de acero inoxidable (boquilla y disco).

Las presiones en que se fabrican son: 15, 30, 45, y 60 Ibs. se pueden fabricar en otras presiones sobre pedido.

Al ordenar una válvula de seguridad para usarse en Calderas especifique la marca del código (1) como se requiere en la Sección 1 de los Códigos ASME.

Dimensiones (aproximadas) en pulgadas y milímetros.

Modelo No.	Rosca de antasa tes macro	Orrificeo	100		8	c	Peso Aprox Lbs.
60DC	16	D	34	5.5	1.6	2.1	1.50 Lb
60DD	3/4	D	34	6.5	1.6	2.1	1.75 Lb
60ED	3/4	E	1	7.5	1.75	2.4	2.50 Lb
80EE	1	E	1	7.5	1.75	2.5	2.75 Lb
60"FE	1	F	13/4	8.5	2.0	2.6	3.50 Lb
60FF	13%	F	150	8.75	2.0	2.9	3.75 Lb
60"GF	11/4	G	11/2	96	24	31	5 50 Lb
60"GG	135	G	155	10.0	24	3.4	5.75 Lb
60"HG	112	н	2	.0.6	2.7	36	7.75 Lb.
90HH	2	н	2	*11	2.7	41	8 00 Lb
HL09	2	J	216	13 5	3.4	4.25	15.50 Lb
60TJ	214	J	21/2	14 0	34	4.5	15.75 Lb

"Reemplace el astenaco con el número de modelo dessado. Modelo 6030 disponible en ½" x %"; %" x 1"; 1" x 1-W"; 1-W" x 2" y 2" x 2-W"

Condiciones Límite

Presión establecida: 250 lbs. 406°F (vapor) Presión establecida: 300 lbs. 300°F (aire/gas) NORMA ASME — Certificado N.B.

Medidas y Conexiones de Tubería

En ½", ¼", 1", 1-¼", 2" y 2-½"; conexión de entrada roscada NPT; conexión de salida roscada FTP.

Aditamentos opcionales extra:

Un codo de descarga y un colector de condensado se puede añadir al Modelo 6010 de la serie de válvulas de seguridad para salidas roscadas FTP de 2" y 2-½".

Fabricadas para Spirax Sarco por Kunkle.

Capacidad de libras de vapor saturado por hora. Lbs. fiora de viaco 97% base de sourusacion de 3%. Las capacidades mostradas en estr caciones de acuerdo con el actual Código ASME Secolo 1.

Orifice	ice D		0 E		F		G		H		J	
área .121 pul. cua.		.216 pul. cua.		.338 put. cua.		.554 pul. cua.		963 put. cua.		1.414 pul. cua.		
Presión establecida en lbs.	3% Acc.	10% Acc.	3% Acc.	10% Acc.	3% Acc.	10% Acc.	3% Acc.	10% Acc.	3% Acc.	10% Acc.	3% Acc.	10% Acc
5	99	110	176	196	275	308	450	504	703	786	1153	1289
10	124	140	221	250	347	391	568	641	386	1001	1453	1640
15	150	170	267	303	418	475	685	778	1069	1215	1752	1991
20	175	200	312	357	- 489	558	802	916	1251	1429	2051	2342
25	201	230	358	410	561	642	919	1053	1434	1644	2350	2893
30	226	260	404	464	632	725	1036	1191	1615	1858	2650	3045
35	252	290	449	517	703	809	1152	1328	1799	2072	2949	3396
40	278	320	495	571	775	893	1269	1465	1981	2286	3248	3747
45	303	350	540	625	846	977	1386	1602	2164	2500	3547	4098
50	329	380	586	678	918	1061	1503	1739	2347	2714	3846	4449
55 -	- 354	410	531	732	989	1145	1620	1876	2529	2928	4146	4800
60	386	440	677	785	1060	1229	1737	2014	2711	3142	4445	5151
65	405	470	723	839	1132	1312	1854	2151	2894	3358	4744	5503
70	431	500	768	892	1203	1396	1971	2299	3076	3570	5043	5854
75	457	530	914	946	1274	1479	2088	2426	3259	3784	5343	5205
80 85 90 95	482 508 533 559 586	560 590 620 550 580	960 905 950 996 1042	1000 1053 1106 1159 1212	1346 1417 1489 1560 1631	1563 1647 1731 1815 1899	2205 2322 2439 2556 2673	2563 2700 2837 2974 3111	3441 3624 3806 3989 4171	3999 4213 4427 4641 4855	5642 5941 6240 5540 5839	6556 6907 7258 7609 7960
105	610	710	1067	1265	1703	1983	2790	3248	4354	5069	7138	8311
110	636	740	1133	1319	1774	2067	2907	3385	4536	5283	7437	8662
115	661	770	1176	1372	1845	2151	3024	3522	4719	5497	7736	9013
120	687	800	1224	1425	1917	2235	3141	3660	4901	5711	8036	9365
125	712	530	1269	1479	1988	2318	3258	3797	5084	5925	8335	9716
130 135 140 145 150	738 764 789 815 840	860 890 920 950 980	1315 1361 1406 1452 1497	1532 1588 1640 1694 1747	2060 2131 2202 2273 2345	2402 2486 2569 2653 2736	3375 3492 3608 3725 3842	3935 4072 4209 4346 4483	5256 5449 5632 5814 599	5140 6354 6568 5782 6996	8634 8933 9233 9532 9631	10067 10418 10759 11120
160	891	1040	1586	1853	2488	2904	4076	4757	6362	7424	10430	12173
170	943	1100	1680	1961	2631	3071	4310	5032	6727	7832	11028	12875
180	994	1160	1771	2068	2773	3239	4544	5306	7092	8281	11627	13578
190	1045	1220	1862	2174	2916	3406	4778	5581	7457	8709	12225	14280
200	1096	1280	1953	2292	3059	3574	5012	5855	7822	9138	12824	14982
210	1147	1340	2044	2389	3202	3642	5246	6130	8187	3568	13422	15684
220	1198	1400	2135	2496	3344	3809	5480	6404	8552	9994	14021	16386
230	1249	1460	2225	2603	3487	4077	5714	6678	8917	10423	14619	17088
240	1301	1520	2218	2710	3630	4244	5948	6953	9282	10851	15218	17790
250	1352	1580	2409	2816	3773	4411	6181	7227	9647	11279	15816	18492

Tabla 18. Características de tuberías cedula 40

Tubería Cédula (Lista) 40					
Tamaño Nominal de Tubería Pulg.	D.E. Pulg.	D.I. Pulg.	Area Pulg. ³	Trabajo psi*	Presión de Rotura psi (lbs/pulg.²)
1/2	0,84	0,62	0,30	2055	12.330
3/4	1,05	0,82	0,53	1760	10.560
1 .	1,32	1,05	0,86	1915	14.490
1-1/4	1,66	1,38	1,49	1650	9.980
1-1/2	1,90	1,61	2,03	1520	9.130
2	2,37	2,07	3,36	1340	8.040
3	3,50	3,07	7,39	1490	8:940

ANEXOS 3

Soportes para instalación

Para la fijación de toda la tubería de alimentación de vapor y retorno de condensado, será necesario la distribución de soportes fijos y móviles, los cuales serán seleccionados en base a cálculos y a su ubicación dentro de las instalaciones.

La soportería que se recomendara en el proyecto es de la marca UNISTRUT cuyos perfiles y accesorios se denominan de la siguiente manera:

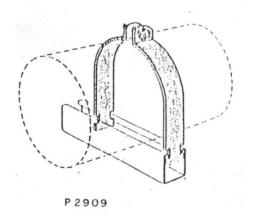
Denominaciones.

Perfil para viga P-4,000

Perfil para colgante P-400D y P-4001

Perfil para columna P-1000
Escuadra P-1026
Tuerca P-1010

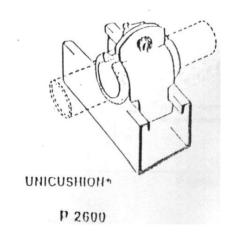
Abrazadera P-1111 y P-1126

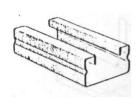

Unicusshión P-2600

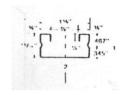
La selección de esta marca en especial, es únicamente a la disponibilidad de información técnica.

A demás los soportes pueden ser fabricados artesanalmente.

Abrazadera para tubería rígida de acero

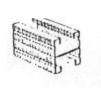

Denominación	Diámetro de tubería (pulg.)		
P - 1111	1/2		
P - 1112	3/4		
P – 1113	1		
P – 1114	11/4		
P – 1115	11/2		
P – 1117	2		
P – 1118	2 1/2		
P – 1119	3		


Unicushión


Elementos para:

- absorber choques
- absorber expansión y contracción
- Aislar del sonido y vibración
- Material flexible

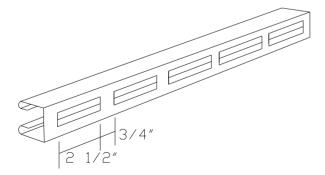
PERFIL PARA VIGA



WT LBS / CFT 82

P-4000 CANAL

PERFIL PARA COLGANTE

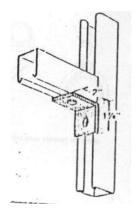


WT LBS / CFT 164

P - 4001

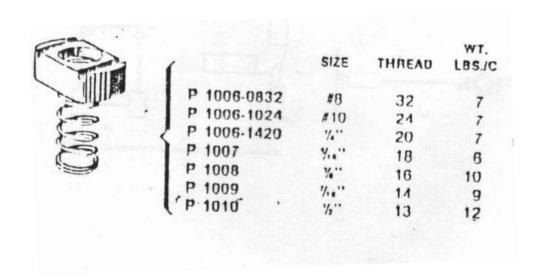
PERFIL DE COLUMNA

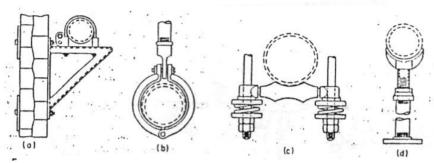
Longitud Standard 20'



Dimensiones de sección 1 1/8" X 1 1/8"

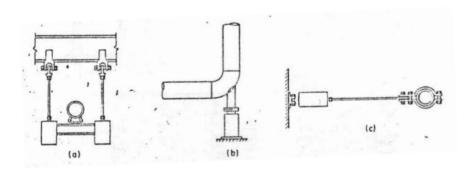
P-100 DS


Escuadra



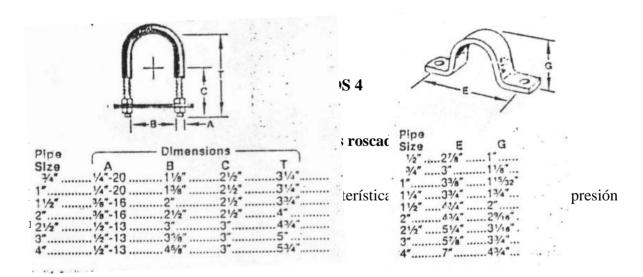
WT. LBS. / C 38

P - 1026


Tuerca con resorte

Métodos para soportar los tubos

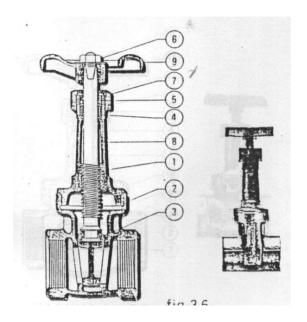
Soportes para tubos sobre rodillos de fundición de hierro



Suspensores de muelle y brazo templador

Soportes característicos para tuberías. Los colgantes (A, B, C, D) generalmente están dispuestos para el ajuste vertical (1) que a su vez permite el mantenimiento de la alineación de la tubería y facilita la repartición proporcional correcta del peso entre los soportes. Los colgantes de pivote (E, F) admiten un movimiento en todas direcciones (2), o bien tienen movimiento en una sola dirección (3). Soportes múltiples (G, H, I, J) para grupos de tubos delgados pueden tener perfil para movimiento axial (4) solamente, o tienen una base de apoyo plano (5) que hacen posible cierto movimiento hacia los lados.

Abrazadera para tubería



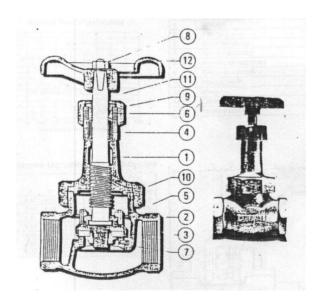
El diseño de su interior permite un flujo recto y completo en uno u otro sentido.

Son empleadas para operar totalmente abiertas o completamente cerradas, ya que en una posición intermedia el flujo erosiona el asiento de los discos.

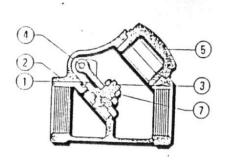
Servicio recomendado

- Completamente abierta o cerrada
- No para regular
- Mínima caída de presión
- Operación poco frecuente

Nº	Descripción
1	Bonete
2	Cuerpo
3	Disco
4	Empaques
5	Prensa empaques
6	Tuerca del volante
7	Tuerca prensa empaques
8	Vástago
9	Volante

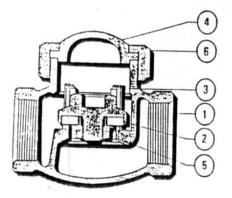

Válvula de globo bonete con tuerca unión, disco de teflón.

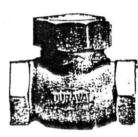
La principal aplicación de las válvulas de globo es regular el flujo desde el cierre completo hasta la capacidad total. Estas válvulas pueden ser operadas frecuentemente y eficientemente con el vástago en cualquier posición.


El cambio de dirección del flujo a través de la válvula balancea los esfuerzos en la línea y produce la caída de presión necesaria para la regulación.

Servicio recomendado.

- regulación del flujo.
- Operación frecuente.
- Mayor caída de presión.
- Cierre hermético y positivo.


Nº	Descripción
1	Bonete
2	Cuerpo
3	Disco
4	Empaques
5	Porta discos
6	Prensa empaque
7	Tuerca del disco
8	Tuerca del volante
9	Tuerca prensa empaques
10	Tuerca unión



No.	DESCRIPCION	
1	columpio	
2	cuerpo	
3	disco	
4	perno del columpio	
5	tapa	
6 tapón lateral		
7 tuerca del disco		

VALVULA DE RETENCION TIPO COLUMPIO FIG 3.9

No.	DESCRIPCION
1	cuerpo
2	disco
3	portadisco
4	tapa >
5	tuerca del disco
6	tuerca unión "

VALVULA DE RETENCION TIPO PISTON